4,836 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    A MPC Strategy for the Optimal Management of Microgrids Based on Evolutionary Optimization

    Get PDF
    In this paper, a novel model predictive control strategy, with a 24-h prediction horizon, is proposed to reduce the operational cost of microgrids. To overcome the complexity of the optimization problems arising from the operation of the microgrid at each step, an adaptive evolutionary strategy with a satisfactory trade-off between exploration and exploitation capabilities was added to the model predictive control. The proposed strategy was evaluated using a representative microgrid that includes a wind turbine, a photovoltaic plant, a microturbine, a diesel engine, and an energy storage system. The achieved results demonstrate the validity of the proposed approach, outperforming a global scheduling planner-based on a genetic algorithm by 14.2% in terms of operational cost. In addition, the proposed approach also better manages the use of the energy storage system.Ministerio de Economía y Competitividad DPI2016-75294-C2-2-RUnión Europea (Programa Horizonte 2020) 76409

    Modeling and Recognition of Smart Grid Faults by a Combined Approach of Dissimilarity Learning and One-Class Classification

    Full text link
    Detecting faults in electrical power grids is of paramount importance, either from the electricity operator and consumer viewpoints. Modern electric power grids (smart grids) are equipped with smart sensors that allow to gather real-time information regarding the physical status of all the component elements belonging to the whole infrastructure (e.g., cables and related insulation, transformers, breakers and so on). In real-world smart grid systems, usually, additional information that are related to the operational status of the grid itself are collected such as meteorological information. Designing a suitable recognition (discrimination) model of faults in a real-world smart grid system is hence a challenging task. This follows from the heterogeneity of the information that actually determine a typical fault condition. The second point is that, for synthesizing a recognition model, in practice only the conditions of observed faults are usually meaningful. Therefore, a suitable recognition model should be synthesized by making use of the observed fault conditions only. In this paper, we deal with the problem of modeling and recognizing faults in a real-world smart grid system, which supplies the entire city of Rome, Italy. Recognition of faults is addressed by following a combined approach of multiple dissimilarity measures customization and one-class classification techniques. We provide here an in-depth study related to the available data and to the models synthesized by the proposed one-class classifier. We offer also a comprehensive analysis of the fault recognition results by exploiting a fuzzy set based reliability decision rule

    Overview of Technical Challenges, Available Technologies and Ongoing Developments of AC/DC Microgrids

    Get PDF
    Gradual depletion of fossil fuel resources, poor energy efficiency of conventional power plants, and environmental pollution have led to a new grid architecture known as smart microgrid. The smart microgrid concept provides a promising solution that enables high penetration of distributed generation from renewable energy sources without requiring to redesign the distribution system, which results in stable operation during faults and disturbances. However, distributed generators/loads and interaction between all nodes within a microgrid will substantially increase the complexity of the power system operation, control, and communications. Many innovative techniques and technologies have been proposed to address the complexity and challenges of microgrids including power quality, power flow balancing, real‐time power management, voltage and frequency control, load sharing during islanding, protection, stability, reliability, efficiency, and economical operation. All key issues of the microgrids, different solutions, and available methods and technologies to address such issues are reviewed in this chapter. Pros and cons of each method are discussed. Furthermore, an extensive comprehensive review for researchers and scholars working on microgrid applications is provided in this chapter to help them identify the areas that need improvements and innovative solutions for increasing the efficiency of modern power distribution grid

    A novel mechanical analogy based battery model for SoC estimation using a multi-cell EKF

    Full text link
    The future evolution of technological systems dedicated to improve energy efficiency will strongly depend on effective and reliable Energy Storage Systems, as key components for Smart Grids, microgrids and electric mobility. Besides possible improvements in chemical materials and cells design, the Battery Management System is the most important electronic device that improves the reliability of a battery pack. In fact, a precise State of Charge (SoC) estimation allows the energy flows controller to exploit better the full capacity of each cell. In this paper, we propose an alternative definition for the SoC, explaining the rationales by a mechanical analogy. We introduce a novel cell model, conceived as a series of three electric dipoles, together with a procedure for parameters estimation relying only on voltage measures and a given current profile. The three dipoles represent the quasi-stationary, the dynamics and the istantaneous components of voltage measures. An Extended Kalman Filer (EKF) is adopted as a nonlinear state estimator. Moreover, we propose a multi-cell EKF system based on a round-robin approach to allow the same processing block to keep track of many cells at the same time. Performance tests with a prototype battery pack composed by 18 A123 cells connected in series show encouraging results.Comment: 8 page, 12 figures, 1 tabl

    A Comprehensive Review of Control Strategies and Optimization Methods for Individual and Community Microgrids

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Community Microgrid offers effective energy harvesting from distributed energy resources and efficient energy consumption by employing an energy management system (EMS). Therefore, the collaborative microgrids are essentially required to apply an EMS, underlying an operative control strategy in order to provide an efficient system. An EMS is apt to optimize the operation of microgrids from several points of view. Optimal production planning, optimal demand-side management, fuel and emission constraints, the revenue of trading spinning and non-spinning reserve capacity can effectively be managed by EMS. Consequently, the importance of optimization is explicit in microgrid applications. In this paper, the most common control strategies in the microgrid community with potential pros and cons are analyzed. Moreover, a comprehensive review of single objective and multi-objective optimization methods is performed by considering the practical and technical constraints, uncertainty, and intermittency of renewable energies sources. The Pareto-optimal solution as the most popular multi-objective optimization approach is investigated for the advanced optimization algorithms. Eventually, feature selection and neural network-based clustering algorithms in order to analyze the Pareto-optimal set are introduced.This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (MICINN)–Agencia Estatal de Investigación (AEI), and by the European Regional Development Funds (ERDF), a way of making Europe, under Grant PGC2018-098946-B-I00 funded by MCIN/AEI/10.13039/501100011033/.Peer ReviewedPostprint (published version
    corecore