21,098 research outputs found

    Application of multiobjective genetic programming to the design of robot failure recognition systems

    Get PDF
    We present an evolutionary approach using multiobjective genetic programming (MOGP) to derive optimal feature extraction preprocessing stages for robot failure detection. This data-driven machine learning method is compared both with conventional (nonevolutionary) classifiers and a set of domain-dependent feature extraction methods. We conclude MOGP is an effective and practical design method for failure recognition systems with enhanced recognition accuracy over conventional classifiers, independent of domain knowledge

    Towards multiple 3D bone surface identification and reconstruction using few 2D X-ray images for intraoperative applications

    Get PDF
    This article discusses a possible method to use a small number, e.g. 5, of conventional 2D X-ray images to reconstruct multiple 3D bone surfaces intraoperatively. Each bone’s edge contours in X-ray images are automatically identified. Sparse 3D landmark points of each bone are automatically reconstructed by pairing the 2D X-ray images. The reconstructed landmark point distribution on a surface is approximately optimal covering main characteristics of the surface. A statistical shape model, dense point distribution model (DPDM), is then used to fit the reconstructed optimal landmarks vertices to reconstruct a full surface of each bone separately. The reconstructed surfaces can then be visualised and manipulated by surgeons or used by surgical robotic systems

    Optimizing Neural Architecture Search using Limited GPU Time in a Dynamic Search Space: A Gene Expression Programming Approach

    Full text link
    Efficient identification of people and objects, segmentation of regions of interest and extraction of relevant data in images, texts, audios and videos are evolving considerably in these past years, which deep learning methods, combined with recent improvements in computational resources, contributed greatly for this achievement. Although its outstanding potential, development of efficient architectures and modules requires expert knowledge and amount of resource time available. In this paper, we propose an evolutionary-based neural architecture search approach for efficient discovery of convolutional models in a dynamic search space, within only 24 GPU hours. With its efficient search environment and phenotype representation, Gene Expression Programming is adapted for network's cell generation. Despite having limited GPU resource time and broad search space, our proposal achieved similar state-of-the-art to manually-designed convolutional networks and also NAS-generated ones, even beating similar constrained evolutionary-based NAS works. The best cells in different runs achieved stable results, with a mean error of 2.82% in CIFAR-10 dataset (which the best model achieved an error of 2.67%) and 18.83% for CIFAR-100 (best model with 18.16%). For ImageNet in the mobile setting, our best model achieved top-1 and top-5 errors of 29.51% and 10.37%, respectively. Although evolutionary-based NAS works were reported to require a considerable amount of GPU time for architecture search, our approach obtained promising results in little time, encouraging further experiments in evolutionary-based NAS, for search and network representation improvements.Comment: Accepted for presentation at the IEEE Congress on Evolutionary Computation (IEEE CEC) 202

    A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends

    Get PDF
    Computer vision (CV) is a big and important field in artificial intelligence covering a wide range of applications. Image analysis is a major task in CV aiming to extract, analyse and understand the visual content of images. However, imagerelated tasks are very challenging due to many factors, e.g., high variations across images, high dimensionality, domain expertise requirement, and image distortions. Evolutionary computation (EC) approaches have been widely used for image analysis with significant achievement. However, there is no comprehensive survey of existing EC approaches to image analysis. To fill this gap, this paper provides a comprehensive survey covering all essential EC approaches to important image analysis tasks including edge detection, image segmentation, image feature analysis, image classification, object detection, and others. This survey aims to provide a better understanding of evolutionary computer vision (ECV) by discussing the contributions of different approaches and exploring how and why EC is used for CV and image analysis. The applications, challenges, issues, and trends associated to this research field are also discussed and summarised to provide further guidelines and opportunities for future research

    ANN for English Alphabet Prediction

    Get PDF
    Abstract: In this paper an Artificial Neural Network (ANN) model, for predicting the Letters from twenty dissimilar fonts for each letter. The character images were, initially, based on twenty dissimilar fonts and each letter inside these twenty fonts was arbitrarily distorted to yield a file of 20,000 distinctive stimuli. Every stimulus was transformed into 16 simple numerical attributes (arithmetical moments and edge amounts) which were then ascended to be suitable into a range of numeral values from 0 to 15. We naturally chose, arbitrarily, 1,000 distinctive stimuli for this research. We made certain that the scattering remnants the similar after selecting the one thousand stimuli. In this research, a neural network tool (Just NN) was used for the purpose of predicting to classify every of a huge number of black and white four-sided pixel displays as one of the 26 capital letters in the English language
    corecore