4,714 research outputs found

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Artificial Intelligence in Engineering Management

    Get PDF
    L

    An IVR call performance classification system using computational intelligent techniques

    Get PDF
    Speech recognition adoption rate within Interactive Voice Response (IVR) systems is on the increase. If implemented correctly, businesses experience an increase of IVR utilization by customers, thus benefiting from reduced operational costs. However, it is essential for businesses to evaluate the productivity, quality and call resolution performance of these self-service applications. This research is concerned with the development of a business analytics for IVR application that could assist contact centers in evaluating these self-service IVR applications. A call classification system for a pay beneficiary IVR application has been developed. The system comprises of field and call performance classification components. ‘Say account’, ‘Say amount’, ‘Select beneficiary’ and ‘Say confirmation’ field classifiers were developed using Multi-Layer Perceptron (MLP) Artificial Neural Network (ANN), Radial Basis Function (RBF) ANN, Fuzzy Inference System (FIS) as well as Support Vector Machine (SVM). Call performance classifiers were also developed using these computational intelligent techniques. Binary and real coded Genetic Algorithm (GA) solutions were used to determine optimal MLP and RBF ANN classifiers. These GA solutions produced accurate MLP and RBF ANN classifiers. In order to increase the accuracy of the call performance RBF ANN classifier, the classification threshold has been optimized. This process increased the classifier accuracy by approximately eight percent. However, the field and call performance MLP ANN classifiers were the most accurate ANN solutions. Polynomial and RBF SVM kernel functions were most suited for field classifications. However, the linear SVM kernel function is most accurate for call performance classification. When compared to the ANN and SVM field classifiers, the FIS field classifiers did not perform well. The FIS call performance classifier did outperform the RBF ANN call performance network. Ensembles of MLP ANN, RBF ANN and SVM field classifiers were developed. Ensembles of FIS, MLP ANN and SVM call performance classifiers were also implemented. All the computational intelligent methods considered were compared in relation to accuracy, sensitivity and specificity performance metrics. MLP classifier solution is most appropriate for ‘Say account’ field classification. Ensemble of field classifiers and MLP classifier solutions performed the best in ‘Say amount’ field classification. Ensemble of field classifiers and SVM classifier solutions are most suited in ‘Select beneficiary’ and ‘Say confirmation’ field classifications. However, the ensemble of call performance classifiers is the preferred classification solution for call performance

    Classification of microarray gene expression cancer data by using artificial intelligence methods

    Get PDF
    Günümüzde bilgisayar teknolojilerinin gelişmesi ile birçok alanda yapılan çalışmaları etkilemiştir. Moleküler biyoloji ve bilgisayar teknolojilerinde meydana gelen gelişmeler biyoinformatik adlı bilimi ortaya çıkarmıştır. Biyoinformatik alanında meydana gelen hızlı gelişmeler, bu alanda çözülmeyi bekleyen birçok probleme çözüm olma yolunda büyük katkılar sağlamıştır. DNA mikroarray gen ekspresyonlarının sınıflandırılması da bu problemlerden birisidir. DNA mikroarray çalışmaları, biyoinformatik alanında kullanılan bir teknolojidir. DNA mikroarray veri analizi, kanser gibi genlerle alakalı hastalıkların teşhisinde çok etkin bir rol oynamaktadır. Hastalık türüne bağlı gen ifadeleri belirlenerek, herhangi bir bireyin hastalıklı gene sahip olup olmadığı büyük bir başarı oranı ile tespit edilebilir. Bireyin sağlıklı olup olmadığının tespiti için, mikroarray gen ekspresyonları üzerinde yüksek performanslı sınıflandırma tekniklerinin kullanılması büyük öneme sahiptir. DNA mikroarray’lerini sınıflandırmak için birçok yöntem bulunmaktadır. Destek Vektör Makinaları, Naive Bayes, k-En yakın Komşu, Karar Ağaçları gibi birçok istatistiksel yöntemler yaygın olarak kullanlmaktadır. Fakat bu yöntemler tek başına kullanıldığında, mikroarray verilerini sınıflandırmada her zaman yüksek başarı oranları vermemektedir. Bu yüzden mikroarray verilerini sınıflandırmada yüksek başarı oranları elde etmek için yapay zekâ tabanlı yöntemlerin de kullanılması yapılan çalışmalarda görülmektedir. Bu çalışmada, bu istatistiksel yöntemlere ek olarak yapay zekâ tabanlı ANFIS gibi bir yöntemi kullanarak daha yüksek başarı oranları elde etmek amaçlanmıştır. İstatistiksel sınıflandırma yöntemleri olarak K-En Yakın Komşuluk, Naive Bayes ve Destek Vektör Makineleri kullanılmıştır. Burada Göğüs ve Merkezi Sinir Sistemi kanseri olmak üzere iki farklı kanser veri seti üzerinde çalışmalar yapılmıştır. Sonuçlardan elde edilen bilgilere göre, genel olarak yapay zekâ tabanlı ANFIS tekniğinin, istatistiksel yöntemlere göre daha başarılı olduğu tespit edilmiştir

    Prediction Techniques in Internet of Things (IoT) Environment: A Comparative Study

    Get PDF
    Socialization and Personalization in Internet of Things (IOT) environment are the current trends in computing research. Most of the research work stresses the importance of predicting the service & providing socialized and personalized services. This paper presents a survey report on different techniques used for predicting user intention in wide variety of IOT based applications like smart mobile, smart television, web mining, weather forecasting, health-care/medical, robotics, road-traffic, educational data mining, natural calamities, retail banking, e-commerce, wireless networks & social networking. As per the survey made the prediction techniques are used for: predicting the application that can be accessed by the mobile user, predicting the next page to be accessed by web user, predicting the users favorite TV program, predicting user navigational patterns and usage needs on websites & also to extract the users browsing behavior, predicting future climate conditions, predicting whether a patient is suffering from a disease, predicting user intention to make implicit and human-like interactions possible by accepting implicit commands, predicting the amount of traffic occurring at a particular location, predicting student performance in schools & colleges, predicting & estimating the frequency of natural calamities occurrences like floods, earthquakes over a long period of time & also to take precautionary measures, predicting & detecting false user trying to make transaction in the name of genuine user, predicting the actions performed by the user to improve the business, predicting & detecting the intruder acting in the network, predicting the mood transition information of the user by using context history, etc. This paper also discusses different techniques like Decision Tree algorithm, Artificial Intelligence and Data Mining based Machine learning techniques, Content and Collaborative based Recommender algorithms used for prediction

    Shallow and deep networks intrusion detection system : a taxonomy and survey

    Get PDF
    Intrusion detection has attracted a considerable interest from researchers and industries. The community, after many years of research, still faces the problem of building reliable and efficient IDS that are capable of handling large quantities of data, with changing patterns in real time situations. The work presented in this manuscript classifies intrusion detection systems (IDS). Moreover, a taxonomy and survey of shallow and deep networks intrusion detection systems is presented based on previous and current works. This taxonomy and survey reviews machine learning techniques and their performance in detecting anomalies. Feature selection which influences the effectiveness of machine learning (ML) IDS is discussed to explain the role of feature selection in the classification and training phase of ML IDS. Finally, a discussion of the false and true positive alarm rates is presented to help researchers model reliable and efficient machine learning based intrusion detection systems
    corecore