4,236 research outputs found

    An engineering approach to automatic programming

    Get PDF
    An exploratory study of the automatic generation and optimization of symbolic programs using DECOM - a prototypical requirement specification model implemented in pure LISP was undertaken. It was concluded, on the basis of this study, that symbolic processing languages such as LISP can support a style of programming based upon formal transformation and dependent upon the expression of constraints in an object-oriented environment. Such languages can represent all aspects of the software generation process (including heuristic algorithms for effecting parallel search) as dynamic processes since data and program are represented in a uniform format

    Relatedness Measures to Aid the Transfer of Building Blocks among Multiple Tasks

    Full text link
    Multitask Learning is a learning paradigm that deals with multiple different tasks in parallel and transfers knowledge among them. XOF, a Learning Classifier System using tree-based programs to encode building blocks (meta-features), constructs and collects features with rich discriminative information for classification tasks in an observed list. This paper seeks to facilitate the automation of feature transferring in between tasks by utilising the observed list. We hypothesise that the best discriminative features of a classification task carry its characteristics. Therefore, the relatedness between any two tasks can be estimated by comparing their most appropriate patterns. We propose a multiple-XOF system, called mXOF, that can dynamically adapt feature transfer among XOFs. This system utilises the observed list to estimate the task relatedness. This method enables the automation of transferring features. In terms of knowledge discovery, the resemblance estimation provides insightful relations among multiple data. We experimented mXOF on various scenarios, e.g. representative Hierarchical Boolean problems, classification of distinct classes in the UCI Zoo dataset, and unrelated tasks, to validate its abilities of automatic knowledge-transfer and estimating task relatedness. Results show that mXOF can estimate the relatedness reasonably between multiple tasks to aid the learning performance with the dynamic feature transferring.Comment: accepted by The Genetic and Evolutionary Computation Conference (GECCO 2020

    A distributed framework for semi-automatically developing architectures of brain and mind

    Get PDF
    Developing comprehensive theories of low-level neuronal brain processes and high-level cognitive behaviours, as well as integrating them, is an ambitious challenge that requires new conceptual, computational, and empirical tools. Given the complexities of these theories, they will almost certainly be expressed as computational systems. Here, we propose to use recent developments in grid technology to develop a system of evolutionary scientific discovery, which will (a) enable empirical researchers to make their data widely available for use in developing and testing theories, and (b) enable theorists to semi-automatically develop computational theories. We illustrate these ideas with a case study taken from the domain of categorisation

    Evolution of a robotic soccer player

    Get PDF
    Robotic soccer is a complex domain where, rather than hand-coding computer programs to control the players, it is possible to create them through evolutionary methods. This has been successfully done before by using genetic programming with high-level genes. Such an approach is, however, limiting. This work attempts to reduce that limit by evolving control programs using genetic programming with low-level nodes

    Hierarchical Classification Trees Using Type-Constrained Genetic Programming

    Get PDF

    Self-adaptation of Genetic Operators Through Genetic Programming Techniques

    Full text link
    Here we propose an evolutionary algorithm that self modifies its operators at the same time that candidate solutions are evolved. This tackles convergence and lack of diversity issues, leading to better solutions. Operators are represented as trees and are evolved using genetic programming (GP) techniques. The proposed approach is tested with real benchmark functions and an analysis of operator evolution is provided.Comment: Presented in GECCO 201
    • 

    corecore