5 research outputs found

    GWIDD: a comprehensive resource for genome-wide structural modeling of protein-protein interactions

    Get PDF
    Protein-protein interactions are a key component of life processes. The knowledge of the three-dimensional structure of these interactions is important for understanding protein function. Genome-Wide Docking Database (http://gwidd.bioinformatics.ku.edu webcite) offers an extensive source of data for structural studies of protein-protein complexes on genome scale. The current release of the database combines the available experimental data on the structure and characteristics of protein interactions with structural modeling of protein complexes for 771 organisms spanned over the entire universe of life from viruses to humans. The interactions are stored in a relational database with user-friendly interface that includes various search options. The search results can be interactively previewed; the structures, downloaded, along with the interaction characteristics. Keywords: Protein-protein interactions; Structural modeling; Protein docking; Structural genomics; Interactom

    Template-based structure modeling of protein-protein interactions

    Get PDF
    The structure of protein-protein complexes can be constructed by using the known structure of other protein complexes as a template. The complex structure templates are generally detected either by homology-based sequence alignments or, given the structure of monomer components, by structure-based comparisons. Critical improvements have been made in recent years by utilizing interface recognition and by recombining monomer and complex template libraries. Encouraging progress has also been witnessed in genome-wide applications of template-based modeling, with modeling accuracy comparable to high-throughput experimental data. Nevertheless, bottlenecks exist due to the incompleteness of the protein-protein complex structure library and the lack of methods for distant homologous template identification and full-length complex structure refinement. © 2013

    Text Mining for Protein-Protein Docking

    Get PDF
    Scientific publications are a rich but underutilized source of structural and functional information on proteins and protein interactions. Although scientific literature is intended for human audience, text mining makes it amenable to algorithmic processing. It can focus on extracting information relevant to protein binding modes, providing specific residues that are likely be at the binding site for a given pair of proteins. The knowledge of such residues is a powerful guide for the structural modeling of protein-protein complexes. This work combines and extends two well-established areas of research: the non-structural identification of protein-protein interactors, and structure-based detection of functional (small-ligand) sites on proteins. Text-mining based constraints for protein-protein docking is a unique research direction, which has not been explored prior to this study. Although text mining by itself is unlikely to produce docked models, it is useful in scoring of the docking predictions. Our results show that despite presence of false positives, text mining significantly improves the docking quality. To purge false positives in the mined residues, along with the basic text-mining, this work explores enhanced text mining techniques, using various language processing tools, from simple dictionaries, to WordNet (a generic word ontology), parse trees, word vectors and deep recursive neural networks. The results significantly increase confidence in the generated docking constraints and provide guidelines for the future development of this modeling approach. With the rapid growth of the body of publicly available biomedical literature, and new evolving text-mining methodologies, the approach will become more powerful and adequate to the needs of biomedical community

    GWIDD: a comprehensive resource for genome-wide structural modeling of protein-protein interactions

    Get PDF
    <p>Abstract</p> <p>Protein-protein interactions are a key component of life processes. The knowledge of the three-dimensional structure of these interactions is important for understanding protein function. Genome-Wide Docking Database (<url>http://gwidd.bioinformatics.ku.edu</url>) offers an extensive source of data for structural studies of protein-protein complexes on genome scale. The current release of the database combines the available experimental data on the structure and characteristics of protein interactions with structural modeling of protein complexes for 771 organisms spanned over the entire universe of life from viruses to humans. The interactions are stored in a relational database with user-friendly interface that includes various search options. The search results can be interactively previewed; the structures, downloaded, along with the interaction characteristics.</p
    corecore