11,978 research outputs found

    Collision-free inverse kinematics of the redundant seven-link manipulator used in a cucumber picking robot

    Full text link
    The paper presents results of research on an inverse kinematics algorithm that has been used in a functional model of a cucumber-harvesting robot consisting of a redundant P6R manipulator. Within a first generic approach, the inverse kinematics problem was reformulated as a non-linear programming problem and solved with a Genetic Algorithm (GA). Although solutions were easily obtained, the considerable calculation time needed to solve the problem prevented on-line implementation. To circumvent this problem, a second, less generic, approach was developed which consisted of a mixed numerical-analytic solution of the inverse kinematics problem exploiting the particular structure of the P6R manipulator. Using the latter approach, calculation time was considerably reduced. During the early stages of the cucumber-harvesting project, this inverse kinematics algorithm was used off-line to evaluate the ability of the robot to harvest cucumbers using 3D-information obtained from a cucumber crop in a real greenhouse. Thereafter, the algorithm was employed successfully in a functional model of the cucumber harvester to determine if cucumbers were hanging within the reachable workspace of the robot and to determine a collision-free harvest posture to be used for motion control of the manipulator during harvesting. The inverse kinematics algorithm is presented and demonstrated with some illustrative examples of cucumber harvesting, both off-line during the design phase as well as on-line during a field test

    The Ariadne's Clew Algorithm

    Full text link
    We present a new approach to path planning, called the "Ariadne's clew algorithm". It is designed to find paths in high-dimensional continuous spaces and applies to robots with many degrees of freedom in static, as well as dynamic environments - ones where obstacles may move. The Ariadne's clew algorithm comprises two sub-algorithms, called Search and Explore, applied in an interleaved manner. Explore builds a representation of the accessible space while Search looks for the target. Both are posed as optimization problems. We describe a real implementation of the algorithm to plan paths for a six degrees of freedom arm in a dynamic environment where another six degrees of freedom arm is used as a moving obstacle. Experimental results show that a path is found in about one second without any pre-processing

    Comparison of a bat and genetic algorithm generated sequence against lead through programming when assembling a PCB using a 6 axis robot with multiple motions and speeds

    Get PDF
    An optimal component feeder arrangement and robotic placement sequence are both important for improving assembly efficiency. Both problems are combinatorial in nature and known to be NP-hard. This paper presents a novel discrete hybrid bat-inspired algorithm for solving the feeder slot assignment and placement sequence problem encountered when planning robotic assembly of electronic components. In our method, we use the concepts of swap operators and swap sequence to redefine position, and velocity operators from the basic bat algorithm. Furthermore, we propose an improved local search method based on genetic operators of crossover and mutation enhanced by the 2-opt search procedure. The algorithm is formulated with the objective of minimizing the total traveling distance of the pick and place device. Through numerical experiments, using a real PCB assembly scenario, we demonstrate the considerable effectiveness of the proposed discrete Bat Algorithm (BA) to improve selection of feeder arrangement and placement sequence in PCB assembly operations and achieve high throughput production. The results also highlighted that the even though the algorithms out performed traditional lead through programming techniques, the programmer must consider the influence of different robot motions

    Genetically evolved dynamic control for quadruped walking

    Get PDF
    The aim of this dissertation is to show that dynamic control of quadruped locomotion is achievable through the use of genetically evolved central pattern generators. This strategy is tested both in simulation and on a walking robot. The design of the walker has been chosen to be statically unstable, so that during motion less than three supporting feet may be in contact with the ground. The control strategy adopted is capable of propelling the artificial walker at a forward locomotion speed of ~1.5 Km/h on rugged terrain and provides for stability of motion. The learning of walking, based on simulated genetic evolution, is carried out in simulation to speed up the process and reduce the amount of damage to the hardware of the walking robot. For this reason a general-purpose fast dynamic simulator has been developed, able to efficiently compute the forward dynamics of tree-like robotic mechanisms. An optimization process to select stable walking patterns is implemented through a purposely designed genetic algorithm, which implements stochastic mutation and cross-over operators. The algorithm has been tailored to address the high cost of evaluation of the optimization function, as well as the characteristics of the parameter space chosen to represent controllers. Experiments carried out on different conditions give clear indications on the potential of the approach adopted. A proof of concept is achieved, that stable dynamic walking can be obtained through a search process which identifies attractors in the dynamics of the motor-control system of an artificial walker

    Quantifying the Evolutionary Self Structuring of Embodied Cognitive Networks

    Full text link
    We outline a possible theoretical framework for the quantitative modeling of networked embodied cognitive systems. We notice that: 1) information self structuring through sensory-motor coordination does not deterministically occur in Rn vector space, a generic multivariable space, but in SE(3), the group structure of the possible motions of a body in space; 2) it happens in a stochastic open ended environment. These observations may simplify, at the price of a certain abstraction, the modeling and the design of self organization processes based on the maximization of some informational measures, such as mutual information. Furthermore, by providing closed form or computationally lighter algorithms, it may significantly reduce the computational burden of their implementation. We propose a modeling framework which aims to give new tools for the design of networks of new artificial self organizing, embodied and intelligent agents and the reverse engineering of natural ones. At this point, it represents much a theoretical conjecture and it has still to be experimentally verified whether this model will be useful in practice.

    Symbol Emergence in Robotics: A Survey

    Full text link
    Humans can learn the use of language through physical interaction with their environment and semiotic communication with other people. It is very important to obtain a computational understanding of how humans can form a symbol system and obtain semiotic skills through their autonomous mental development. Recently, many studies have been conducted on the construction of robotic systems and machine-learning methods that can learn the use of language through embodied multimodal interaction with their environment and other systems. Understanding human social interactions and developing a robot that can smoothly communicate with human users in the long term, requires an understanding of the dynamics of symbol systems and is crucially important. The embodied cognition and social interaction of participants gradually change a symbol system in a constructive manner. In this paper, we introduce a field of research called symbol emergence in robotics (SER). SER is a constructive approach towards an emergent symbol system. The emergent symbol system is socially self-organized through both semiotic communications and physical interactions with autonomous cognitive developmental agents, i.e., humans and developmental robots. Specifically, we describe some state-of-art research topics concerning SER, e.g., multimodal categorization, word discovery, and a double articulation analysis, that enable a robot to obtain words and their embodied meanings from raw sensory--motor information, including visual information, haptic information, auditory information, and acoustic speech signals, in a totally unsupervised manner. Finally, we suggest future directions of research in SER.Comment: submitted to Advanced Robotic

    A Developmental Organization for Robot Behavior

    Get PDF
    This paper focuses on exploring how learning and development can be structured in synthetic (robot) systems. We present a developmental assembler for constructing reusable and temporally extended actions in a sequence. The discussion adopts the traditions of dynamic pattern theory in which behavior is an artifact of coupled dynamical systems with a number of controllable degrees of freedom. In our model, the events that delineate control decisions are derived from the pattern of (dis)equilibria on a working subset of sensorimotor policies. We show how this architecture can be used to accomplish sequential knowledge gathering and representation tasks and provide examples of the kind of developmental milestones that this approach has already produced in our lab
    • …
    corecore