1,795 research outputs found

    Research Challenges of Improved Cluster Chain Power-Efficient Routing Using Natural Computing Methods for Wireless Sensor Network

    Get PDF
    Wireless Sensor Networks (WSNs) primarily operate on batteries, making energy conservation crucial, especially in routing processes. Efficient routing in WSNs is challenging due to the network's distinct attributes. Among various routing protocols, CCPAR is noteworthy as it utilizes a chain between cluster heads to relay data to the base station. This research delves into nature-inspired techniques for energy-efficient routing in WSNs. It introduces the Moth-Dolphin Optimization Algorithm, capitalizing on the communication between moths to enhance routing performance. This innovative method combines the navigational skills of moths and the communicative attributes of dolphins. When benchmarked against other optimization methods, the Moth-Dolphin algorithm offers favorable results. The study then applies this algorithm to improve CCPAR routing, aiming for reduced energy consumption. The modified routing's effectiveness is evaluated against other top-tier algorithms, considering factors like energy consumption, throughput, network longevity, and delay

    Extending the Lifetime of Wireless Sensor Networks Based on an Improved Multi-objective Artificial Bees Colony Algorithm

    Get PDF
    Reducing the sensors\u27 energy expenditure to prolong the network lifespan as long as possible remains a fundamental problem in the field of wireless networks. Particularly in applications with inaccessible environments, which impose crucial constraints on sensor replacement. It is, therefore, necessary to design adaptive routing protocols, taking into account the environmental constraints and the limited energy of sensors. To have an energy-efficient routing protocol, a new cluster headsā€™ (CHs) selection strategy using a modified multi-objective artificial bees colony (MOABC) optimization is defined. The modified MOABC is based on the roulette wheel selection over non-dominated solutions of the repository (hyper-cubes) in which a rank is assigned to each hypercube based on its density in dominated solutions of the current iteration and then a random food source is elected by roulette from the densest hypercube. The proposed work aims to find the optimal set of CHs based on their residual energies to ensure an optimal balance between the nodes\u27 energy consumption. The achieved results proved that the proposed MOABC-based protocol considerably outperforms recent studies and well-known energy-efficient protocols, namely: LEACH, C-LEACH, SEP, TSEP, DEEC, DDEEC, and EDEEC in terms of energy efficiency, stability, and network lifespan extension

    GACN: Self-clustering genetic algorithm for constrained networks

    Get PDF
    Extending the lifespan of a wireless sensor network is a complex problem that involves several factors, ranging from device hardware capacity (batteries, processing capabilities, and radio efficiency) to the chosen software stack, which is often unaccounted for by the previous approaches. This letter proposes a genetic algorithm-based clustering optimization method for constrained networks that significantly improves the previous state-of-the-art results, while accounting for the specificities of the Internet engineering task force, Constrained RESTful Environment (CoRE), standards for data transmission and specifically relying on CoRE interfaces, which fit this purpose very well.info:eu-repo/semantics/publishedVersio

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Particle Swarm Optimization for the Clustering of Wireless Sensors

    Get PDF
    Clustering is necessary for data aggregation, hierarchical routing, optimizing sleep patterns, election of extremal sensors, optimizing coverage and resource allocation, reuse of frequency bands and codes, and conserving energy. Optimal clustering is typically an NP-hard problem. Solutions to NP-hard problems involve searches through vast spaces of possible solutions. Evolutionary algorithms have been applied successfully to a variety of NP-hard problems. We explore one such approach, Particle Swarm Optimization (PSO), an evolutionary programming technique where a \u27swarm\u27 of test solutions, analogous to a natural swarm of bees, ants or termites, is allowed to interact and cooperate to find the best solution to the given problem. We use the PSO approach to cluster sensors in a sensor network. The energy efficiency of our clustering in a data-aggregation type sensor network deployment is tested using a modified LEACH-C code. The PSO technique with a recursive bisection algorithm is tested against random search and simulated annealing; the PSO technique is shown to be robust. We further investigate developing a distributed version of the PSO algorithm for clustering optimally a wireless sensor network

    A Multi-objective Optimization Algorithm of Task Scheduling in WSN

    Get PDF
    Sensing tasks should be allocated and processed among sensor nodes inĀ minimum times so that users can draw useful conclusions through analyzing sensedĀ data. Furthermore, finishing sensing task faster will benefit energy saving. The aboveĀ needs form a contrast to the lower efficiency of task-performing caused by the Ā ailureproneĀ sensor. To solve this problem, a multi-objective optimization algorithm of taskĀ scheduling is proposed for wireless sensor networks (MTWSN). This algorithm triesĀ its best to make less makespan, but meanwhile, it also pay much more attention toĀ the probability of task-performing and the lifetime of network. MTWSN avoids theĀ task assigned to the failure-prone sensor, which effectively reducing the effect of failedĀ nodes on task-performing. Simulation results show that the proposed algorithm canĀ trade off these three objectives well. Compared with the traditional task schedulingĀ algorithms, simulation experiments obtain better results

    A Co-evolutionary Algorithm-based Enhanced Grey Wolf Optimizer for the Routing of Wireless Sensor Networks

    Get PDF
    Wireless networks are frequently installed in arduous environments, heightening the importance of their consistent operation. To achieve this, effective strategies must be implemented to extend the lifespan of nodes. Energy-conserving routing protocols have emerged as the most prevalent methodology, as they strive to elongate the network\u27s lifetime while guaranteeing reliable data routing with minimal latency. In this paper, a plethora of studies have been done with the purpose of improving network routing, such as the integration of clustering techniques, heterogeneity, and swarm intelligence-inspired approaches. A comparative investigation was conducted on a variety of swarm-based protocols, including a new coevolutionary binary grey wolf optimizer (Co-BGWO), a BGWO, a binary whale optimization, and a binary Salp swarm algorithm. The objective was to optimize cluster heads (CHs) positions and their number during the initial stage of both two-level and three-level heterogeneous networks. The study concluded that these newly developed protocols are more reliable, stable, and energy-efficient than the standard SEP and EDEEC heterogeneous protocols. Specifically, in 150 m2 area of interest, the Co-BGWO and BGWO protocols of two levels were found the most efficient, with over than 33% increase in remaining energy percentage compared to SEP, and over 24% more than EDEEC in three-level networks
    • ā€¦
    corecore