19,588 research outputs found

    Integrative DNA methylome analysis of pan-cancer biomarkers in cancer discordant monozygotic twin-pairs

    Get PDF
    BACKGROUND: A key focus in cancer research is the discovery of biomarkers that accurately diagnose early lesions in non-invasive tissues. Several studies have identified malignancy-associated DNA methylation changes in blood, yet no general cancer biomarker has been identified to date. Here, we explore the potential of blood DNA methylation as a biomarker of pan-cancer (cancer of multiple different origins) in 41 female cancer discordant monozygotic (MZ) twin-pairs sampled before or after diagnosis using the Illumina HumanMethylation450 BeadChip. RESULTS: We analysed epigenome-wide DNA methylation profiles in 41 cancer discordant MZ twin-pairs with affected individuals diagnosed with tumours at different single primary sites: the breast, cervix, colon, endometrium, thyroid gland, skin (melanoma), ovary, and pancreas. No significant global differences in whole blood DNA methylation profiles were observed. Epigenome-wide analyses identified one novel pan-cancer differentially methylated position at false discovery rate (FDR) threshold of 10 % (cg02444695, P = 1.8 × 10(-7)) in an intergenic region 70 kb upstream of the SASH1 tumour suppressor gene, and three suggestive signals in COL11A2, AXL, and LINC00340. Replication of the four top-ranked signals in an independent sample of nine cancer-discordant MZ twin-pairs showed a similar direction of association at COL11A2, AXL, and LINC00340, and significantly greater methylation discordance at AXL compared to 480 healthy concordant MZ twin-pairs. The effects at cg02444695 (near SASH1), COL11A2, and LINC00340 were the most promising in biomarker potential because the DNA methylation differences were found to pre-exist in samples obtained prior to diagnosis and were limited to a 5-year period before diagnosis. Gene expression follow-up at the top-ranked signals in 283 healthy individuals showed correlation between blood methylation and gene expression in lymphoblastoid cell lines at PRL, and in the skin tissue at AXL. A significant enrichment of differential DNA methylation was observed in enhancer regions (P = 0.03). CONCLUSIONS: We identified DNA methylation signatures in blood associated with pan-cancer, at or near SASH1, COL11A2, AXL, and LINC00340. Three of these signals were present up to 5 years prior to cancer diagnosis, highlighting the potential clinical utility of whole blood DNA methylation analysis in cancer surveillance

    Intragenic DNA methylation: implications of this epigenetic mechanism for cancer research

    Get PDF
    Epigenetics is the study of all mechanisms that regulate gene transcription and genome stability that are maintained throughout the cell division, but do not include the DNA sequence itself. The best-studied epigenetic mechanism to date is DNA methylation, where methyl groups are added to the cytosine base within cytosine–guanine dinucleotides (CpG sites). CpGs are frequently clustered in high density (CpG islands (CGIs)) at the promoter of over half of all genes. Current knowledge of transcriptional regulation by DNA methylation centres on its role at the promoter where unmethylated CGIs are present at most actively transcribed genes, whereas hypermethylation of the promoter results in gene repression. Over the last 5 years, research has gradually incorporated a broader understanding that methylation patterns across the gene (so-called intragenic or gene body methylation) may have a role in transcriptional regulation and efficiency. Numerous genome-wide DNA methylation profiling studies now support this notion, although whether DNA methylation patterns are a cause or consequence of other regulatory mechanisms is not yet clear. This review will examine the evidence for the function of intragenic methylation in gene transcription, and discuss the significance of this in carcinogenesis and for the future use of therapies targeted against DNA methylation

    Ductal carcinoma in situ of the breast: the importance of morphologic and molecular interactions.

    Get PDF
    Ductal carcinoma in situ (DCIS) of the breast is a lesion characterized by significant heterogeneity, in terms of morphology, immunohistochemical staining, molecular signatures, and clinical expression. For some patients, surgical excision provides adequate treatment, but a subset of patients will experience recurrence of DCIS or progression to invasive ductal carcinoma (IDC). Recent years have seen extensive research aimed at identifying the molecular events that characterize the transition from normal epithelium to DCIS and IDC. Tumor epithelial cells, myoepithelial cells, and stromal cells undergo alterations in gene expression, which are most important in the early stages of breast carcinogenesis. Epigenetic modifications, such as DNA methylation, together with microRNA alterations, play a major role in these genetic events. In addition, tumor proliferation and invasion is facilitated by the lesional microenvironment, which includes stromal fibroblasts and macrophages that secrete growth factors and angiogenesis-promoting substances. Characterization of DCIS on a molecular level may better account for the heterogeneity of these lesions and how this manifests as differences in patient outcome and response to therapy. Molecular assays originally developed for assessing likelihood of recurrence in IDC are recently being applied to DCIS, with promising results. In the future, the classification of DCIS will likely incorporate molecular findings along with histologic and immunohistochemical features, allowing for personalized prognostic information and therapeutic options for patients with DCIS. This review summarizes current data regarding the molecular characterization of DCIS and discusses the potential clinical relevance

    The importance of detailed epigenomic profiling of different cell types within organs.

    Get PDF
    The human body consists of hundreds of kinds of cells specified from a single genome overlaid with cell type-specific epigenetic information. Comprehensively profiling the body's distinct epigenetic landscapes will allow researchers to verify cell types used in regenerative medicine and to determine the epigenetic effects of disease, environmental exposures and genetic variation. Key marks/factors that should be investigated include regions of nucleosome-free DNA accessible to regulatory factors, histone marks defining active enhancers and promoters, DNA methylation levels, regulatory RNAs, and factors controlling the three-dimensional conformation of the genome. Here we use the lung to illustrate the importance of investigating an organ's purified cell epigenomes, and outline the challenges and promise of realizing a comprehensive catalog of primary cell epigenomes

    Pancancer analysis of DNA methylation-driven genes using MethylMix.

    Get PDF
    Aberrant DNA methylation is an important mechanism that contributes to oncogenesis. Yet, few algorithms exist that exploit this vast dataset to identify hypo- and hypermethylated genes in cancer. We developed a novel computational algorithm called MethylMix to identify differentially methylated genes that are also predictive of transcription. We apply MethylMix to 12 individual cancer sites, and additionally combine all cancer sites in a pancancer analysis. We discover pancancer hypo- and hypermethylated genes and identify novel methylation-driven subgroups with clinical implications. MethylMix analysis on combined cancer sites reveals 10 pancancer clusters reflecting new similarities across malignantly transformed tissues

    Absence of an embryonic stem cell DNA methylation signature in human cancer.

    Get PDF
    BackgroundDifferentiated cells that arise from stem cells in early development contain DNA methylation features that provide a memory trace of their fetal cell origin (FCO). The FCO signature was developed to estimate the proportion of cells in a mixture of cell types that are of fetal origin and are reminiscent of embryonic stem cell lineage. Here we implemented the FCO signature estimation method to compare the fraction of cells with the FCO signature in tumor tissues and their corresponding nontumor normal tissues.MethodsWe applied our FCO algorithm to discovery data sets obtained from The Cancer Genome Atlas (TCGA) and replication data sets obtained from the Gene Expression Omnibus (GEO) data repository. Wilcoxon rank sum tests, linear regression models with adjustments for potential confounders and non-parametric randomization-based tests were used to test the association of FCO proportion between tumor tissues and nontumor normal tissues. P-values of < 0.05 were considered statistically significant.ResultsAcross 20 different tumor types we observed a consistently lower FCO signature in tumor tissues compared with nontumor normal tissues, with 18 observed to have significantly lower FCO fractions in tumor tissue (total n = 6,795 tumor, n = 922 nontumor, P < 0.05). We replicated our findings in 15 tumor types using data from independent subjects in 15 publicly available data sets (total n = 740 tumor, n = 424 nontumor, P < 0.05).ConclusionsThe results suggest that cancer development itself is substantially devoid of recapitulation of normal embryologic processes. Our results emphasize the distinction between DNA methylation in normal tightly regulated stem cell driven differentiation and cancer stem cell reprogramming that involves altered methylation in the service of great cell heterogeneity and plasticity

    Translational Oncogenomics and Human Cancer Interactome Networks

    Get PDF
    An overview of translational, human oncogenomics, transcriptomics and cancer interactomic networks is presented together with basic concepts and potential, new applications to Oncology and Integrative Cancer Biology. Novel translational oncogenomics research is rapidly expanding through the application of advanced technology, research findings and computational tools/models to both pharmaceutical and clinical problems. A self-contained presentation is adopted that covers both fundamental concepts and the most recent biomedical, as well as clinical, applications. Sample analyses in recent clinical studies have shown that gene expression data can be employed to distinguish between tumor types as well as to predict outcomes. Potentially important applications of such results are individualized human cancer therapies or, in general, ‘personalized medicine’. Several cancer detection techniques are currently under development both in the direction of improved detection sensitivity and increased time resolution of cellular events, with the limits of single molecule detection and picosecond time resolution already reached. The urgency for the complete mapping of a human cancer interactome with the help of such novel, high-efficiency / low-cost and ultra-sensitive techniques is also pointed out

    Epigenetic aberrations and cancer

    Get PDF
    The correlation between epigenetic aberrations and disease underscores the importance of epigenetic mechanisms. Here, we review recent findings regarding chromatin modifications and their relevance to cancer

    Sparse integrative clustering of multiple omics data sets

    Get PDF
    High resolution microarrays and second-generation sequencing platforms are powerful tools to investigate genome-wide alterations in DNA copy number, methylation and gene expression associated with a disease. An integrated genomic profiling approach measures multiple omics data types simultaneously in the same set of biological samples. Such approach renders an integrated data resolution that would not be available with any single data type. In this study, we use penalized latent variable regression methods for joint modeling of multiple omics data types to identify common latent variables that can be used to cluster patient samples into biologically and clinically relevant disease subtypes. We consider lasso [J. Roy. Statist. Soc. Ser. B 58 (1996) 267-288], elastic net [J. R. Stat. Soc. Ser. B Stat. Methodol. 67 (2005) 301-320] and fused lasso [J. R. Stat. Soc. Ser. B Stat. Methodol. 67 (2005) 91-108] methods to induce sparsity in the coefficient vectors, revealing important genomic features that have significant contributions to the latent variables. An iterative ridge regression is used to compute the sparse coefficient vectors. In model selection, a uniform design [Monographs on Statistics and Applied Probability (1994) Chapman & Hall] is used to seek "experimental" points that scattered uniformly across the search domain for efficient sampling of tuning parameter combinations. We compared our method to sparse singular value decomposition (SVD) and penalized Gaussian mixture model (GMM) using both real and simulated data sets. The proposed method is applied to integrate genomic, epigenomic and transcriptomic data for subtype analysis in breast and lung cancer data sets.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS578 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore