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Abstract 
 

Speech recognition adoption rate within Interactive Voice Response (IVR) systems is 

on the increase. If implemented correctly, businesses experience an increase of IVR 

utilization by customers, thus benefiting from reduced operational costs. However, it 

is essential for businesses to evaluate the productivity, quality and call resolution 

performance of these self-service applications. This research is concerned with the 

development of a business analytics for IVR application that could assist contact 

centers in evaluating these self-service IVR applications. A call classification system 

for a pay beneficiary IVR application has been developed. The system comprises of 

field and call performance classification components. ‘Say account’, ‘Say amount’, 

‘Select beneficiary’ and ‘Say confirmation’ field classifiers were developed using 

Multi-Layer Perceptron (MLP) Artificial Neural Network (ANN), Radial Basis 

Function (RBF) ANN, Fuzzy Inference System (FIS) as well as Support Vector 

Machine (SVM). Call performance classifiers were also developed using these 

computational intelligent techniques. Binary and real coded Genetic Algorithm (GA) 

solutions were used to determine optimal MLP and RBF ANN classifiers. These GA 

solutions produced accurate MLP and RBF ANN classifiers. In order to increase the 

accuracy of the call performance RBF ANN classifier, the classification threshold has 

been optimized. This process increased the classifier accuracy by approximately eight 

percent. However, the field and call performance MLP ANN classifiers were the most 

accurate ANN solutions. Polynomial and RBF SVM kernel functions were most 

suited for field classifications. However, the linear SVM kernel function is most 

accurate for call performance classification. When compared to the ANN and SVM 
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field classifiers, the FIS field classifiers did not perform well. The FIS call 

performance classifier did outperform the RBF ANN call performance network. 

Ensembles of MLP ANN, RBF ANN and SVM field classifiers were developed. 

Ensembles of FIS, MLP ANN and SVM call performance classifiers were also 

implemented. All the computational intelligent methods considered were compared in 

relation to accuracy, sensitivity and specificity performance metrics. MLP classifier 

solution is most appropriate for ‘Say account’ field classification. Ensemble of field 

classifiers and MLP classifier solutions performed the best in ‘Say amount’ field 

classification. Ensemble of field classifiers and SVM classifier solutions are most 

suited in ‘Select beneficiary’ and ‘Say confirmation’ field classifications. However, 

the ensemble of call performance classifiers is the preferred classification solution for 

call performance. 
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Chapter 1 

 
 
 
Business Analytics and Interactive Voice Response systems  
 
 
 

1.1 Introduction 
 

Customer satisfaction fosters loyalty, increases the probability of selling additional 

products and services as well as reduces the chances of competitive replacement. 

However, customer dissatisfaction results into direct revenue losses due to customer 

churn and indirect losses such as damage to reputation. Improving the customer 

experience is a vital priority for contact centers across different industries. 

 

In order to provide customers with access to convenient and reliable information fast, 

Interactive Voice Response (IVR) systems have been adopted by businesses. If 

implemented correctly, these systems can assist in improving the customer experience 

(Nichols, 2006). This thesis details the implementation of a caller classification 

system that can be utilized within a business analytics for IVR solution. The objective 

of the solution is to assist contact centers in determining caller experience metrics, 

thereby assisting businesses in identifying areas of improvement within self-service 

applications.  
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This chapter begins with an explanation of IVR systems that will examine the 

benefits and current deployment techniques employed by businesses. Thereafter, 

business analytics for IVR is defined and current products that are available will be 

described. The chapter also states the research objectives, thesis contribution and the 

importance of the research. The structure of the thesis is also explained. The chapter 

ends with a list of publications that were published as a result of this research. 

 

1.2 Interactive Voice Response systems 
 
Interactive Voice Response (IVR) market is a rapidly growing contact center 

technology sector. The IVR market yielded approximately two billion US dollars in 

revenue in 2007, thus establishing this market as the second largest contact center 

technology sector (DMG Consulting LLC, 2009). Due to the current economic 

condition, businesses are under tremendous pressure to reduce operational expenses. 

When deployed correctly, IVR systems can automate twenty to ninety five percent of 

incoming calls, thus resulting in dramatic reduction in operational expenses (DMG 

Consulting LLC, 2009).  

 

An IVR system is an automated telephony system that interacts with callers, gathers 

relevant information and routes calls to the appropriate destinations (Nichols, 2006). 

The inputs to the IVR system can be voice, Dual Tone Multi-Frequency (DTMF) 

keypad selection or a combination of the two. IVR systems can provide appropriate 

responses in the form of voice, fax, callback, e-mails and other media (Nichols, 

2006). An IVR system solution may consist of telephony equipment, software 

applications, databases and supporting infrastructure. A major objective of an IVR 

system is to improve customer experience, while lowering operating costs. 

 

Initially, Auto Attendants (AA) and Voice Response Units (VRU) were used to 

provide menu options and scripting tools to direct callers to certain queues as well as 

provide information to callers with minimal interaction (Ascent Group, Inc, 2008). 
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IVR systems provided the capability to integrate enterprise information systems and 

to interact with callers to tailor questions as well as responses according to customer 

requirements. Today, Advanced Speech Recognition (ASR) tools utilized within the 

IVR systems provide conversational interactions with callers, thus providing an 

effective method of gathering caller input information for customization (Ascent 

Group, Inc, 2008).  

 

IVR system acceptance by businesses has taken more than a decade to grow. 

However, many businesses identified that at the expense of automation, their 

customers were being alienated. As a result, during the recent years, the importance 

of the relationship between customer experience, customer satisfaction and 

profitability have been emphasized by many businesses (Ascent Group, Inc, 2008). 

These businesses began actively addressing IVR system usability through customer-

friendly application call flow designs. Due to continuous improvement processes 

implemented by businesses that enhance the IVR usability and functionality, the 

number of calls handled completely within IVR systems has increased. However, the 

initiative for call automation has been moderated as there are businesses that also 

deploy IVR systems as an option for customers to help themselves, rather than 

forcing callers to utilize IVR system services (Ascent Group, Inc, 2008).  

 

IVR technology provides businesses more cost effective management through call 

segmentation, automated call handling and informational messaging. IVR systems 

can also assist businesses manage peak call volumes, enabling contact centers to 

respond to a large number of customers. IVR technology provides customers twenty 

four hour services as well as privacy (Ascent Group, Inc, 2008).  

 

Additionally, new standards in speech technology are providing substantial advances 

in the predominantly proprietary IVR technology market (Ascent Group, Inc, 2008). 

In order to effectively as well as efficiently interact with customers, new voice 

technologies are emerging that allow businesses to leverage the internet and 
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telecommunications infrastructure. Technologies such as Voice Extensible Markup 

Language (VoiceXML) are enabling the development of solutions that execute on 

multiple platforms, thus providing businesses with the capabilities of managing web-

based and IVR self-service applications utilizing the same infrastructure as well as 

language (VoiceXML Forum, 2009). As a result, businesses have the capabilities of 

providing feature rich value added self-service applications faster with reduced 

implementation costs, thus resulting in an increase in IVR application deployments. 

 

VoiceXML is a scripting language utilized for defining voice enabled IVR 

applications (VoiceXML Forum, 2009). It is the ‘Hypertext Markup Language 

(HTML)’ for telephony based speech applications. VoiceXML hides the complexities 

of the telephony platform from IVR application developers. The language enables 

easier IVR voice application integration with internet-based applications. VoiceXML 

enables IVR applications to be developed in an environment familiar to web 

developers. The major objective of VoiceXML is to provide the advantages of web-

based development and content delivery to IVR applications. VoiceXML utilizes 

ASR and DTMF for user input. Prerecorded audio and Text-to-speech (TTS) 

attributes are employed as output. The VoiceXML technology is proposed by the 

VoiceXML forum (VoiceXML Forum, 2009). VoiceXML is an international standard 

for defining telephony based voice applications. 

 

Currently, IVR systems have been deployed in a number of industries such as 

financial services, telecommunication, manufacturing, insurance, utilities, consumer 

products as well as entertainment. The major motivation for IVR system 

implementation is automation and customer satisfaction (Ascent Group, Inc, 2008). 

Typical self-service IVR applications that are provided to callers are account inquiry, 

account payment, fault reporting, status inquiry, ordering of products or services, 

automated assistance in resolving technical problems as well as general company 

information (Ascent Group, Inc, 2008). 
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Majority of businesses implement IVR systems to selectively force callers through 

these self-service applications prior to interacting with a Customer Service Agent 

(CSA). This deployment strategy increases system utilization and success, 

particularly for callers that are unfamiliar with the system options and functionality 

provided. This strategy encourages IVR usage for routine tasks while complex 

inquiries are resolved through CSA interaction. During peak call volume periods, 

businesses can also selectively force callers through self-service IVR applications as 

well as after office hours. However, when the contact center is not experiencing large 

call volumes, the caller can be presented with an option whether or not to use the self-

service applications (Ascent Group, Inc, 2008).  

 

Many businesses also deploy IVR systems to provide optional services to callers. 

Businesses also implement these systems for efficient call routing (Ascent Group, 

Inc, 2008). There are businesses that have the capabilities to route a percentage of 

calls received to an IVR hosted by an outsourced vendor, transparent to the customer. 

This capability is usually found in large contact centers. In order to improve the 

efficiency of the contact centers during peak call volume periods, this option is 

exercised (DMG Consulting LLC, 2009).  

 

In 2006 it has been reported that the speech technology adoption rate was on the 

increase (Nichols, 2006). This trend continues as indicated in (Global Industry 

Analysts, 2008) and (Datamonitor, 2008).  Speech recognition provides another 

dimension to IVR system design. ASR self-service applications can dramatically 

improve IVR utilization. The benefits provided by speech recognition driven self-

service applications are shorter call durations, increased usage, natural conversation 

interactions and, therefore, increased customer satisfaction. Due to the 

implementation of ASR IVR applications, businesses have reported an increase in 

IVR utilization from thirty five to seventy percent (Ascent Group, Inc, 2008). 

Therefore, if implemented correctly, callers prefer speech-enabled IVR applications.  
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Today, customers interact with many businesses that provide excellent services. 

These interactions set customer expectations. As a result, in order to outperform in 

the current market, all customer-facing technologies should be scrutinized to ensure 

that these implementations support business service strategies and, therefore, deliver 

the expected, if possible, preferred customer experience.  

 

In order to achieve this, in relation to IVR systems, best practices state that businesses 

should evaluate the performance of the self-service applications as the business would 

CSA productivity, quality and call resolution (Ascent Group, Inc, 2008). Businesses 

should have the capabilities to measure the IVR system performance from the 

perspective of the caller that is the influence the automated application had on 

accomplishing the objective of the customer. The best results are achieved through 

constant monitoring and refinement of IVR applications (Miller, 2007).  

 

Business analytics for IVR can provide contact centers with these essential 

capabilities. These solutions compute performance measures such as caller 

disconnects at the various stages of the applications. This assists businesses in 

determining caller satisfaction or dissatisfaction with the system. For example, due to 

frustration experienced, the customer may have given up and therefore abandoned the 

call. The caller may have received the required information and, as a result, ended the 

call. Business analytics for IVR solutions also provide transfers to CSA statistics, 

which aid contact centers to determine if the caller is provided with sufficient 

information to complete transactions. These measures also assist in determining 

whether or not customers are familiar with the application call flows. This research 

entails the development of such a business analytics for IVR solution that employs 

computational intelligent methodologies.  

 

The section that follows examines business analytics for IVR.  
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1.3 Business analytics for IVR 
 

In this research, business analytics for IVR is defined as systems that effectively use 

IVR application data to determine the manner in which callers are utilizing the 

automated system and, through the use of this information, assists contact centers in 

identifying areas for Voice User Interface (VUI) improvement. As a result, business 

analytics for IVR solutions assist contact centers in enhancing the customer 

experience by analyzing the automated applications from the perspective of the 

customer. An increase in the performance of the automated IVR services can result in 

satisfied customers, increase in customer retention, increase in self-service 

containment, decrease call duration and lower contact center costs. 

 

Business analytics for IVR assist contact centers in determining the number of tasks 

that were completed, the number of callers that selected to transfer to CSA and the 

number of caller disconnects. These solutions also provide further details such as the 

tasks where the caller disconnect or transfer to CSA occurred. The reason for the 

transfer to CSA such as due to system errors or callers preferring to interact with 

CSA is also provided. Currently, there are business analytics for IVR solutions that 

also provide implementation detail measurements such as speech recognition 

accuracy per task as well as out of grammar or invalid option selections (Miller, 

2007). 

 

Typical business analytics for IVR solutions analyze information such as transcribed 

voice recordings, application data and caller or customer feedback (Miller, 2007). 

IVR application data includes log files and reporting database information. Caller or 

customer feedback for IVR applications are usually determined through the use of 

automated call surveys. Once, the caller has completed a transaction with the 

automated service, these applications are typically presented to the customer. 
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However, there are contact centers that use outbound IVR applications to conduct the 

survey after the caller has disconnected (opinion-8, 2009).  

 

Business analytics for IVR solutions provide contact centers the ability to monitor 

specific events within the IVR applications. These solutions are the basis for 

predicting and enhancing the quality of future customer interactions. In order to 

achieve this, business analytics for IVR solutions utilize “insight engines” that 

process databases consisting of call detail records, stored transcribed voice recordings 

or utterances and other call interaction information to identify patterns that result into 

crucial information that assist contact centers to manage future interactions. A major 

objective of these solutions is to generate sufficient detailed information to assist 

contact centers isolate decision points that indicate customer dissatisfaction.  

 

Majority of business analytics for IVR solutions provide the capabilities to determine 

system status, call progress and exit analysis information (Miller, 2007). System 

status information provides statistics such as the duration various components of the 

IVR system were enabled and active as well as disabled. This information also 

provides statistics that indicate where failures are occurring. Call progress 

information assists in determining call patterns that illustrate the manner in which 

customers are proceeding through the IVR applications. Exit analysis assists contact 

centers in determining the major technique calls within the IVR applications at 

specific modules are terminated that is due to caller disconnects or transfer to CSA.  

 

Majority of the current business analytic for IVR solutions employ a four-stage 

process towards customer experience improvement (Miller, 2007). This process 

involves isolating self-service difficulties, capturing customer care concerns, 

increasing the duration in IVR systems and identifying time as well as the cause of 

exit from the IVR systems. Isolating self-service difficulties involve detecting 

modules within the IVR applications high levels of caller disconnects or transfers to 

CSA are occurring due to customer frustration experienced. For example, when an 
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IVR application does not recognize a callers input due to the caller saying too few 

digits in the response to account number information queried, the IVR application 

continuously re-prompts a caller with no reason for the unsuccessful attempt would 

be a cause of caller frustration.  

 

IVR system caller satisfaction levels are mainly determined by the manner in which 

self-service solutions address customer expectations. Capturing customer care 

concerns entails correlating call survey results with specific characteristics of the 

customer interaction. This involves analyzing customer feedback and utilizing this 

information to identify modules within the self-service applications that require 

enhancements to improve the caller experience. Increasing the duration in IVR 

systems is an objective of many contact centers as this may correlate to callers 

successfully using the IVR applications. The contact center is reducing costs as these 

queries do not require interaction with CSA, which has a high cost. However, if this 

caller behaviour is also accompanied with high levels of frustration, the IVR 

application is analyzed to determine the cause. Identifying the time and cause of exit 

from the IVR applications assists in determining whether the call ended successfully 

or the call transferred to a CSA for completion. 

 

Typically, business analytics for IVR solutions begin an implementation by 

reviewing IVR application reporting or logging information as well as IVR 

application documentations to identify specific events that map crucial modules 

within the automated systems. IVR application documentations may include 

functional and technical specifications. Application logging events that identify 

critical caller interaction such as speech recognition events are also identified. The 

mapped events are then utilized to define important business events such as business 

success task completion modules. Each contact center may interpret these events 

differently. For example, a contact center may regard transfer to CSA as a successful 

task completion as the caller exercised the available “transfer me” option and the IVR 

solution successfully executed the transfer procedure. However, another contact 
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center may interpret the transfer to CSA event as unsuccessfully task completion as 

the transaction had not been completed within the IVR solution. A CSA concluded 

the task. As a result, the outcome of this process can be business specific. Thereafter, 

the information determined is utilized to compute statistics that provide insight into 

the performance of the IVR applications. These are then presented to businesses 

through reports, websites or dashboards. An iterative analyze of these statistics assist 

in identifying areas of improvement.  

 

Currently, there are many third-party vendors that provide business analytics for IVR 

solutions. However, ClickFox Customer Experience Analytics (CEA), Call Analytics 

Virtual Interactive Analyst (VIA), pureXML business analytics for IVR and 

VoiceObjects analyzer solutions are examined in this research.  

 

PureXML provides a hosted web based business analytics for IVR solution. As a 

result, the solution caters for remote access. In order to implement the analytics 

solution, pureXML follows a process that maps IVR logging information such as 

application metric files into a standard analytics Extensible Markup Language (XML) 

structure. An Extract Transform Load (ETL) process is employed to populate the 

standard XML structure. Thereafter, businesses have secure access to a web based 

visual representation of caller activity per module or node. The representation 

illustrates all IVR application nodes mapped. When a particular module is selected, 

the previous node or nodes that could lead to the current module is displayed as well 

as the node or nodes that could follow. The relevant module caller behaviour statistics 

calculated are also illustrated. As a result, pureXML provides the contact center with 

a detail interactive call flow illustration (pureXML, 2007). 

 

The pureXML business analytics for IVR solution computes caller disconnects, 

difficulties experienced and transfer to CSA caller behaviour statistics. These 

statistics are calculated per IVR application module. Caller difficulties represent 

events such as unsuccessful caller input recognition and callers not responding to 
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automated prompt. The solution also provides the business with transaction complete 

success and failure metrics. As a result, in order to deliver a successful pureXML 

analytics solution, the accuracy of the mapping process of log event files to an XML 

structure is crucial.  

 

ClickFox CEA is an analytical solution that employs a patented “customer behavior 

pattern recognition engine”, which identifies and models the actual paths that occur 

within the channels that form a customer interaction across the enterprise (Clickfox, 

2009). ClickFox offers hosted as well as on premises deployments. Similar to the 

pureXML solution, the ClickFox CEA solution implementation conducts a detailed 

analysis of IVR application logged information and supporting design documentation 

such as functional specification to map logged information to key business 

performance indicators. Thereafter, a robust interactions repository tailored to 

business requirements and processes is created. This forms the foundation of all 

analysis conducted. The patented technology utilized by ClickFox CEA aggregates 

data across all customers and all communication access points such as websites and 

IVRs, to produce a visual illustration of how customers are interacting with these 

systems across the enterprise. ClickFox assists businesses in discovering 

opportunities for improvements by identifying correlations and trends across all 

customer interactions as well as by determining optimal methods for handling each 

type of inquiry or interaction.  

 

ClickFox CEA provides businesses with capabilities to conduct various types of 

analysis (Clickfox, 2009). Traffic analysis provides individual customer experience 

information such as the time taken before, after and between modules within a 

process. Task analysis enables businesses to examine dominant as well as unique 

process flow paths, caller difficulties, caller disconnect and transfer to CSA events. 

This analysis provides insights into customer behaviour and the impact of this 

behaviour on operational outcomes. Pattern analysis entails the constant evaluation of 

current and past behaviour to determine common customer behaviour characteristics. 
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This analysis is accomplished through the use of a series of automated patented 

technologies and processes. ClickFox CEA also utilizes an Artificial Intelligence (AI) 

recommendations engine that identifies discrepancies in system design, customer 

experience and the manner in which different customers interact with these systems  

(Clickfox, 2009). The AI recommendation engine provides recommendations on new, 

enhanced or simplified paths that effectively as well as efficiently processes customer 

inquiries or interactions within these applications. The business analysis views such 

as high level trending dashboards can be populated by analytical data computed 

during task and traffic analysis. These views can also incorporate the results returned 

by the AI recommendation engine, thus providing contact centers with the ability to 

examine crucial information such as key performance indicators, essential process 

flows, and self-service completion rates. 

 

VoiceObjects Server is a component of VoiceObjects 7 family of products 

(VoiceObjects, 2009). It is phone application server that provides businesses such as 

enterprises and telecommunication carriers with the capabilities to develop 

VoiceXML self-service applications, which during a live call, utilizing information 

from the Client Relationship Management (CRM) solution or other databases, forms 

personalized dialogs with a customer. VoiceObjects 7 family of products also 

provides businesses to develop multimodal phone applications that could employ 

voice, video, graphics and text interfaces. Integration between the VoiceXML 

applications and CRM solutions, Enterprise Resource Planning (ERP) solutions as 

well as other databases is provided by Web service support. This enables self-service 

applications to access required customer as well as organization resource information. 

VoiceObjects 7 family of products also provides businesses with an execution 

environment for these applications that permits remote management, monitoring of 

multimodal applications as well as online application maintenance for enhancements. 

Detailed application analysis is also provided (VoiceObjects, 2009). 
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Enterprise Edition and Network Edition versions of VoiceObjects 7 family of 

products are available (VoiceObjects, 2009). Network Edition, together with the 

capabilities provided in the Enterprise Edition, provides businesses such as 

telecommunication carriers with a multi-tenant environment, thus enabling these 

businesses to host various phone applications for other organizations.  

 

VoiceObjects Analyzer is the component within the VoiceObjects 7 suite of software 

that provides businesses with self-service application analysis (VoiceObjects, 2009). 

It is a complete service analysis environment that can be utilized throughout the 

enterprise to determine system usage, system as well as application performance, 

caller bahaviour and speech recognition success. The analytics capabilities of 

VoiceObjects Analyzer are based on the statistics functionality of VoiceObjects 

Infostore. VoiceObjects Infostore, the application logging component within the 

VoiceObjects 7 family of products, enables businesses to store data that is retrieved 

and transformed from VoiceObjects Servers in a standardized data model 

(VoiceObjects, 2009).  

 

VoiceObjects Analyzer is designed to process this data into information that assists 

businesses to gain insight into factors that influence the profitability of their services. 

Through the use of VoiceObjects Analyzer, businesses can continuously tune and 

enhance the deployed self-service applications to improve customer acceptance of 

these services. VoiceObjects Analyzer provides businesses with information that 

assists contact centers in determining the self-service task completion rates, the 

dominant paths callers are using within self-service applications, application dialog 

usage trends, the application system error rate and caller duration statistics. Physical 

server hardware analysis capabilities are also provided such as workload on servers, 

current port utilization and balance of load on clusters.  

 

The key feature of VoiceObjects Analyzer is the real-time reporting capabilities. Due 

to VoiceObjects Infostore, the data source used by VoiceObjects Analyzer, being 
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automatically populated with application and system usage information as a caller 

accesses the self-service applications, the time consuming ETL process is eliminated. 

When applications are enhanced or extended to provide additional services, 

modifications to the logging database schema is also no longer required. 

 

Call Analytics VIA is an IVR application and Computer Telephony Integration (CTI) 

analytics solution (Call Analytics, Inc, 2007). The solution provides caller behaviour 

statistics required by call center managers, telephony managers, IVR application 

developers and department managers. The solution provides call center managers 

with the ability to track the progress of callers through automated IVR self-service 

solutions. The automated alerts that can be scheduled to be sent to telephony 

managers when specific defined thresholds are exceeded such as the number of ports 

available on an IVR platform has exceeded seventy five percent, allows the managers 

to obtain complete call data when required. IVR application developers are provided 

with information to determine the bottle-necks within these applications, thus 

enabling the developers to optimize the self-service solutions. Call Analytics VIA 

provides reports that assist department managers to ensure that their customers are 

satisfied with the IVR solutions provided. The Speech module captures complete call 

utterances for further analysis (Call Analytics, Inc, 2007). 

 

The solution also provides a dashboard view real-time status of the IVR applications 

and platform performance. This information is displayed in Snapshot, Counter and 

Trend sections (Call Analytics, Inc, 2007). The Snapshot section summaries the 

current self-service success rates as well as the overall health of the IVR applications. 

Snapshot section also includes errors and contained call information. The Counter 

section illustrates the number of calls received grouped by language selection, 

account lookup success, menu utilization, transactions as well as Dialed Number 

Identification Service (DNIS). The Trend section displays graphs of total calls 

received, menu utilization statistics and calls per DNIS for daily, weekly, monthly or 

quarterly periods. Call Analytics VIA alerting capabilities are defined on the 
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dashboard and assist in communicating early warnings of potential IVR application 

as well as platform issues.  

 

The dashboard view, predefined and ad-hoc reports can be accessed utilizing a 

Graphical User Interface (GUI). Call Analytics VIA also allows reports to be 

exported to Microsoft Excel for further analysis (Call Analytics, Inc, 2007). The 

solution also has the capabilities of filtering data in combinations of call date time, 

caller response input, prompt visited, IVR application name, IVR name, IVR port, 

transfer to CSA extension number, Automatic Number Identification (ANI), DNIS or 

call end reason. Furthermore, when a report has been defined, it can be saved for 

future use (Call Analytics, Inc, 2007).  

 

Call Analytics VIA solution consists of standard predefined reports such as Call end 

summary, Payments report, Error report, Port capacity report, Frequent caller by 

account number or ANI report, Total number of call reports, Contained call summary 

report, Transfer by CSA extension summary report and Total calls per Prompt 

summary report. The Total number of call reports is daily, weekly, monthly and 

yearly (Call Analytics, Inc, 2007). 

 

Call Analytics VIA solution can accommodate reporting for multiple IVR platforms. 

Call Analytics offers hosted as well as on premises deployments. Due to the solution 

comprising of four components, flexibility is provided in deployment. The solution 

can be implemented utilizing a single or multiple servers. Call Analytics VIA system 

comprises of Database, Call Analyst, Call Logger and Utilization Service components 

(Call Analytics, Inc, 2007).  

 

However, these solutions are expensive (pureXML, 2007), (Clickfox, 2009), 

(VoiceObjects, 2009) (Call Analytics, Inc, 2007). A number of businesses do 

implement a solution that has been created by internal resources. These solutions are 

the competition to the third-party solutions. These solutions can also be expensive. 
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The following section details the research objectives and contribution.  

 

1.4 Research objectives and thesis contribution 
 

Earlier in this chapter, section 1.2 gave an introduction to IVR systems. These 

systems may experience large call volumes. Business analytics for IVR solutions 

have been implemented to better understand the caller experience as well as 

behaviour within these systems. The emergences of computational intelligent 

methods such as Artificial Neural Network (ANN), Fuzzy Inference System (FIS) 

and Support Vector Machine (SVM) have presented an alternate approach to 

modeling, which is potentially beneficial. These methods are capable of utilizing 

large data sets to derive relationships within the data presented. 

 

This research entails the development of a business analytics for IVR application that 

employs AI methodologies. The classification system is to provide businesses with 

the capabilities to measure business intelligence performance metric levels such as 

customer satisfaction, call containment, task completion, efficiency and usability.  

 

Call containment and task completion metrics assist businesses to determine the 

percentage of callers completing transactions within the IVR successfully, without 

interacting with a CSA. Efficiency and usability metrics provide businesses with 

indications of the call durations and difficulties callers experience within the 

automated applications. In relation to the caller experience, the customer satisfaction 

metric provides the contact center with a single inclusive indicator of the complete 

call performance. This metric is based on the above performance measures. The call 

performance classification system should also provide businesses with 

implementation detail performance indicators that assist businesses to improve the 

IVR application performance and therefore caller experience. Metric levels such as 
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field performance, field attempts and field recognition levels provide IVR application 

developers with the ability to identify areas of improvement rapidly. 

 

In order to effectively improve customer experience within IVR systems, businesses 

require not only information such as the number of calls that were contained within 

the IVR applications and transferred to a CSA, businesses also require detailed 

measures. The objective of the call classification system is to provide the metrics to 

improve IVR applications in relation to customer experience and therefore customer 

satisfaction. As a result, the classification system is to provide businesses with the 

capabilities to measure essential metrics required by contact centers to enhance IVR 

applications. Measures such as the number of calls that completed transactions 

successfully within the automated application as well as the number of calls that were 

abandoned or transferred to CSA due to recognition difficulties are also to be 

provided. 

 

The aim of this research is thus to: 

 

1 Design a business analytics for IVR solution based on computational 

intelligence to assist contact centers in determining IVR application 

performance in relation to caller experience.  

 

2 Develop a component within the proposed business analytics for IVR 

solution that assists contact centers to compute implementation detail 

performance indicators using computational intelligent techniques such as 

ANN, FIS and SVM. As a result, provide IVR application developers 

with the capability to identify areas of improvement rapidly.  

 

3 Utilizing ANN, FIS and SVM to develop a component within the 

proposed business analytics for IVR solution that provides contact centers 

with the capabilities of determining the complete call performance. 
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4 Propose and implement an ensemble of classifiers for each of the 

proposed components. 

 

5 Compare the classifiers implemented to determine the superior approach 

for this application problem. 

 

The major contribution of this thesis is to, therefore, illustrate how computational 

intelligence methods can be utilized to model caller behaviour based on application 

logging information to provide businesses with performance indicators. These 

performance metrics will assist contact centers to improve the caller experience and 

therefore customer satisfaction.  

 

1.5 Importance of the research 
 

As earlier stated in previous sections, IVR systems experience large call volumes. 

These call volumes result in vast amounts of application logging events that detail 

caller interaction. In order to assist contact centers in interpreting and thus effectively 

utilizing this information, business analytics for IVR solutions have been developed 

as presented in section 1.3. In this research, computational intelligence methods are 

utilized to model caller interaction information. As a result, this research proposes 

another approach into caller behaviour modeling. The other main contributions of this 

research are: 

 

• Introduce a new research direction into caller interaction modeling through 

the utilization of computational intelligent methodologies.  

 

• Introduce a new research direction into caller experience performance 

modeling through the utilization of computational intelligent methodologies.  
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• Providing an application to understand caller behaviour within IVR systems, 

which can subsequently be used by businesses to improve caller experience 

and, therefore, increase caller satisfaction levels. The application will also 

assist businesses in reducing resources as well as time spent in analyzing 

information to understand caller behaviour within IVR systems. 

 

• Investigate the capabilities of ANN, FIS and SVM classification techniques in 

categorizing data extracted from application logging event files. 

 

1.6 Structure of the thesis 
 

Chapter 1 of this thesis has presented vital information that is required to understand 

the research problem of concern. As a result, IVR systems and business analytics for 

IVR solutions have been examined. This chapter also states the major objectives and 

research contributions of this work. 

 

Chapter 2 provides a background on the computational intelligent techniques to be 

utilized within the proposed IVR caller classification application. These techniques 

include ANN, Genetic Algorithm (GA), FIS and SVM. A thorough analysis of these 

techniques is presented.  

 

Chapter 3 describes the proposed call classification system. The source of the data, 

the application logging event file, is examined. Thereafter, the architecture of the call 

classification system is presented, thus providing detail into the components of the 

system. Selection of data and preprocessing techniques utilized are also described.  

 

Chapter 4 examines the components implemented by utilizing ANN computational 

intelligent techniques. The results yielded by the developed ANN classifiers are 
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illustrated. The findings of the investigation are presented together with concluding 

remarks.  

 

Chapter 5 describes the implementation process of the components utilizing FIS 

computational intelligent techniques. The results achieved by the developed FIS 

classifiers are examined together with concluding remarks. 

 

Chapter 6 details the utilization of SVM methods in implementing the call 

classification system components. The results yielded by the developed SVM 

classifiers are illustrated. The findings of the investigation are examined together with 

concluding remarks. 

 

Chapter 7 compares the ANN, FIS and SVM classifiers to determine the superior 

computational intelligent approach for this research problem. Ensembles of classifiers 

are also presented. The results obtained are illustrated together with conclusions 

drawn from the analysis.  

 

Finally, Chapter 8 presents the overall conclusion of the thesis, which illustrates the 

manner in which the research objectives have been achieved. Also, possible further 

research work is proposed in this chapter. 
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1.7 Publications 
 

From this research, the following journal and conference publications were made: 

 
- Patel, P. B and Marwala, T:2009, Caller Behaviour Classification: A 

Comparison of SVM and FIS Techniques, Advances in Computational 

Intelligence, Springer-Verlag, vol.116/2009, pp.199-208. 

 

- Patel, P.B and Marwala, T.: 2009, Caller Interaction Classification: A 

Comparison of Real and Binary Coded GA-MLP Techniques, Advances in 

Neuro-Information Processing: Lecture Notes in Computer Science, Springer-

Verlag, vol. 5507, pp. 728-735. 

 

- Patel, P. B. and Marwala, T.: 2008, Interactive Voice Response field 

classifiers, 2008 IEEE International conference on Systems, Man and 

Cybernetics, pp. 3425-3430. 

 

- Patel P. B. and Marwala, T.: 2009, Genetic Algorithms, Neural Networks, 

Fuzzy Inference System, Support Vector Machines for Call performance 

classification, IEEE 2009 International Conference on Machine Learning and 

Applications, accepted, to be published. 

 

- Patel P. B. and Marwala, T.: 2009, Caller behaviour classification using 

computational intelligent methods, International Journal of Neural Systems 

(IJNS), under review. 
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Chapter 2  
 
 
 
Computational Intelligent techniques  
 
 
 

2.1 Introduction 
 

This chapter examines the computational intelligent techniques that have been 

considered in the research. Artificial Neural network (ANN), Genetic Algorithm 

(GA), Fuzzy Inference System (FIS) and Support Vector Machines (SVM) are 

therefore examined. 
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2.2 Artificial neural network 
 

Due to the difficulty and complexity of statistical techniques as well as the high level 

of proficiency required to utilize such methods, there has been a significant increase 

in the usage of ANNs. This increase has also been attributed to the fact that ANNs 

can be applied to virtually every field in industry. For example, ANNs can be utilized 

in medical diagnosis, machine fault diagnosis, fingerprint recognition as well as 

financial creditworthiness evaluation applications.  These networks can also be 

employed in product line development to control the quality of products 

manufactured. ANN research has gathered enormous momentum in recent years. As a 

result, this field of study has been introduced in many universities. 

 

ANNs were introduced based on the understanding of neurology in the early 1940s. 

They have been motivated by the fact that scientists are challenged to effectively 

utilize machines on tasks currently solved by humans (Smith, 2003), (Orr, 2006), 

(Bishop, 1995). ANNs can be considered as an exceptionally robust data-modeling 

tool that consists of a network of interconnected simple processors or units, which 

individually operate on local data and together these units capture as well as 

numerically represent the intricate input output relationships of complex systems 

(Neuro Solution Technologies, 2009), (Haykin, 1998).  These networks are data-

mining techniques that have been inspired by the desire to develop artificial systems 

capable of performing ‘intelligent’ computations similar to those performed within 

the human brain. An ANN acquires its knowledge through repeated presentations of 

data. It ‘learns’ by adjusting the weights of the network connections, which is similar 

to adjusting the synaptic weights within the inter-neuron connections within the 

human brain (Neuro Solution Technologies, 2009). The ANN creates its own 

organization or representation of the application problem information during training 

from the data observed. Thereafter the network will exhibit some capability for 
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generalization in obtaining rather accurate outputs when presented with new unseen 

data.  

 

An advantage of ANNs is their ability to represent both linear as well as non-linear 

relationships. As a result, these networks are able to approximate any computable 

function to arbitrary precision and are known as universal approximators (Bishop, 

1995).  ANNs are effective within application problems in which an algorithmic 

solution cannot be formulated. ANNs have the capabilities of adaptive learning; the 

network learns how to do tasks based on training data or initial experience (Bishop, 

1995). ANNs require short computational times for modeling of systems. 

 

ANNs do not experience the many drawbacks statistical techniques on handling data 

possess (Smith, 2003), (Orr, 2006). Statistical methods do impose restrictions on the 

number of input data. However, ANNs do not. Statistical regressions are performed 

utilizing unrealistic simple dependency linear and logarithmic functions. ANNs do 

not require intensive mathematical techniques to transform data. However, statistical 

methods do require intensive mathematical transformations. Due to ANNs non-linear 

nature, these methodologies are better able to account for complexity of human 

behaviour and also these techniques provide tolerance to missing or erroneous 

information. 

 

The integration of ANNs into the modern environment is a major challenge in 

industry. This is due to ANNs, when applied to large scale problems, at times, 

become unstable. Also, due to ANNs negligence of the effects of noise, these 

networks, at times, do not react appropriately to abrupt changes within the application 

problem data. ANNs are also viewed as black boxes with unknown rules that are 

utilized internally.  
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2.2.1  Artificial neural network architectures 

 

There exists a great diversity of ANN architectures, such as: 

- Multi-Layer Perceptron (MLP) 

- Radial Basis Function (RBF) 

- Recurrent Neural Network (RNN) 

- Hierarchical Mixture of Expert (HME) 

- Self-Organizing Map (SOM) 

 

However, the most common, and often used in practical applications, is that of a feed-

forward structured neural network (Nabney, 2002), (Bishop, 1995). It has been stated 

that these ANN architectures with a single hidden layer, provided with sufficient data, 

can be used to model any function (Beale and Jackson, 1990). It should be mentioned 

that there are situations where it is necessary or worthwhile in utilizing two or more 

hidden layers. This is dependent on the primary purpose of the ANN within the 

application. 

 

Among the family of feed-forward structured networks, the MLP and the RBF ANN 

architectures are possibly the most extensively employed ANNs in pattern 

classification (Nabney, 2002). MLP networks employ correlation-based algorithms, 

whereas RBF networks utilize distance-based algorithms (Reyneri and Sgarbi, 1997).  

Both networks function in a supervised manner. Due to the non-linear capabilities of 

these networks, they are said to be excellent universal approximators that provide 

highly accurate solutions (Bishop, 1995). As a result, these networks produce very 

practical tools for classification and inverse problems. 

 

Due to the fact that RNN require to be unfolded (Bishop, 1995), these ANN are 

complex to design. HME networks result in ANNs that over-fit the application 

problem data and SOM networks have characteristics of overcrowding as well as 

underutilization of neurons within the ANN (Haykin, 1998), (Bishop, 1995). As a 
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result, the MLP and RBF feed-forward structured ANNs have been considered in this 

research. These ANNs will be examined in the following section. 

 

Multi-Layer Perceptron (MLP) 

 

The MLP network evolved from the combination of many simple components. The 

most fundamental of these is the mathematical model of the neuron. In 1943 

McCullock and Pitts proposed this neural model, which then formed the basis for 

formal calculus of brain activity (Chen, 1991). In 1958 Rosenblatt introduced the 

Perceptron model. This was an elementary visual system that could be taught to 

recognize a limited class of patterns (Chen, 1991). It was this model that then formed 

the foundation upon which most forms of AI were born (Huang and Lippmann, 

1988). A perceptron can be considered as a device that computes the weighted sum of 

its inputs. It then propagates this sum through an activation function to produce the 

output. This activation function can be linear or nonlinear (Chen, 1991).  However, a 

network of linear perceptrons was found to have serious computational limitations 

(Chen, 1991). These limitations were overcome by adding layers of nonlinear 

perceptrons that resulted in the MLP ANN.  

 

Figure 2.1 illustrates a feed-forward structured network. As mentioned above, the 

MLP ANN has a feed-forward structured network architecture whereby each unit 

receives inputs only from lower layer units. Feed-forward structured networks do not 

have connections between units in the same layer. These networks usually comprises 

of input, hidden and output layers, all of which are interconnected with respect to the 

hidden layer. 

 

The training of these networks is accomplished through backpropagation and a 

complex nonlinear hidden as well as output weights optimization. At iterations, the 

error of the network is assessed by forward propagating the inputs through the 
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network and the derivative of this error is calculated with respect to each weight 

within the network. 

 

The error function generally used in ANN computation is the squared difference 

between the actual and desired outputs. Optimization techniques, such as the scaled 

conjugate gradient method, are then used to minimize the error function by altering 

the weights, initially in the output layer and then the hidden layer. Essentially, the 

error is backpropagated from the output of the network, through the output weights 

and to the hidden weights (Bishop, 1995). 

 

 
Figure 2.1: Feed-forward neural network topology 
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During the development of the MLP ANN, over-fitting as well as under-fitting should 

be avoided. This can be accomplished by dividing the data into three sets. Over-

fitting occurs when the network does not generalize but rather tends to memorize the 

training data. Under-fitting occurs when the network does not follow the data at all 

(Bishop, 1995). The data is divided into training, validation and test sets. The training 

data set is used to train the ANN to find the general pattern between its inputs and 

outputs. The validation data set is used to assess the network and the test data is used 

to confirm the prediction quality of the developed networks. 

 
 
The hidden and output layers contain activation functions. The choice of the hidden-

unit activation function for the MLP network is mainly dependent on the application 

of the network (Bishop, 1995). However, it has been determined that the hyperbolic 

tangent activation function offers a practical advantage of giving rise to faster 

convergence during training (Nabney, 2002). There are three major forms of the MLP 

network output-unit activation function. These are the linear, logistic sigmoidal and 

softmax activation functions (Nabney, 2002). It has been stated that the appropriate 

selection of the MLP network output-unit activation function for a pattern 

classification problem is the logistic sigmoidal function (Nabney, 2002). Equation 

2.2.1 illustrates this activation function. 
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where, 

a = output value of hidden layer activation function 

k = 1,...,c 

c = total number of network outputs 

y = output value of activation function 

 

 

 



  29

Radial Basis Function (RBF) 
 

The RBF networks have become a popular alternative to the MLP network approach 

(Haykin, 1998). RBF networks are inspired from traditional statistical classification 

techniques (Haykin, 1998). These are based on Cover’s theorem on the separability of 

patterns. This theorem states that nonlinearly separable patterns can be separated 

linearly if the pattern is cast nonlinearly into a higher dimensional space. Therefore, 

the RBF network converts the pattern to a higher dimension after which it classifies 

the pattern linearly (Haykin, 1998). 

 

The RBF network hidden layer, utilizing a set of basis functions, performs a 

nonlinear mapping from the input space into a higher dimensional space in which the 

patterns become linearly separable. In order to accomplish this, the RBF network 

employs a Gaussian hidden-unit activation function. The output layer usually 

implements a linear weighted sum of the hidden layer outputs (Haykin, 1998). As a 

result, a linear activation function is utilized within the RBF network output layer. 

Figure 2.2 illustrates the RBF ANN architecture. 
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Figure 2.2: Radial Basis Function Artificial Neural Network 
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Similar to the MLP ANN implementation, during the development of the RBF ANN, 

over-fitting and under-fitting should be avoided. This can be accomplished by 

dividing the data into training, validation and test sets. The training data set is used to 

train the RBF ANN to identify the general pattern between its inputs and outputs. The 

validation data set is employed to evaluate the network and the test data is utilized to 

confirm the prediction quality of the developed RBF ANN. 

 

2.3 Genetic Algorithm (GA) 
 

Utilizing a form of directed random search process, evolutionary methods conduct an 

exploration to identify optimum solutions, without previous problem knowledge. GA 

solutions are evolutionary techniques employed to resolve optimization problems 

(Goldberg, 1989). Due to the intuitiveness, ease of implementation and ability to 

effectively solve highly nonlinear problems that are typical of complex engineering 

systems, these algorithms have been popular in academia and industry. After the 

original work conducted by Holland (Holland, 1975), GA solutions were developed. 

These are powerful set of stochastic global search techniques that have yielded good 

results in a range of problems across different industries (Rababaah et al., 2005), 

(Selouani and O’Shaughnessy, 2003), (Sasaki et al., 2001).  

 

GA solutions have been considered as an optimization technique in this research due 

to its superiority over other optimization techniques (Michalewicz, 1992). Due to GA 

solutions considering a population of candidate solutions rather than a single 

candidate solution, the GA methodology differs from conventional optimization 

techniques. The populations of candidate solutions undergo a process of reproduction 

of individuals that advances individuals with better fitness values than the other 

individuals in the previous generation (Michalewicz, 1992). GA solutions provide an 

alternate technique to the existing conventional optimization methods in resolving 

problems where these methods are inappropriate. GA techniques are feasible and 
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optimum solutions than conventional methods. GA solutions transform the 

optimization problem into an appropriate form as opposed to other evolutionary 

approaches that process the problem unchanged. 

 

GA solutions have been employed in resolving engineering problems that are 

complex and difficult to solve using conventional optimization methods. These 

algorithms manage, maintain and manipulate populations of candidate solutions 

utilizing a survival of the fittest strategy in their quest for an optimal better solution. 

In order to improve successive generations, the fittest individuals of any population 

tend to reproduce. However, as evident in biological evolution, inferior individuals 

can also survive and reproduce. The implementation of GA solutions involves the 

identification and determination of the chromosome representation, selection 

function, genetic operators, initialization function, termination function as well as 

evaluation function to be used (Holland, 1975), (Booker et al., 1989). A description 

of these essential components within GA solutions follows. 

 

2.3.1 Chromosome representation 

 

The chromosome representation scheme defines the manner in which the problem is 

structured in the GA solution. The representation used also governs the genetic 

operators that are to be employed (Booker et al., 1989). An individual or chromosome 

comprises of a sequence of genes. Various types of chromosome representations such 

as binary digits, floating point numbers, integers, symbols and matrices exist.  

 

In traditional GA solutions, binary representation has been used for chromosomes 

(Houck et al., 1995). This results in an even discrete depiction of the real optimization 

problem. Within these binary coded GA solutions, binary substrings representing 

each parameter with a desired precision are concatenated to form a chromosome. 

Therefore, a large number of variables in a real world problem would result in 
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chromosomes encoded in long strings. Also, there is a discrepancy between the 

binary representation space and the actual problem space. For example, two points 

close to each other in the real space might be far away in the binary represented 

space. However, natural representations are more efficient and may result in better 

solutions. 

 

In order to resolve these problems, floating point representation of parameters as a 

chromosome is utilized (Michalewicz, 1996). It has been stated, in relation to Central 

Processing Unit (CPU) time, floating point or real coded representations are more 

efficient. This representation also produces higher precision with more consistent 

results across replications (Michalewicz, 1996). In these real coded GA solutions, a 

chromosome is coded as a finite length string of the real numbers corresponding to 

the real world problem variables. Real coded GA solutions are robust, accurate as 

well as efficient because they are conceptually closest to the real world problem and 

moreover, the string length reduces to the number of variables. It has been reported 

that the real coded GA solutions outperformed binary coded GA solutions in many 

design problems (Janikow and Michalewicz, 1991). This research will determine if 

this is true in relation to the application problem of concern.  

 

2.3.2 Selection function 

 

In order to produce successive generations, the selection of individuals is important 

within GA solutions. The selection function identifies the individuals that will survive 

and proceed onto the next generation. A probabilistic selection is performed based 

upon the fitness of the individual such that the superior individuals have a higher 

possibility of being selected and therefore advancing onto the next generation. 

Several selection methods such as roulette wheel selection and its extensions, scaling 

techniques, tournament, elitist models and ranking selection techniques do exist 

(Houck et al., 1995). However, in this research normalized geometric ranking and 
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tournament selection functions are employed within the GA solutions developed. As 

a result, these selection functions are described below. 

 

Ranking selection function methods utilize the evaluation function to map individual 

solutions to a completely ordered set, thus allowing minimization and negativity. 

When all individual solutions are sorted, these selection function techniques assign Pi 

based on the rank of individual solution i. Normalized geometric ranking selection 

function, defines Pi for each chromosome or individual solution using equation 

(2.3.1) (Houck et al., 1995). 
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where, 

 q = probability of selecting the best individual 

 r = rank of the individual, where best equals 1 

 P = population size 

 

The tournament selection function is a common selection mechanism used within GA 

solutions (Booker et al., 1989). This selection function method is simple to 

implement and is efficient for both non-parallel and parallel architectures. Similar to 

the ranking methods, the tournament selection function method only requires the 

evaluation function to map individual solutions to a partially ordered set. However, 

this selection technique does not assign probabilities to the individual solutions. This 

selection method begins by randomly selecting a number of individuals from the 

current population. The number of individuals is set by the tournament size. In this 

research, three individual solutions competed within each tournament. The selection 

method then compares the fitness of these individuals competing and inserts the 
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individual solution with the best fitness value into the new population. This process is 

repeated until an appropriate population is achieved. 

 

2.3.3 Genetic operators 

 

Crossover and mutation genetic operators are employed to provide basic search 

mechanisms for the GA solution. These operators produce new solutions based on 

existing individual solutions in the population. Crossover genetic operators employ 

two individuals as parents to produce two new individual solutions. However, 

mutation operators alter one individual to yield a single new solution. Simple, 

arithmetic and heuristic crossover operators are usually utilized. Commonly 

employed mutation operators are boundary, non-uniform, uniform and multi-non-

uniform operators. However, the types of operators used are dependent on the 

chromosome representation employed within the GA solution. In this research, binary 

and real coded chromosome representations were considered. As a result, the binary 

coded GA solutions employed binary mutation and simple cross over genetic 

operators. However, the real coded GA solutions utilized non-uniform mutation and 

arithmetic cross-over genetic operators (Houck et al., 1995). Therefore, these genetic 

operators are described in this thesis. 

 

Equation (2.3.3) illustrates the binary mutation that entails flipping each bit in every 

individual within the population with probability pm (Chang and Lin, 2001). 
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Equation (2.3.4) and equation (2.3.5) illustrates the simple crossover genetic operator 

that employs randomly generated number r from a uniform distribution between 1 

and m to create two individuals (Chang and Lin, 2001). 
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As illustrated in equation (2.3.6), the non-uniform mutation genetic operator 

employed by the real coded GA solutions selects one variable, j, and sets this variable 

equal to a non-uniform random number. This is mathematically represented as 

follows (Chang and Lin, 2001): 
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r1, r2 = uniform random numbers between 0 and 1. 

G = current generation. 

Gmax = maximum number of generations. 

b = shape parameter. 

 

Equation (2.3.8) and equation (2.3.9) illustrates the arithmetic crossover operator that 

produces complimentary linear combinations of the parents (Chang and Lin, 2001). 
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2.3.4 Initialization, termination and evaluation functions 

 

GA solutions may begin with an initial population. This population can be randomly 

generated or derived from other methods. GA solutions advance from generation to 

generation, ending when a termination criteria is achieved. The termination condition 

could be the maximum number of generations, population convergence criteria, lack 

of improvement of the best solution for a specified number of generations or 

achieving a specific targeted value within an objective function. Evaluation or 

objective functions of a variety of forms can be utilized within GA solutions. These 

functions enable the mapping of populations into a partially ordered set. Figure 2.2 

illustrates the common GA solutions optimization process followed. 
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Figure 2.3: GA solution optimization process 
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2.4 Fuzzy Inference System (FIS) 
 

Fuzzy logic was originally developed by Dr. Lotfi Zadeh. He published his seminal 

work on fuzzy set in 1965. In 1973 he proposed his theory of fuzzy logic (GuruNet 

Corp, 2009). 

 

Instead of classifying membership as either true or false as in a classical logic system, 

in fuzzy set theory, which is the foundation of FISs, an input can belong to one or 

more fuzzy sets with a degree of membership (Kasabov, 1996). The degree of 

membership is defined by fuzzy membership functions. Fuzzy logic also allows 

conclusions to be reached from inputs with a gradation of truth. Membership can be 

viewed as a representation of the "possibility" of association with the particular set 

(Kasabov, 1996). 

 

One of the major advantages of fuzzy logic is its ability to be developed on top of the 

experience of experts within an industry (Uhrig and Tsoukala, 1997). In order to 

accomplish this, it uses heuristic rules to describe the available expert knowledge. 

These fuzzy inference rules are expressed in the form "IF A THEN B", where A is the 

premise and B is the consequence. The actions of the rules are executed or "fired" 

when the degree of membership of the inputs exceed certain threshold values. The 

threshold values define the minimum required membership of the inputs that an 

expert would expect for the particular rule to be executed and are generally defined 

by subjective criteria. Conflicting rules are allowed to fire jointly (Kasabov, 1996). 

 

FISs are processes that utilize fuzzy logic to formulate a mapping from a given input 

to an output (The Mathworks, 1995). The mapping then provides a foundation from 

which decisions can be made. FISs have been successfully applied in fields such as 

automatic control, data classification, decision analysis and expert systems. Due to its 

multidisciplinary nature, these systems are associated with many names, such as 
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fuzzy-rule-based systems, fuzzy expert systems, fuzzy modeling, fuzzy logic 

controllers as well as fuzzy systems (The Mathworks, 1995).  

 

A FIS involves Fuzzification, Inference and Defuzzification processes (The 

Mathworks, 1995). The Fuzzification process is a mapping from the observed input to 

the fuzzy sets defined in the corresponding universe. Inference process is a decision 

making logic that utilizes the fuzzy inference rules to determine fuzzy outputs 

corresponding to fuzzified inputs. Defuzzification produces non-fuzzy outputs (The 

Mathworks, 1995).  

 

There are two popular types of FISs. These are the Mamdani-type and Sugeno-type 

inference systems (The Mathworks, 1995). Mamdani-type inference system is the 

most commonly employed fuzzy methodology. It was proposed by Ebrahim 

Mamdani in 1975 (The Mathworks, 1995). The proposed methodology is based on a 

paper by Lofti Zadeh in 1973 on fuzzy algorithms for complex systems and decision 

processes. In the Mamdani-type inference system the fuzzy sets from the consequent 

of each rule are combined through the aggregation operator and the resulting fuzzy 

set is defuzzified to yield the output of the system (The Mathworks, 1995). The 

Sugeno-type or Takagi-Sugeno-Kang method of inference was introduced in 1985 

(The Mathworks, 1995). In this type of FIS, the consequent of each rule is a linear 

combination of the inputs. The output is a weighted linear combination of the 

consequents. This inference methodology is similar to the Mamdani-type process in 

many respects. The initial Fuzzification and Inference processes of the inference 

techniques are exactly the same. These inference systems vary in the manner their 

outputs are determined. The Sugeno output membership functions are either linear or 

constant (The Mathworks, 1995). Mamdani-type inference systems are widely 

accepted, intuitive and well-suited to human input. However, Sugeno method of 

inference is computationally efficient; performs well with linear, optimization as well 

as adaptive techniques and is well-suited to mathematical analysis (The Mathworks, 
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1995). As a result, the FISs developed in this research utilized Sugeno-type inference 

systems. 

 

Clustering of numerical data establishes the foundation of many classification and 

system modeling applications. The objective of clustering is to locate natural 

groupings in a set of given inputs such that similar inputs are congregated in the same 

class (The Mathworks, 1995).  Utilizing data clustering to obtain fuzzy inference 

rules provides an advantage in that the resultant rules are more tailored to the data 

than a FIS generated without clustering (The Mathworks, 1995).  

 

There are two popular data clustering techniques. These are the fuzzy c-means and 

subtractive data clustering techniques (The Mathworks, 1995). The fuzzy c-means 

technique, introduced by Jim Bezdek in 1981, entails each data point belonging to a 

cluster to some degree that is specified by a membership grade (The Mathworks, 

1995). This data clustering technique provides a method that illustrates the ability to 

group data points that populate a multidimensional space into a specific number of 

unique clusters. Fuzzy c-means technique requires two predefined clusters that are 

intended to indicate the mean location of each cluster (The Mathworks, 1995). Every 

data point is assigned a membership grade for each cluster. Due to the cluster centers 

and the membership grades for each data point being updated iteratively, the 

technique moves the cluster centers to the correct locations within the data set. This 

iteration involves minimizing a function that represents the distance from any given 

data point to a cluster center weighted by the membership grade of that data point 

(The Mathworks, 1995).  

 

Subtractive data clustering technique is a modified form of the Mountain Method for 

cluster estimation (Yen and Wang, 1999). In this method, each data point is 

considered as a potential cluster center and defines a measure of the potential of a 

data point (Chiu, 1994). The measure of potential for a given point is a function of its 

distances to all other data points. A point with many neighbouring points will have a 
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high potential value. After the potential of every data point has been computed, the 

point with the largest potential value is selected as the first cluster center. Thereafter, 

in order to determine the next cluster and its center, all the data points in the vicinity 

of the first cluster center, which is determined by a radius of influence or cluster 

radius, is removed.  This process is iterated until all the input data are within a cluster 

radius of a cluster center (The Mathworks, 1995). Specifying a small cluster radius 

will usually yield many clusters in the data. However, specifying a large cluster 

radius will result in few cluster centers in the data (The Mathworks, 1995). The 

Sugeno -type inference systems developed in this research, employed subtractive 

clustering. 

 

2.5 Support Vector Machine (SVM) 
 

SVM, introduced within the framework of Statistical Learning Theory, is a technique 

proposed by Vapnik in 1995 for resolving classification, regression and density 

estimation problems (Vapnik, 1995), (Vapnik, 1998). It has been demonstrated that 

SVM techniques have outperformed traditional neural network methods in relation to 

generalization capabilities in a number of different application domains (Cortes and 

Vapnik, 1995). Due to the techniques many attractive features and powerful 

classification as well as regression capabilities, the use of SVMs has gained 

popularity as an alternative approach to fuzzy logic, neural networks and genetic 

algorithms. These traditional methodologies generally experience the presence of 

local minima, structure selection problems (number of hidden layers, number of 

hidden nodes, number of rules, population size) and over-fitting training data (Gunn, 

1998). Similar to MLP and FIS, SVM maps the input vector to a feature space, thus 

enabling the classification or regression processes to be performed efficiently.  

 

SVM based learning is established on the Structure Risk Minimization (SRM) 

principle. This principle has been demonstrated to be superior to the traditional 
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Empirical Risk Minimization (ERM) principle that is employed by conventional 

neural networks (Cortes and Vapnik, 1995). SRM principle minimizes the upper 

bound of the generalization error on Vapnik-Chernoverkis dimension, whereas the 

ERM principle minimizes the training error. The objective of SRM principle is to 

achieve an optimum value of the structural risk function whereas the ERM principle 

minimizes the empirical risk function. In other words, SRM principle is concerned 

with the minimization of both the capacity of the learning machine and the training 

error. However, ERM only minimizes the training error. This enables SVMs to 

generalize information contained implicitly in the training data set optimally (Gunn, 

1998). As a result, SVMs have good generalization capabilities. SVMs have many 

advantages in solving small sample size, nonlinear and high dimensional pattern 

recognition problems (Taylor and Cristianini, 2000). 

 

SVMs utilize kernel functions to transform data in the input space to a higher 

dimensional feature space where an optimal hyperplane that maximizes the margin 

between classes is determined (Taylor and Cristianini, 2000). The maximum margin 

hyperplane provides the largest separation between the decision classes. Support 

vectors (SV) are the training examples that are closest to the maximum margin 

hyperplane. Figure 2.4 illustrates the SVM process. 

 

The kernel function is a key technology of SVM. The type of kernel function will 

affect the classifier learning and generalization capabilities. Different kernel functions 

will result in different SVM classifiers. In this research the linear, polynomial, Radial 

Basis Function (RBF) and sigmoid kernel functions have been considered. 

 

Equation (2.5.1), (2.5.2), (2.5.3) and (2.5.4) below illustrate the linear, polynomial, 

RBF and sigmoid kernel functions, respectively. 
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where, 

 )( jiK xx  is the kernel function 

 γ , r and d are kernel parameters. 

 

Currently, in order to determine the optimal kernel parameter pairs, there no general 

rules. As a result, as proposed in (Hsu et al., 2003), a grid search is performed to 

optimize these values. 

 

 

Figure 2.4: Support Vector Machine process 
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In order to resolve the multi-class problem, the “one-against-one” approach in which   

classifiers are constructed and each trained with data from two different classes has 

been utilized in this research (Chang and Lin, 2001). The final classification decision 

is made based on a majority vote among the binary classifiers.  

 

SVMs resolve regression problems by transforming input data onto high dimensional 

feature space utilizing a nonlinear mapping. Thereafter, in this feature space, linear 

regression is performed. 
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Chapter 3  

 
 
 
The call classification system  
 
 
 

3.1 Introduction 
 

Businesses may have the best products, lowest prices and most intelligent employees, 

but if potential customers perceive that the business does not have the capacity to 

complete the project, the companies will lose these customers. In the current 

economic condition, businesses are required to be aggressive in increasing the profile 

of their brand, establish a good reputation as well as presence in their market sector.  

 

Although, businesses may spend precious capital into these ventures, there are more 

efficient and inexpensive ways to achieve the same results through the use of 

affordable latest technologies such as Interactive Voice Response (IVR) systems. A 

telephone is more than a phone. It is a major interaction point to the customer for the 

business. It is the “front door” of the company. The manner in which calls from 

customers are answered and the manner in which the calls are processed is an instant 

measure of the business efficiency and customer relations attitude.  
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By using the correct combination of new call handling tools, a small business can 

also project professionalism and competence from the first crucial customer 

interaction. Intelligent phone systems incorporate, accommodate and integrate a wide 

range of key business processes that have resulted in significant increase in IVR 

system implementations (Jones, 2008). 

 

However, there are many businesses that provide IVR systems to customers, which 

are poorly designed or implemented that result in caller frustration when utilizing the 

automated solutions (Faulkner, 2006). An example of a cause of caller frustration 

would be a voice prompt that plays a detailed description of the options available. 

The descriptions are long, thus resulting in caller confusion as the caller cannot 

remember all the options presented. Another example is an IVR application that does 

not provide the caller sufficient time to respond to a prompt. As a result, these 

customers would probably end the call or request for a transfer to a Customer Service 

Agent (CSA). 

 

The aim of this research is to develop a call classification application, using 

computational intelligent methods, which could assist businesses in quantifying caller 

behaviour within their IVR systems. It is anticipated that this application would be 

used in conjunction with other customer behaviour analysis techniques such as 

listening to recorded calls. As a result, this application should be used to confirm the 

IVR system performance in relation to customer interaction. 
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3.2 Source of the data 
 

As the developed system is to be used to identify trends of caller behaviour within the 

IVR Extensible Markup Language (VoiceXML) applications, the classifiers are 

trained based on data extracted from IVR log event files. These files are generated by 

the IVR platform as specific events occur during a call to the system. Events such as 

call begin, form enter, form select, Advanced Speech Recognition (ASR) events, 

transfer events and call end events are written to the logs (VoiceGenie Technologies, 

2005). Figure 3.1 illustrates an extract from an IVR log event file. Descriptions of the 

events that were utilized to generate the data sets used to develop the classification 

application are provided in Table 3.1.   

 

 
 

Figure 3.1: Extract of an IVR log event file 
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Table 3.1: Descriptions of log events used to generate data sets 

 
Event name Description 

asr_trace 
Provides information on ASR events such as prompt barge-in and 

successful recognition. 

Event 

 

Provides information on an event that is thrown. This log entry is 

used to determine difficulty statistics such as ‘no matches’, ‘no 

inputs’, ‘maximum speech timeout’ as well as ‘system error’ 

statistics. 

incall_end 

This log event indicates the reason for terminating the calling. The 

event indicates if the caller disconnected, the application ended 

the call or the call ended due to a system error. 

transfer_result 
This log event indicates that the call is transferred to a CSA. The 

event also indicates whether or not the transfer is successful. 

form_select 

Form_select log event indicates the fields that the call accessed. 

This event is used to identify the ‘Say account’, ‘Say amount’, 

‘Select beneficiary’ and ‘Say confirmation’. This log event also 

assisted in determining Dual Tone Multi-Frequency (DTMF) 

transfers. 

incall_begin 

The incall_begin log event marks the start of an inbound call to 

the IVR. The incall_begin , incall_end and transfer_result log 

events were used to calculate the duration of a call. 

 
 

As mentioned, VoiceXML applications are voice-based dialog scripts that consist of 

form and menu elements. The form and menu elements are used to group input as 

well as output sections together. A block element is used to specify executable 

content to be executed in the order stated. Block elements are used to query backend 

databases for information required. A field element is used to obtain and interpret 
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user input information. As a result, form elements may contain block and field 

elements (VoiceGenie Technologies, 2009). 

 

Field elements may comprise of elements that facilitates querying the caller for the 

required information and reacting to caller behaviour experienced. The sequence of 

elements that occur within the parent field element is illustrated in Figure 3.2.  

 

Prompt elements provide voice applications the ability to execute specific audio files 

that contain the recorded query. Depending on the answer provided by the caller, the 

application directs the caller to a specific call flow. This logic will be contained 

within the filled elements. Elements such as goto, return and submit are used to 

manage application call flows. Filled elements that occur within field elements allow 

the voice applications to respond to information received. Catch elements contained 

within field elements provide the VoiceXML application with the capabilities to 

handle specific events such as “no matches”, “no inputs” and caller transfer requests. 

Figure 3.3 consists of an example of VoiceXML field code. When this VoiceXML 

application is executed, the corresponding log events generated are illustrated in 

Figure 3.4.  

 
Figure 3.2: Sequence of child elements within parent field element 
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Figure 3.3: Example of VoiceXML field code 

 

 
Figure 3.4: Corresponding IVR log field events generated 

 

The research conducted entailed the creation of a call classification system for a pay 

beneficiary self-service IVR application. The data utilized in the creation of the 

system has been provided by Intelleca, a division of the Bytes Technology Group. As 

a result, ‘Say account’, ‘Say amount’, ‘Select beneficiary’ and ‘Say confirmation’ 
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field classifiers were created. Caller behaviour per field is unique. For example, at a 

‘Say confirmation’ field the caller is required to say ‘yes’ or ‘no’. However, the caller 

is requested to say the currency value at the ‘Say amount’ field. As a result, the 

duration to complete the VoiceXML application field is much shorter at the 

confirmation field. Therefore, each classifier is trained with data relevant to the field. 

 

3.3 Architecture of the call classification system 

 

The classification system developed consists of two components, the field and the 

call performance classification components. The field classification component 

consists of classifiers that categorize caller behaviour at a field within the IVR 

automated applications into specific interaction classes. A call performance classifier 

utilizes these interaction classes to evaluate the performance of the customer call in 

relation to caller behaviour.  

 

As a result, the call performance classes can assist in determining trends of caller 

behaviour within the self-service systems. For example, the caller behaviour 

classification application can identify calls that transferred or disconnected at the final 

task of the automated process as well as calls where the Advanced Speech 

Recognition (ASR) performed poorly. Thereafter, analysts can listen to a sample of 

these calls and then determine the reason for this. The caller behaviour classification 

system can also identify the field that resulted in the majority of the callers 

transferring to a customer service agent or caller disconnecting. The field interaction 

classes can elaborate on the reason for the caller behaviour experienced. 

 

In order to develop such an application, the classification of data must be accurate. As 

a result, field classifiers as well as call performance classifiers that were developed 

utilizing Artificial Neural Network (ANN), Fuzzy Inference System (FIS), Genetic 

Algorithm (GA) and Support Vector Machine (SVM) techniques are compared to 
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determine the most appropriate methodology. Ensembles of classifiers were also 

considered. 

 

As mentioned in section 2.2.1, Multi-Layer Perceptron (MLP) and Radial Basis 

Function (RBF) ANN architectures considered, are feed-forward structures whereby 

each unit receives inputs only from lower layer units.  

 

GA solutions are known to be robust optimization procedures based on the 

mechanism of the natural evolution. GA solutions have the capability of locating a 

global optimum as these procedures do not use any derivative information and GA 

solutions search from multiple points.  

 

A fundamental method in data mining and pattern recognition is clustering of data. 

Fuzzy clustering involves the natural grouping of data in a large data set and provides 

a basis for constructing rule-based fuzzy model (Elmzabi et al., 2007). Fuzzy c-

means, mountain clustering, subtractive clustering and entropy-based fuzzy clustering 

are among the fuzzy clustering algorithms used. In this research subtractive clustering 

is of concern.  

 

As mentioned in section 2.5, SVMs perform well for modeling challenging high-

dimensional data. SVMs have been used successfully in text mining (Joachims, 

1998), image mining (Tolambiya and Kalra, 2008), bioinformatics (Ramaswamy et 

al., 2001) and information fusion (Pal and Mather, 2004). SVM performance has been 

demonstrated to be superior to the performance of decision trees, neural networks and 

Bayesian techniques (Joachims, 1998), (Ramaswamy et al., 2001), (Pal and Mather, 

2004).  

 

The classification of data into various classes has been an important research area for 

many years. ANNs have been applied to pattern classification (Patel and Marwala, 

2008). Research has also been conducted on fuzzy classification. This resulted in 
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many algorithms, such as fuzzy K-nearest neighbour (Keller et al., 1985) and fuzzy c-

means (Bezdek, 1981), being applied to classification problems. Fuzzy systems 

constructed using GA solutions have been utilized (Russo, 1998). Fuzzy neural 

networks have also been employed in pattern classification applications (Patel and 

Marwala, 2006). SVMs have been applied to multi-category classification problems 

(Hsu and Lin, 2002). These classification tasks have also been implemented by 

combining multiple simpler specialized classifiers (Zadrozny, 2002). 

 

The caller behaviour classification system developed is illustrated in Figure 3.5. As 

mentioned the system comprises of two components. Figure 3.5 and Table 3.2 show 

the inputs as well as outputs of the field classification component. These specific 

inputs have been selected to characterize the caller experience at a field within a 

VoiceXML application. The outputs of the classifiers summarize the caller field 

behaviour through the use of interaction classes. 

 

The confidence input illustrates the IVR speech recognition probability.  The value is 

a percentage. The larger the percentage, the greater the probability the system 

interpreted the caller successfully. A caller may answer a question the VoiceXML 

application prompts with a response that the application does not accommodate. 

These events are represented by the no match inputs. In general, most VoiceXML 

applications accommodate three no match events per field. On a third no match event, 

the call is transferred to a DTMF field. If the caller fails to complete the DTMF field 

successfully within the first attempt, the call is transferred to a customer service 

agent. The same process is used for the third no input and maximum speech timeout 

events. The no match field classifier inputs assist in identifying callers that 

misunderstood the VoiceXML prompt as well as unique responses that the 

VoiceXML application can use to improve field recognition coverage. 
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Figure 3.5: Call classification system 
 
 

In response to a prompt, a caller may remain silent. These events are represented by 

the no input parameters. VoiceXML applications normally accommodate three no 

input events on each field. These input parameters assist in identifying callers that 

were confused when prompted with the automated application question. As a result, 

the caller remained silent. 

 

Callers may reply to VoiceXML applications by talking beyond the allocated timeout 

period of the field. These events are represented by the maximum speech timeout 

input parameters of the field classifiers (Nuance, 2002). Maximum speech timeout 

input parameters are important as they assist in determining whether the timeout 

periods are adequate for callers to complete their responses. 
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Table 3.2: Field classification component inputs and outputs 

 
Inputs Outputs Output  interaction class 

Confidence 
Field 

performance 

Good, acceptable, investigate, 

bad 

No matches 
Field transfer 

reason 
Unknown, difficulty 

No inputs 
Field hang-up 

reason 
Unknown, difficulty 

Max speech timeouts 
Field difficulty 

attempt 
Attempt 1, attempt 2, attempt 3 

Barge-ins Field duration High, medium, low 

Hang-up 
Field recognition 

level 
High, medium, low 

Transfer to Service Agent 
Experienced 

caller 
True, false 

DTMF transfer   

Duration   

System error   

Confirmation of 

transaction 
  

 

Barge-in input parameters illustrate whether or not a caller interrupted the application 

while the automated question prompt played. Caller disconnects, transfer to DTMF, 

transfers to CSA and system errors are represented by the hang-up, DTMF transfer, 

transfer to service agent and system error input parameters, respectively. These inputs 

can also assist in determining the level of difficulty the caller experienced in the field. 

The duration input parameter illustrates the time the caller spent completing the field. 
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Confirmation of transaction represents whether or not the caller verified the 

application recognition as being true. 

 

The field performance output interaction class of the classifier will illustrate whether 

the caller behaviour is good, acceptable, investigate or bad. The field transfer reason 

and field hang-up reason interaction classes attempt to identify the motivation for the 

transfer to CSA or caller disconnect, respectively. Field difficulty attempt interaction 

class computes the number of difficulty events that occurred during the field 

interaction. The field duration as well as field recognition level classes illustrate three 

categories of performance; low, medium and high. As a result, these output 

parameters will assist in characterizing the caller experience at a VoiceXML field. 

Experienced caller output parameter categorizes whether or not the caller is a regular 

user of the application and is therefore comfortable with the application call flow. In 

determining the number of experienced callers, the contact center can determine the 

usage of the application. 

 

The function of the call performance classifier is to provide a summarized 

performance evaluation of the complete call based on all fields accessed during the 

call. Figure 3.5 and Table 3.3 illustrates the inputs as well as outputs of the 

component. The call performance output class provides a measure of the call 

performance based on field performance interaction classes. Experienced caller 

output parameter assists in determining whether the caller is familiar with the IVR 

application as the caller has used the application previously. Self-service level 

illustrates a measure of the extent of the IVR application usage before the application 

ended the call, caller disconnects or transfer to CSA event occurs. Speech-enabled 

level output parameter illustrates three categories of performance; good, acceptable or 

investigate. This provides a measure of the number of fields the caller completed 

successfully using ASR. The caller disconnect transferred call performance output 

parameter identifies the field a caller disconnect or transfer event occurred utilizing 

the field classifier disconnect and transfer interaction classes.  
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Therefore, the self-service level call performance output classes provide businesses 

with call containment and task completion metrics. The field transfer reason, hang-up 

reason, difficulty attempt as well as duration field performance interaction classes 

assists the contact center in measuring efficiency and usability for each task within 

the IVR application. The caller disconnect transferred call performance output class 

also assists in measuring efficiency of the complete call. The field performance 

interaction as well as the call performance output class provides businesses with the 

capabilities to quantify customer satisfaction. 

 

Table 3.3: Call performance classification component inputs and outputs 
 

Inputs (per field) Outputs Output  performance class 

Field performance Call performance Good, acceptable, investigate, 
bad 

Field transfer reason Experienced caller True, false 

Field hang-up reason Self-service level Good, acceptable, investigate, 
bad 

Field difficulty 
attempt Speech-enabled level Good, acceptable, investigate 

Field duration Caller disconnect 
transferred 

Field Say Account transfer 
Field Say Account caller 
disconnect 
Field Say Amount transfer 
Field Say Amount caller 
disconnect 
Field Select Beneficiary 
transfer 
Field Select Beneficiary caller 
disconnect 
Field Say Confirmation transfer 
Field Say Confirmation caller 
disconnect 
None 

Field DTMF transfer   
Field recognition 
level   

Experienced caller   
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3.4 Selection and preprocessing of data 
 

As previously stated, the data utilized in implementing the field classification 

component classifiers has been based on data extracted from IVR log event files. A 

business intelligence solution that involved Extract, Transform and Load (ETL) 

processes has been developed to extract as well as compute information such as 

recognition confidence values, duration values and call completion information. This 

information is stored within a database and is then manipulated utilizing specific rules 

to generate the data sets. Rules such as if no hang-up, transfer to CSA, DTMF 

transfer, system error, no inputs, no matches or maximum speech timeouts occur, but 

the confidence level at the field is greater than 80%, the duration to complete the field 

is less than the average field duration and the field confirmation is true, the field 

performance interaction class would be computed as ‘good’, were followed. Table 3.4 

illustrates the rules that were followed to create the respective field performance 

interaction classes. 

 

The call performance classification component input data set values were calculated 

using the interaction classes computed based on the rules mentioned above. Similar 

rules such as when all the field classifiers compute the field performance interaction 

class as good, acceptable, investigate or bad the call performance level would be 

good, acceptable, investigate or bad, respectively, were used to create the call 

performance classification output data set. The call performance output class provides 

a measure of the call performance based on field performance interaction classes. The 

experienced call output class used the field classifier experienced caller outputs to 

generate an output value. If two or more of the field classifiers experienced caller 

output is set to true, the experienced call output class would also be true. The self-

service level, speech enabled level and caller disconnect transferred output 

parameters utilized the field classifier disconnect and transfer interaction classes to 

compute an output value. However, the speech enabled level output value calculation 
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is also based on DTMF transfer information. Table 3.5 illustrates the rules that 

computed the call performance classification output classes. 

 

No match, no input and maximum speech timeout information has been presented to 

the field classifiers, using a binary notation. These inputs are presented by three digit 

binary words. For example, if a ‘no match 1’ and a ‘no match 2’ occur at a field, the 

binary notation will be ‘011’, the sum of the binary notations of ‘No match 1’ ‘No 

match 2’ and ‘No match 3’. A similar binary notation is employed for the no input 

and maximum speech timeout classifier inputs. The barge-in, hang-up, transfer to 

CSA, DTMF transfer, system error and confirmation of transaction input information 

were represented by bit binary words. A similar binary notation scheme has also been 

utilized to interpret and present the interaction classes to the call performance 

component. This data presentation method has also been employed in interpreting the 

call performance classification component output values. Table 3.6 comprises of the 

binary notations utilized to present the inputs to the field classifiers. 
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Table 3.4: Field performance classifier interaction output class rules 
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Table 3.5: Rules followed to compute call performance classifier output classes 
 
Outputs Performance class Rules 

Good ‘Say account’, ‘Say amount’, ‘Select beneficiary’ and ‘Say 
confirmation’ field performance is “Good” 

Acceptable ‘Say account’, ‘Say amount’, ‘Select beneficiary’ and ‘Say 
confirmation’ field performance is “Acceptable” 

Investigate ‘Say account’, ‘Say amount’, ‘Select beneficiary’ and ‘Say 
confirmation’ field performance is “Investigate” 

Call 
performanc
e 

Bad ‘Say account’, ‘Say amount’, ‘Select beneficiary’ and ‘Say 
confirmation’ field performance is “Bad” 

True 
Sum of ‘Say account’, ‘Say amount’, ‘Select beneficiary’ and 
‘Say confirmation’ experienced caller interaction classes is 
greater than or equal to 2 Experienced 

caller 
False 

Sum of ‘Say account’, ‘Say amount’, ‘Select beneficiary’ and 
‘Say confirmation’ experienced caller interaction classes is less 
than 2 

Good No transfer to CSA or caller disconnect occurs at any of the 
modules within the application. 

Acceptable Transfer to CSA or caller disconnect occurs at ‘Say 
confirmation’ module. 

Investigate Transfer to CSA occurs at any of the modules within the 
application. 

Self-service 
level 

Bad Transfer to CSA or caller disconnect occurs at any of the 
modules within the application. 

Good No DTMF transfer occurs on any of the modules within the 
application. 

Acceptable No DTMF transfer or DTMF transfer occurs at ‘Say amount’ 
module. 

Speech-
enabled 
level 

Investigate DTMF transfer occurs on any of the modules within the 
application. 

Field Say Account 
transfer 

Transfer to CSA occurs at ‘Say account’ module. 

Field Say Account 
caller disconnect 

Caller disconnect occurs at ‘Say account’ module. 

Field Say Amount 
transfer 

Transfer to CSA occurs at ‘Say amount’ module. 

Field Say Amount 
caller disconnect 

Caller disconnect occurs at ‘Say amount’ module. 

Field Select 
Beneficiary transfer 

Transfer to CSA occurs at ‘Select beneficiary’ module. 

Field Select 
Beneficiary caller 
disconnect 

Caller disconnect occurs at ‘Select beneficiary’ module. 

Field Say 
Confirmation transfer 

Transfer to CSA occurs at ‘Say confirmation’ module. 

Field Say 
Confirmation caller 
disconnect 

Caller disconnect occurs at ‘Say confirmation’ module. 

Caller 
disconnect 
transferred 

None No Caller disconnect or transfer to CSA occurred. 
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Table 3.6: Binary notation of inputs to field classifiers 

 
Inputs Input values Binary notation 

Confidence - - 

No match 1 001 

No match 2 010 No matches 

No match 3 100 

No input 1 001 

No input 2 010 No inputs 

No input 3 100 

Max speech timeout 1 001 

Max speech timeout 2 010 Max speech timeouts 

Max speech timeout 3 100 

True 1 
Hang-up 

False 0 

True 1 
Barge-ins 

False 0 

True 1 
Transfer to Service Agent 

False 0 

True 1 
DTMF transfer 

False 0 

Duration - - 

True 1 
System error 

False 0 

True 1 
Confirmation of transaction 

False 0 

  

Table 3.7 and table 3.8 illustrate the binary notation used to represent the interaction 

and call performance classes. 
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Table 3.7: Binary notation of field output interaction  

Outputs 
Output  interaction 

class 
Binary notation 

Good 0001 

Acceptable 0010 

Investigate 0100 
Field performance 

Bad 1000 

Unknown 10 
Field transfer reason 

Difficulty 01 

Unknown 10 
Field hang-up reason 

Difficulty 01 

Attempt 1 001 

Attempt 2 010 Field difficulty attempt 

Attempt 3 100 

High 100 

Medium 010 Field duration 

Low 001 

High 100 

Medium 010 Field recognition level 

Low 001 

True 1 
Experienced caller 

False 0 

 

The confidence and duration input parameters of the field classifiers were 

preconditioned by normalizing the data. Normalizing the data entails manipulating 

the data sets such that the values within the sets are between zero and one. The 

purpose of normalizing the data sets is to modify the variable levels to a reasonable 

value. If such a transformation is not employed, the value of the variable could be too 

large for the network to process, especially when several layers of nodes within a 
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neural network are involved (Baum and Haussler, 1989). Normalizing the data sets 

also reduces the fluctuation and noise within the data (Baum and Haussler, 1989). 

There are a variety of practical reasons that illustrate normalizing the data sets can 

result in faster training and reduce the chances of obtaining local optima. Some of 

these reasons include better numerical conditioning (Hessian matrices), better weight 

initialization values and better weight decay estimates (Baum and Haussler, 1989). 

 

The field classification component classifiers developed were trained utilizing the 

normalized data sets. Normalization is accomplished by acquiring the minimum and 

maximum values within the data sets. These values are then utilized to compute the 

normalized values. Due to the binary word representation utilized to present the 

remaining field classifier inputs and the interaction classes computed, normalization 

of these values is not necessary. 

 

In order to ensure that over-fitting and under-fitting were avoided, the data has been 

divided into three sets. The data is divided into training, validation and test sets. The 

training data set is used to train the algorithms to identify the general classification 

groups within the data. The validation data set is used to assess the classifier and the 

test data is used to confirm the classification capability of the developed models. This 

method is employed in the implementation of the field and call performance 

classification components. 
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Table 3.8: Binary notation of call performance classification classes  

Outputs Output  interaction class Binary notation 

Good 0001 

Acceptable 0010 

Investigate 0100 

Call 

performance 

Bad 1000 

True 1 Experienced 

caller False 0 

Good 0001 

Acceptable 0010 

Investigate 0100 

Self-service 

level 

Bad 1000 

Good 001 

Acceptable 010 
Speech-enabled 

level 
Investigate 100 

Field Say Account transfer 000000001 

Field Say Account caller 

disconnect 000000010 

Field Say Amount transfer 000000100 

Field Say Amount caller disconnect 000001000 

Field Select Beneficiary transfer 000010000 

Field Select Beneficiary caller 

disconnect 000100000 

Field Say Confirmation transfer 001000000 

Field Say Confirmation caller 

disconnect 010000000 

Caller 

disconnect 

transferred 

None 100000000 
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Chapter 4  

 
 
 
Artificial Neural Networks classifiers 
 
 
 

4.1. Introduction 
 

Multi-Layer Perceptron (MLP) and the Radial Basis Function (RBF) Artificial Neural 

Network (ANN) architectures were utilized in the development of both the field and 

call performance classification components. The MLP and RBF ANN architectures 

are possibly the most extensively employed ANNs in pattern classification (Nabney, 

2002). Due to the non-linear capabilities of these computational intelligent methods, 

they are said to be excellent universal approximators that provide highly accurate 

solutions. As a result, these networks produce very practical tools for classification 

and inversion problems (Bishop, 1995).  

 

This section details the implementation of the MLP and RBF ANN classifiers. 
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4.2. MLP and RBF classifiers 
 

It has been stated that a network with one hidden layer, provided with sufficient data, 

can be used to model any function (Beale and Jackson, 1990). As a result, the MLP 

and RBF ANN architectures employed consisted of only one hidden layer. The MLP 

network hidden layer consists of non-linear activation functions. The choice of the 

activation function is mainly dependant on the application of the ANN (Bishop, 

1995). However, it has been found that the hyperbolic tangent activation function 

offers a practical advantage of giving rise to faster convergence during training 

(Nabney, 2002). As a result, this function has been utilized within the MLP networks. 

The MLP network output layer also consists of activation functions. It has been stated 

that the appropriate selection of the output-unit activation function for a classification 

problem is the logistic sigmoidal function (Nabney, 2002). As a result, this function 

has been employed within the output layer of the MLP network. The RBF network 

that has been developed contained a Gaussian activation function within its hidden 

layer and a linear activation function within its output layer. 

 

The MLP and RBF ANN implementation process involved the optimization of the 

network architectures. As a result, this entailed the identification of the correct 

number of hidden neurons that would yield the most accurate results. Binary and real 

coded Genetic Algorithm (GA) solutions were employed to optimize the field as well 

as call performance ANN classifier architectures. Populations of MLP and RBF ANN 

individuals were generated by the GA solutions. Thereafter, the GA solutions were 

evaluated utilizing performance metrics. The best performing classifiers were 

identified. Depending on the accuracy of the ANN classifiers, if unacceptable 

accuracy values were achieved, the classification threshold employed by the ANN 

was optimized. The ANN classifiers were then compared to determine the most 

accurate solution as well as the most appropriate ANN for this problem of concern. 

Figure 4.1 illustrates the ANN implementation process followed.  
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Figure 4.1: Artificial Neural Network implementation process followed 
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4.2.1 Optimization of Artificial Neural Network architecture 

 

GA solutions are known to be robust optimization procedures based on the 

mechanism of the natural evolution. GA solutions have the capability of locating a 

global optimum as these procedures search from multiple points. In traditional GA 

solution, binary representation has been used for chromosomes. Floating point 

representation, real coded GA solution, of parameters as a chromosome has also been 

used (Houck et al., 1995). 

 

An error function that mapped the number of hidden nodes to the accuracy of the 

developed network is used as the evaluation function for the GA solution. The fitness 

of the individuals within a population is determined by calculating the accuracy of the 

ANNs when presented with validation and test data sets. The minimum value of these 

accuracies determined the fitness of the individual. The ANNs were trained using the 

training data set. The outputs of the ANNs were interpreted by utilizing a 

classification threshold value of 0.5. This implies that if the classifier outputs a value 

less than 0.5, the output will be regarded as a zero. Similarly, if the output value is 

larger than or equal to 0.5, the output will be interpreted as a one.  

 

Since this is a classification implementation, the accuracy of the networks developed 

can no longer be calculated utilizing the sum of square error of the difference 

between the target and the network output values. Instead, a confusion matrix is 

employed to identify the number of true and false classifications that are generated by 

the ANN developed. This is then utilized to calculate the true accuracy of the ANN 

classifiers, using the following equation: 
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)()( TNFPFNTP
TNTP

Accuracy
+×+

×
=    (4.2.1) 

where, 

TP is the true positive (1 classified as a 1), 

TN is the true negative (0 classified as a 0), 

FN is the false negative (1 classified as a 0), 

FP is the false positive (0 classified as a 1). 

 

The GA solution produced twenty five generations of ten ANN individuals within the 

population. The GA solutions were limited to produce ANN individuals with the 

number of hidden nodes between five and one hundred. Due to the predictive 

capabilities or generalization capabilities reducing as the number of intermediate 

units increase, ANNs with hidden nodes greater than one hundred were not 

considered. More hidden nodes increases the dimensionality of the function being 

fitted, enabling easier training which results from higher training capacity. However, 

this detrimentally affects the generalization capabilities of the network. A major 

consideration when developing a suitable ANN for a classification application is to 

make a trade-off between convergence and generalization (Baum and Haussler, 

1989). 

 

In order to produce successive generations, selection of individuals is important in a 

GA. The selection function determines which of the individuals will survive and 

move on to the next generation. A probabilistic selection is performed based upon the 

fitness of an individual such that the superior individuals have a higher chance of 

being selected. There are several schemes for the selection process. Roulette wheel 

selection and its extensions, scaling techniques, tournament, normal geometric 

ranking and elitist models are examples of selection functions used (Houck et al., 

1995). The selection approach assigns a probability of selection to each individuals 

based on its fitness value. GA solutions that used normalized geometric ranking and 

tournament selection functions were compared in this research.  
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Crossover and mutation operators provide basic search mechanism of the GA. 

Crossover operators transform two individuals into two new individuals, while 

mutation operators alter one individual to produce a single solution. In this research, 

binary coded GA solution utilized binary mutation and the real coded GA solution 

used non-uniform mutation genetic operators. Arithmetic and simple cross-over 

operators have been used within the real coded and binary GA solution, respectively.  

 

4.2.2 Evaluation of Genetic Algorithm solutions employed 

 

Binary and real coded GA solution that used normalized geometric ranking as well as 

tournament selection functions were compared in terms of computational efficiency 

and quality of the GA solution. Computational efficiency, in this context, is defined 

as the number of generations the GA utilized to converge to the most optimal number 

of hidden nodes. Table 4.1 illustrates the results of the MLP and RBF ANN hidden 

nodes optimization using GA solution. During the field ‘Say account’ MLP classifier 

optimization, it is evident that the binary coded GA solution and the real coded GA 

solution converged to an optimal value by generation twenty two and nine, 

respectively. As a result, with regards to the field ‘Say account’ MLP classifier, the 

real coded GA solution outperformed the binary coded GA solution. However, during 

the field ‘Say amount’ MLP classifier optimization, the GA solution using 

tournament selection function outperformed the GA solution that employed 

normalized ranking selection function. The real coded GA that used normalized 

ranking selection function converged the fastest to an optimal number of field ‘Select 

beneficiary’ and ‘Say confirmation’ MLP classifier hidden nodes solution. However, 

the GA that employed binary coded tournament selection function also yielded the 

optimal field ‘Say confirmation’ MLP classifier number of hidden nodes, utilizing the 

same number of generations.  

 



  72

In terms of computational efficiency, the binary coded GA and the real coded GA that 

used normalized geometric ranking selection function outperformed all the GA 

solutions considered in optimizing the field ‘Say account’ and ‘Say amount’ RBF 

classifier architectures, respectively. However, the real coded GA that employed 

tournament selection function performed the best in optimizing the field ‘Select 

beneficiary’ and ‘Say confirmation’ RBF classifier architectures.  

 

During the call performance classification RBF ANN architecture optimization, it has 

been determined that the binary and real coded GA solutions converged to a solution 

at generation one. However, the call performance classification MLP ANN 

architecture optimization achieved different results. Table 4.1 illustrates the results of 

these network implementations. As a result, in terms of computational efficiency, all 

GA solutions considered in developing the call performance classification component 

to optimize the RBF architecture performed equally well. However, when optimizing 

the MLP number of hidden nodes in relation to computational efficiency, the binary 

coded GA that employed normalized geometric ranking selection outperformed all 

GA solutions considered. This algorithm converged to a solution at generation one. 

 

Quality of the GA solution is the confirmation that the optimal number of hidden 

nodes computed by the GA is truly the most suitable value. In order to determine the 

quality of the GA solutions, field MLP and RBF as well as call performance 

classifiers were created containing the optimal number of hidden nodes calculated by 

the algorithms.  
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Table 4.1: ANN classifier implementation results 
 

MLP RBF 

Accuracy Accuracy GA Field Hidden 
nodes Gen1 

Validation Test 
Hidden 
nodes Gen1 

Validation Test 

Field classification component 
Say account 7 22 0.9833 0.9507 66 13 0.9478 0.9363 
Say amount 96 21 0.9095 0.9694 94 16 0.9143 0.9603 

Select 
beneficiary 9 22 0.9537 0.9654 61 18 0.9401 0.9529 

Binary coded 
normalized 
geometric 
ranking 

selection Say 
confirmation 34 19 0.9556 0.9018 73 25 0.9641 0.9033 

Say account 13 22 0.9782 0.9431 96 18 0.9492 0.9358 
Say amount 95 3 0.9092 0.9699 53 5 0.9123 0.9600 

Select 
beneficiary 6 7 0.9628 0.9722 83 16 0.9426 0.9534 

Binary coded 
tournament 
selection 

Say 
confirmation 50 6 0.9557 0.9021 77 16 0.9517 0.9025 

Say account 8 9 0.9844 0.9513 70 24 0.9493 0.9371 
Say amount 9 18 0.9199 0.9796 31 4 0.9125 0.9595 

Select 
beneficiary 40 6 0.9499 0.9635 26 19 0.9391 0.9552 

Real coded 
normalized 
geometric 
ranking 

selection Say 
confirmation 54 6 0.9567 0.9020 88 24 0.9632 0.9041 

Say account 8 9 0.9844 0.9513 94 15 0.9499 0.9376 
Say amount 9 1 0.9199 0.9796 68 9 0.9117 0.9588 

Select 
beneficiary 44 23 0.9494 0.9670 68 8 0.9443 0.9573 

Real coded 
tournament 
selection 

Say 
confirmation 50 21 0.9557 0.9021 60 12 0.9588 0.9048 

Call performance classification component 
Binary coded 
normalized 
geometric 
ranking 

selection 

- 75 1 0.9891 0.9896 40 1 0.8281 0.8186 

Binary coded 
tournament 
selection 

- 47 16 0.9890 0.9901 40 1 0.8281 0.8186 

Real coded 
normalized 
geometric 
ranking 

selection 

- 10 21 0.9904 0.9918 25 1 0.8281 0.8186 

Real coded 
tournament 
selection 

- 69 6 0.9888 0.9893 25 1 0.8281 0.8186 

1Gen represents Generation 
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The real coded GA utilizing tournament selection function is best suited for 

optimizing the field classifier architectures as this algorithm computed the optimal 

number of hidden nodes that produced the most accurate classifiers. This is true for 

the field ‘Say account’, ‘Say amount’ and ‘Say confirmation’ MLP classifiers. This is 

also valid for the field ‘Say account’, ‘Select beneficiary’ and ‘Say confirmation’ 

RBF classifiers. However, the binary coded GA that used the tournament selection 

function returned the optimal number of hidden nodes that resulted in the most 

accurate field ‘Select beneficiary’ MLP classifier. This GA also computed the same 

optimal number of ‘Say confirmation’ MLP hidden nodes as the real coded GA that 

employed tournament selection function, which produced the best field ‘Say 

confirmation’ classifier. Similarly the real coded GA that used normalized geometric 

ranking selection function yielded the same number of field ‘Say amount’ MLP 

hidden nodes as the real coded GA that utilized tournament selection function. 

However, the binary coded GA that used normalized geometric ranking selection 

function returned the optimal number of hidden nodes that produced the most 

accurate field ‘Say amount’ RBF classifier. 

 

It is evident that, during the call performance RBF ANN number of hidden nodes 

optimization, the binary coded and real coded GA solutions computed different 

optimal values. The binary coded GA solutions yielded forty number of hidden nodes 

and the real coded GA solutions calculated twenty five number of hidden nodes as 

optimal. During this optimization process, it has been determined that both numbers 

of hidden nodes achieve the same validation and test data set accuracies. As a result, 

in relation to quality of the GA solution, all GA solutions perform equally well when 

optimizing the call performance RBF classifier architectures. 

 

It is also evident, in relation to the call performance RBF ANN number of hidden 

nodes optimization, when comparing the GA solutions considered, the real coded GA 

solution yielded a smaller number of hidden nodes value that achieved the same 

accuracy on both data sets.  
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Table 4.1 shows the number of hidden nodes that resulted in the most accurate call 

performance MLP ANN classifier is ten. This number of hidden nodes creates a 

network that performs accurately on both the validation and test data sets. As a result, 

this classifier has good generalization capabilities. Therefore, in terms of quality of 

GA solution, the real coded normalized geometric ranking selection GA is most 

suited in optimizing the call performance MLP network architecture. However, this 

algorithm converged to this solution at generation twenty one of twenty five. 

 

4.2.3 Optimization of classification threshold 

 

In order to improve the classification accuracy of the call performance RBF ANN 

implementations, investigations were conducted to optimize the classification 

threshold of the RBF ANN. These experiments resulted in a significant improvement 

in performance on both the validation and test data sets. When utilizing a 

classification threshold of 0.5, the field MLP ANN and call performance classifier 

implementations achieved accuracy values larger than eighty five percent. Similarly, 

the field RBF ANN classifiers yielded accuracy values greater than eighty five 

percent. As a result, the classification thresholds of 0.5 are appropriate for the field 

and call performance MLP ANN classifiers as well as field RBF ANN classifier. 

 

Classification threshold has been optimized by minimizing an error function that 

mapped the classification thresholds to the sum of the sensitivity and specificity of 

the developed call performance classifiers. In this research, sensitivity is defined as 

the probability that the classifier categorizes a set of inputs to the correct specific 

interaction or call performance classes. Specificity is defined as the probability that 

the classifier indicates that a set of inputs does not correctly belong to specific 

interaction or call performance classes. The former measure describes the 

effectiveness of the classifier at categorizing output classes correctly, while the latter 

characterizes the performance of the classifier at discarding the other output classes.  
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This optimization process involved varying the classification threshold from 0.1 to 

0.7 in iterations of 0.01 for both validation and test data sets. During this process, the 

optimized hidden nodes of twenty five have been used. For each of the threshold 

values the accuracy, sensitivity and specificity of the call performance RBF ANN are 

calculated. The accuracy of the classifier is calculated using, equation (4.2.1) above.  

The sensitivity and specificity of the RBF ANN is calculated using equation (4.2.2) 

and equation (4.2.3) below, respectively. 

 

FNTP
TP

ySensitivit
+

=    (4.2.2) 

FPTN
TN

ySpecificit
+

=    (4.2.3) 

where, 

TP is the true positive (1 classified as a 1), 

TN is the true negative (0 classified as a 0), 

FN is the false negative (1 classified as a 0), 

FP is the false positive (0 classified as a 1). 

 

The optimization criteria employed in this investigation required the identification of 

the threshold value that yielded the maximum of the sum of sensitivity and 

specificity. This minimizes the mean of the error rate for positive classifications and 

the error rate for negative classifications. This optimization criteria is equivalent to 

determining the point on the Receiver Operating Characteristic (ROC) where the 

tangent has a slope of one (Freeman and Moisen, 2008). It is also equivalent to 

maximizing the Youden’s index or the true skill statistic.  

 

Table 4.2 illustrates the call performance RBF ANN implementation threshold values 

that resulted in the largest sum of sensitivity and specificity value for the validation as 

well as test data sets. As illustrated in the table, the optimal threshold value of 0.65 is 

an appropriate value for this classification problem.  
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Table 4.2: Results of call performance RBF ANN classifier threshold 
optimization 

 

Threshold Accuracy Sensitivity Specificity
Sensitivity + 

Specificity 

Validation 

0.10-0.11 0.6583 0.4408 0.9831 1.4240 

0.12-0.18 0.6869 0.4831 0.9765 1.4596 

0.19 0.7170 0.5313 0.9678 1.4990 

0.20-0.31 0.7530 0.5914 0.9586 1.5500 

0.32-0.35 0.7853 0.6535 0.9436 1.5971 

0.36-0.57 0.8281 0.7385 0.9285 1.6670 

0.58-0.64 0.8394 0.7838 0.8990 1.6827 

0.65-0.70 0.9068 0.9784 0.8404 1.8188 

Test 

0.10-0.11 0.6507 0.4328 0.9783 1.4111 

0.12-0.18 0.6789 0.4741 0.9721 1.4462 

0.19 0.7097 0.5223 0.9643 1.4866 

0.20-0.31 0.7469 0.5833 0.9563 1.5396 

0.32-0.35 0.7795 0.6452 0.9419 1.5870 

0.36-0.57 0.8186 0.7238 0.9258 1.6496 

0.58-0.64 0.8306 0.7688 0.8973 1.6661 

0.65-0.70 0.9019 0.9677 0.8406 1.8083 

 
Therefore, the optimal RBF call performance classifier achieved an accuracy of 

ninety one percent and ninety percent on validation and test data sets, respectively. 

This demonstrates that this classifier has good generalization capabilities. However, 

the call performance MLP ANN with ten number of hidden nodes is approximately 

nine percent more accurate than the RBF ANN classifier. 
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4.2.4 Comparison of field and call performance Artificial Neural 

Network classifiers 

Figure 4.2 and figure 4.3 illustrates the results of the field MLP classifier 

implementations for validation and test data sets, respectively. These classifiers 

employed the hyperbolic tangent hidden layer activation function and the logistic 

sigmoidal output layer activation function. The field classifiers consisted of seventeen 

inputs and eighteen outputs. The field MLP classifiers were trained utilizing the 

scaled conjugate gradient algorithm. 

 

When comparing validation and test data set classification performance, it is evident 

that the ‘Say account’ and ‘Say confirmation’ field classifiers yielded larger 

validation data set accuracies. The ‘Say account’ and ‘Say amount’ MLP classifier 

that were optimized by real coded GA solutions that used normalized geometric 

ranking as well as tournament selection functions produced the most accurate 

classifiers. As a result, the MLP ANN, utilizing eight hidden nodes, is most 

appropriate for ‘Say account’ field classification. Similarly, the MLP ANN that 

employed nine hidden nodes is best suited in ‘Say amount’ field classification. 

 

It is evident from figure 4.2 that the binary coded GA solution that employed 

tournament selection produced the most optimal ‘Select beneficiary’ MLP classifier. 

Therefore, this MLP ANN that contained six hidden nodes is most appropriate for 

‘Select beneficiary’ field classification. In relation to ‘Say confirmation’ field 

classification, as illustrated in figure 4.2, the MLP classifiers optimized utilizing GA 

solutions that employed tournament selection functions yielded the best results. As a 

result, these MLP classifiers, which consisted of fifty hidden nodes, are best suited to 

‘Say confirmation’ classification.  
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Figure 4.2: MLP ANN Field classifier results (Validation) 

 

 
Figure 4.3: MLP ANN Field classifier results (Test) 

 

Figures 4.4 and 4.5 illustrate the results of the RBF ANN implementations for 

validation and test data sets, respectively. The field RBF classifiers contained a 

Gaussian activation function within its hidden layer and a linear activation function 

within its output layer. Similar to the field MLP classifiers, the scaled conjugate 

gradient algorithm was utilized in training these classifiers. The field RBF classifiers 

also consisted of seventeen inputs and eighteen outputs.  
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Similar to the MLP ANN implementation, when comparing validation and test data 

set classification performance, it is evident that the ‘Say account’ and ‘Say 

confirmation’ field classifiers yielded larger validation data set accuracies. The ‘Say 

amount’ and ‘Select beneficiary’ classifiers performed better on the test data set. 

Similar behaviour has been noted in the field MLP classifier implementation results. 

 

As illustrated in figure 4.5, the ‘Say account’ RBF classifier optimized using the real 

coded GA solution that employed tournament selection achieved the best results on 

test data. Therefore, this field RBF classifier, consisting of ninety four hidden nodes 

is best suited in resolving this classification problem. However, the binary coded GA 

solution that utilized normalized geometric ranking selection yielded the most 

accurate ‘Say amount’ RBF classifier. As a result, this field RBF classifier, which 

also employed ninety four hidden nodes, is most appropriate for this problem. 

 

Similar to the ‘Say account’ RBF solutions, the ‘Select beneficiary’ and ‘Say 

confirmation’ RBF classifiers optimized using the real coded GA solution that 

utilized tournament selection achieved the best classification results. Therefore, the 

‘Select beneficiary’ RBF classifier, which consisted of sixty eight hidden nodes, is 

best suited to this problem. Similarly, the ‘Say confirmation’ RBF classifier that 

utilized sixty hidden nodes is most appropriate for this problem. 
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Figure 4.4: RBF ANN Field classifier results (Validation) 

 

 
Figure 4.5: RBF ANN Field classifier results (Test) 

 

It is evident from figure 4.6, that the field MLP classifiers implemented outperform 

the field RBF classifiers. As illustrated in figure 4.6, ANN field classifiers are most 

accurate in ‘Select beneficiary’ field classification. This is evident on both validation 

and test data sets. However, these ANN field classifiers are least accurate in ‘Say 

confirmation’ field classification. 
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Figure 4.6: Most accurate ANN field classifiers 

 

Figure 4.7 and figure 4.8 illustrate the call performance MLP and RBF classifier 

implementation results. The call performance MLP classifiers also employed the 

hyperbolic tangent hidden layer activation function and the logistic sigmoidal output 

layer activation function. However, the RBF classifiers contained a Gaussian 

activation function within its hidden layer and a linear activation function within its 

output layer. The call performance classifiers consisted of seventy six inputs and 

twenty one outputs. The inputs of the call performance classifier were the eighteen 

field interaction classes per field classifier and the field DTMF transfer status per 

field. These classifiers were also trained utilizing the scaled conjugate gradient 

algorithm. 

 

It is evident from these figures that the MLP classifiers outperform the RBF 

classifiers. The real coded GA solution that utilized normalized geometric ranking 

selection produced the most optimal MLP call performance classifier. As a result, this 

classifier, which consisted of ten hidden nodes, is most appropriate for call 

performance classifications.  
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Figure 4.7: Call performance classifier results (Validation) 
 

 
 

Figure 4.8: Call performance classifier results (Test) 
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Chapter 5  

 
 
 
Fuzzy Inference System classifiers  
 
 
 

5.1. Introduction 
 

Fuzzy Inference Systems (FIS) were also considered in the development of both the 

field and call performance classification components. As mentioned in Chapter 2, FIS 

techniques are computational intelligent techniques that use fuzzy logic to formulate a 

mapping from a given input to an output (The Mathworks, 1995). These mappings 

provide a foundation that is utilized to make decisions.  

 

This chapter examines the FIS classifiers developed during this study. 
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5.2. FIS classifiers 
 
Clustering of numerical data establishes the basis of many classification and system 

modeling applications. As previously stated in Chapter 2, the primary purpose of a 

clustering technique is to locate natural groupings in a set of presented inputs with the 

objective of congregated similar inputs in the same class (The Mathworks, 1995). 

When employing clustering methods to compute fuzzy inference rules, the resultant 

rules are specifically tailored to the data. As a result, this is an advantage when 

compared to a FIS developed without clustering (The Mathworks, 1995). 

 

The fuzzy c-means and subtractive data clustering techniques are the two most 

popular methods used (The Mathworks, 1995). The quality of the fuzzy c-means 

method depends strongly on the choice of the number of centers and the initial cluster 

positions (Chiu, 1994). This method is also known to possess the “curse of 

dimensionality” (Chiu, 1994). This implies that the number of rules increases 

exponentially as the input data increases in size. As a result, due to these problems, 

the FIS method utilized in the development of the field and call performance 

classifiers, used subtractive clustering to generate the required membership functions 

as well as set of fuzzy inference rules.  

 

The development of the field and call performance FIS classifiers involved the 

optimization of the inference system architecture. This entailed the optimization of 

the cluster radius used within these components. Thereafter, depending on the 

accuracy achieved, in order to improve the accuracy values achieved, the 

classification thresholds were optimized. The implementation process concludes by 

comparing the various inference systems developed to determine the optimal field 

and call performance FIS classifiers. Figure 5.1 illustrates the process followed. 
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Figure 5.1: FIS system implementation process followed 

 

5.2.1 Optimization of the Fuzzy Inference System architecture 

 

The development of the field and call performance FIS classifiers involved the 

optimization of the cluster radius used within these components. The cluster radius 

has been optimized by minimizing an error function that mapped the radius to the 
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accuracy of the developed inference systems. This process used the validation data 

sets. The optimization process followed entailed the construction of various field and 

call performance inference systems with the cluster radius ranging from 0.01 to one. 

During the cluster radius optimization, classification threshold of 0.5 has been 

employed. 

 

Table 5.1 illustrates the cluster radii that resulted in the most accurate field classifiers. 

As shown in the table, field ‘Say account’ FIS classifier proved to be the most 

accurate, yielding an accuracy of seventy eight percent on validation data set. 

However, the field ‘Say amount’ FIS classifier is the least accurate, producing an 

accuracy of 63.11% on validation data set.  

 

Table 5.1 also illustrates the results of the call performance FIS classifier cluster 

radius optimization. It has been determined that cluster radii of 0.13 and 0.14 

achieved the same validation and test data set accuracies. These cluster radii also 

achieve the best accuracies of ninety two percent and ninety one percent on validation 

and test data sets, respectively.  

 

As a result of the accuracy values achieved, the classification thresholds were 

optimized. 
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Table 5.1: Results of FIS cluster radius optimization 
 

Accuracy 
Radius Field 

Validation Test 

Field classification component 

0.16 Say account 0.7800 0.8723 

0.26 Say amount 0.6311 0.9566 

0.40 Select beneficiary 0.7288 0.9339 

0.78 Say confirmation 0.7074 0.8674 

Call performance classification component 

0.13 - 0.9152 0.9108 

0.14 - 0.9152 0.9108 

 

5.2.2 Optimization of the classification threshold 

 

In order to attempt to improve the accuracy of the FIS field and call performance 

classifiers, the classification threshold is optimized. Similar to the Artificial Neural 

Network (ANN) threshold optimization procedure followed previously in Chapter 4, 

the classification threshold is optimized by minimizing an error function that mapped 

the classification thresholds to the sum of the sensitivity and specificity of the 

developed FIS classifiers. The process is performed on the validation and test data 

sets.  

 

This classification threshold optimization process entailed varying the classification 

threshold from 0.1 to 0.7 in iterations of 0.01. The procedure used the optimized field 

FIS classifier cluster radii illustrated in Table 5.1. However, the process employed to 

optimize the call performance FIS classifier classification threshold used a cluster 

radius of 0.14. For each of the threshold values the accuracy, the sensitivity and the 
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specificity of the FIS is calculated using, equation (4.2.1), (4.2.2) and (4.2.3) stated in 

Chapter 4, respectively. 

 

Table 5.2 illustrates the threshold values that resulted in the largest sum of sensitivity 

and specificity value for the validation and test data sets. It is evident that by 

identifying suitable threshold values, the validation data set accuracy of the field 

classifiers has improved.  

 

As illustrated in Table 5.2, the accuracy of the ‘Say account’ FIS classifier has 

improved by 2.68% on validation data and the ‘Say amount’ FIS classifier has 

become 19.54% more accurate on validation data. Similarly, the ‘Select beneficiary’ 

and ‘Say confirmation’ FIS classifiers are 5.55% and 8.77% more accurate on 

validation data. 

 

After optimizing the classification threshold of the field FIS classifiers, the 

performance of these inference systems on test data decreased. However, as 

illustrated in Table 5.2, the optimized field FIS classifiers perform similarly on both 

validation and test data. As a result, it can be concluded that due to the optimization 

of classification threshold, the field inference systems have improved generalization 

capabilities. 

 

As shown in Table 5.2, the original threshold value of 0.5 is an appropriate value for 

the call performance classification problem. As a result, the optimization of 

classification threshold did not improve the performance of this inference system. 
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Table 5.2: Results of FIS threshold optimization 
 

Radius Threshold Field Accuracy Sensitivity Specificity Sensitivity +
Specificity

Field classification component 
Validation 

0.16 0.16 Say account 0.8068 0.7200 0.9943 1.7143 
0.26 0.15 Say amount 0.8265 0.7022 0.9860 1.6882 
0.40 0.11 Select beneficiary 0.7843 0.6217 0.9900 1.6117 
0.78 0.21 Say confirmation 0.7951 0.7138 0.9958 1.7096 

Test 
0.16 0.16 Say account 0.8077 0.6615 0.9863 1.6478 
0.26 0.15 Say amount 0.8254 0.6847 0.9951 1.6798 
0.40 0.11 Select beneficiary 0.7782 0.6273 0.9908 1.6181 
0.78 0.21 Say confirmation 0.7947 0.6576 0.9604 1.6180 

Call performance classification component 
Validation 

0.10-0.24 - 0.6846 0.4853 0.9658 1.4511 
0.25-0.33  0.6849 0.4857 0.9658 1.4515 
0.34-0.49 - 0.6827 0.4838 0.9633 1.4471 

0.5 - 0.9152 0.9455 0.8858 1.8313 
0.51-0.60 - 0.9148 0.9452 0.8853 1.8305 
0.61-0.66 - 0.9147 0.9452 0.8852 1.8304 

0.14 

0.67-0.70 - 0.9145 0.9458 0.8842 1.8300 
Test 

0.10-0.24 - 0.6846 0.4826 0.9710 1.4536 
0.25-0.33  0.6847 0.4828 0.9710 1.4538 
0.34-0.49 - 0.6831 0.4814 0.9695 1.4509 

0.5 - 0.9108 0.9333 0.8888 1.8221 
0.51-0.60 - 0.9106 0.9331 0.8886 1.8217 
0.61-0.66 - 0.9106 0.9331 0.8886 1.8217 

0.14 

0.67-0.70 - 0.9099 0.9333 0.8871 1.8204 
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5.2.3 Comparison of field and call performance Fuzzy Inference 

System classifiers 

 

Figure 5.2 illustrate the results of the field FIS classifier implementations for 

validation and test data sets, respectively. The field FIS classifiers consisted of 

seventeen inputs and eighteen outputs. The field ‘Say account’, ‘Say amount’ and 

‘Say confirmation’ FIS classifiers contained five rules. However, the field ‘Select 

beneficiary’ FIS classifier contained four rules.  

 

When comparing the performance of the inference systems on validation and test data 

sets, it is evident that the optimized classifiers achieved similar accuracy values on 

both sets of data. Due to these results, it can be concluded that this classifier has good 

generalization capabilities. 

 

The ‘Say amount’ FIS classifier is the most accurate inference system developed, 

producing an accuracy of 82.54% on test data. The least accurate is the ‘Select 

beneficiary’ FIS classifier, achieving an accuracy of 77.82% on test data.  

 

It is also evident from figure 5.2, that the call performance FIS classifier developed 

achieved similar accuracy values on validation and test data. Due to this behaviour, 

this classifier has good generalization capabilities. 
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Figure 5.2: FIS Field classifier results 

The call performance FIS classifier consisted of seventy six inputs and twenty one 

outputs. The classifier also contained three hundred and fifty eight rules.  

 

The most accurate call performance FIS classifier yielded an accuracy of 91.52% and 

91.08% on validation and test data sets, respectively. 

 

 
Figure 5.3: FIS Call performance classifier results 
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Chapter 6  

 
 
 
Support Vector Machine classifiers  
 
 
 

6.1. Introduction 
 
During the development of the field and call performance components, Support 

Vector Machine (SVM) classifiers were also implemented. As previously stated, 

SVM is a reputable computational intelligent technique for resolving classification 

problems. SVMs have many advantages in resolving small sample size, nonlinear and 

high dimensional pattern recognition problems (Taylor and Cristianini, 2000).  

 

This chapter describes the implementation methodology executed in developing SVM 

field and call performance classifiers. 
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6.2. SVM classifiers 
 

SVM utilizes support vector (SV) kernel functions to map the data in the input space 

to a higher dimensional feature space where the problem can be processed in a linear 

form (Taylor and Cristianini, 2000). As a result the kernel function is a key 

technology of SVM. The type of kernel function will affect the classifier learning and 

generalization capabilities. Different kernel functions will construct different SVM 

classifiers. This research considers the linear, polynomial, Radial Basis Function 

(RBF) and sigmoid kernel functions. 

 

When the number of training instances is less than the number of features within the 

data, the linear kernel function is most appropriate (Hsu et al., 2003). However, the 

RBF kernel function has the ability to accommodate non-linear relationships between 

input instances and output classes. The sigmoid kernel function behaves similar to the 

RBF kernel functions for certain parameters. The RBF kernel function has less 

hyperparameters than the polynomial kernel function (Hsu et al., 2003). 

 

SVM implementation process involved creating field and call performance classifiers 

that employed the kernel functions mentioned above. The validation and test data set 

performance metrics of the resulting SVM classifiers were then compared to 

determine the kernel function most suitable for this application. As a result, this 

involved the selection of an appropriate kernel function that would result in classifiers 

with excellent generalization capabilities. Thereafter, depending on the accuracy 

achieved, in order to improve the accuracy values achieved, the classification 

thresholds were optimized. The implementation process concludes by comparing the 

various SVM classifiers developed to determine the optimal field and call 

performance SVM solution. Figure 6.1 illustrates the implementation process 

followed. 
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Figure 6.1: SVM implementation process 
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6.2.1 Optimization of the Support Vector Machine classifier 

architecture 

 

Utilizing the training data set, the SVM classifiers that employed linear, polynomial, 

RBF and sigmoid kernel functions were trained. SVM classifiers with different kernel 

function parameters were created. Thereafter, the validation and test data sets were 

presented to the models. The accuracy of the developed classifiers was calculated for 

the validation and test data sets using equation (4.2.1) stated in Chapter 4. Grid-

search method described in (Hsu et al., 2003) was conducted to identify the good 

parameters. SVMs that resulted in the largest accuracy value, when presented with 

the validation and test data sets, were analyzed.  

 

It is evident from Table 6.1 that exceptional results were obtained that yielded field 

and call performance classifiers with good generalization capabilities.  

 

It is evident that the polynomial kernel function resulted in the most accurate field 

‘Say account’ and ‘Say amount’ SVM classifier. The ‘Say account’ SVM classifier 

that used the polynomial kernel function is, on average, 3.32% more accurate on test 

data than the other ‘Say account’ SVM classifiers developed.  Similarly, when 

comparing ‘Say amount’ SVM classifiers developed, the ‘Say amount’ SVM 

classifier that utilized the polynomial kernel function is, on average, 1.19% more 

accurate on validation data. 
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Table 6.1: Results of SVM implementation 
 

Accuracy 
Kernel function Field C1 γ 2 r2 d2

Validation Test 
Field classification component 

Say account 7 - - - 0.9708 0.8820
Say amount 2.99 - - - 0.9086 0.9708

Select 
beneficiary 150 - - - 0.9555 0.9651Linear 

Say 
confirmation 3 - - - 0.9605 0.9050

Say account 10 0.1461 0 4 0.9223 0.9191
Say amount 150 0.07 0 3 0.9246 0.9428

Select 
beneficiary 25500 0.1 0 2 0.9630 0.9649Polynomial 

Say 
confirmation 1000 0.07 0 3 0.9629 0.9068

Say account 102500 0.0598 - - 0.9800 0.8942
Say amount 29000 0.091 - - 0.9185 0.9780

Select 
beneficiary 10100 1 - - 0.9641 0.9724

Radial Basis 
Function 

Say 
confirmation 1900 1.05 - - 0.9637 0.9095

Say account 101 0.0705 0 - 0.9694 0.8816
Say amount 5.8 0.07 0 - 0.9110 0.9648

Select 
beneficiary 149.5 0.06 0 - 0.9535 0.9635Sigmoid 

Say 
confirmation 140 0.05 0 - 0.9595 0.9041

Call performance classification component 
Linear - 1 - - - 0.9911 0.9923

Polynomial - 40 0.06 0 2 0.9830 0.9821
Radial Basis 

Function - 1 0.07 - - 0.9756 0.9736

Sigmoid - 10 0.029 0 - 0.9886 0.9890
 1C is the penalty parameter of the error term (Hsu et al., 2003). 

2Section 2.5 contains details of these parameters. 
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The SVM classifiers that used the RBF kernel function produced the most accurate 

‘Select beneficiary’ and ‘Say confirmation’ SVM classifiers. When comparing 

‘Select beneficiary’ SVM classifiers developed, the classifier that utilized the RBF 

kernel function is, on average, 0.68% more accurate on validation data. Similarly, the 

‘Say confirmation’ SVM classifier that used the RBF kernel function is, on average, 

0.42% more accurate than the other ‘Say confirmation’ SVM classifiers. 

 

The linear kernel function resulted in the most accurate call performance SVM 

classifier. When comparing call performance SVM classifiers developed, this 

classifier is, on average, 0.87% and 1.07% more accurate on validation data and test 

data, respectively. 

 

The field and call performance SVM classifiers created employed a classification 

threshold value of 0.5. This threshold value resulted in above ninety percent accurate 

classifications. This has been demonstrated on the training, validation and test data 

sets. As a result, this threshold value of 0.5 proved to be adequate for the SVM 

implementations. 
 

6.2.2 Comparison of field and call performance Support Vector 

Machine classifiers 

 

Figures 6.2 and 6.3 illustrate the results of the field SVM classifiers developed. The 

field SVM classifiers consisted of seventeen inputs and eighteen outputs. When 

comparing the performance of the field SVM classifiers on validation and test data, it 

is evident that depending on the kernel function employed within the model, larger 

accuracy values are achieved on test data.  

 

The ‘Say account’ and ‘Say amount’ SVM classifiers that utilized a polynomial 

kernel function were the most accurate models. These SVM classifiers were 91.91% 
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and 92.46% accurate, respectively. SVM classifiers that employed RBF kernel 

functions were most suited to ‘Select beneficiary’ and ‘Say confirmation’ 

classification. These SVM classifiers were 96.41% and 90.95% accurate, 

respectively. 

 

 
 

Figure 6.2: Support Vector Machines Field classifier results (Validation) 
 

 
Figure 6.3: Support Vector Machines Field classifier results (Test) 

 

 

 

 



  100

Figure 6.4 illustrates the call performance SVM classifier implementation results. The 

call performance SVM classifier consisted of seventy six inputs and twenty one 

outputs. The SVM classifier achieved similar accuracy values on both validation and 

test data. As a result, good generalization capabilities have been exhibited. 

  

The kernel functions used created call performance classifiers with accuracies larger 

than ninety five percent on validation and test data sets. It is evident that the linear 

kernel function resulted in the most accurate call performance classifier. The 

polynomial and sigmoid kernel function call performance classifiers were only 

approximately 0.90% and 0.25% less accurate on the test data set, respectively. 

However, the RBF kernel function call performance classifier is approximately 

1.75% less accurate than the linear kernel function classifier. 

 

 
Figure 6.4: Call performance Support Vector Machines classifier results 
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Chapter 7  

 
 
 
Comparison of the computational intelligent methods 
considered and the selection of the superior classifiers  
 
 
 

7.1. Introduction 
 

This research implemented popular computational intelligent techniques that yielded 

exceptional results in various application domains. As a result, differing approaches 

to resolve the application problems within this research were explored. Through the 

use of membership functions as well as inference engines equipped with a rule-based, 

Fuzzy Inference System (FIS) classifiers exploit the power of verbal descriptions. 

Multi Layer Perceptron (MLP) and Radial Basis Function (RBF) Artificial Neural 

Networks (ANN), store the desired form of knowledge within a massively 

interconnected layered feed-forward structure. Support Vector Machine (SVM), 

unlike the FIS technique, MLP and RBF ANN methods, exploits the Structural Risk 

Minimization (SRM) principle, thus enabling the minimization of the upper bound of 

a risk function and therefore achieving optimum classification functions.  
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This chapter compares the results yielded from the artificial intelligent methods 

considered.  

 

7.2. Comparison of results achieved 
 

The computational intelligent techniques considered produced highly accurate field 

and call performance classifiers. The MLP ANN, RBF ANN and the SVM 

implemented solutions achieved accuracy values larger than ninety percent on unseen 

validation as well as test data. However, the field FIS classifier yielded accuracies 

less than eighty five percent. Figure 7.1 and figure 7.2 illustrate the results of the field 

and call performance classifier implementations, respectively. 

 

 
Figure 7.1: Results of field classifier implementations 
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Figure 7.2: Results of call performance classifier implementations 
 
 

Field ‘Say amount’, ‘Select beneficiary’ and ‘Say confirmation’ SVM classifiers 

achieved the best results on both validation and test data sets. However, field ‘Say 

account’ MLP classifiers produced the most accurate solutions, outperforming the 

field ‘Say account’ RBF and SVM classifiers on both validation and test data sets. 

The call performance SVM classifiers proved to be the most accurate, achieving an 

accuracy of 99.23% on test data. 

  

7.3. Ensemble of classifiers 
 

In order to improve the accuracy of the field and call performance classifiers, 

ensemble of networks has been considered. Ensembles of field ‘Say account ’,‘Say 

amount ’,‘Select beneficiary’ and ‘Say confirmation’ classifiers, consisting of the 

most accurate MLP ANN, RBF ANN as well as SVM networks, were developed. The 

call performance ensemble of classifiers considered consisted of the best MLP ANN, 

FIS and SVM models. Figure 7.3 and figure 7.4 details the ensemble of field and call 

performance classifiers used, respectively. 
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Figure 7.3: Ensemble of field classifiers 

 

It has been stated that classifiers utilized simultaneously as committees or ensemble, 

will provide an average error that is lower than any individual classifier (Marwala, 

2001), (Kittler, 1998), (Bishop, 1995), (Hansen and Salamon, 1990). A possible 

explanation for this is the fact that the set of inputs incorrectly categorized by the 

classifiers within the ensemble do not necessarily overlap. Therefore, a combination 

of networks as a classifier should outperform a single network classifier. Table 7.1 

details the classifiers used within the ensembles. 
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Figure 7.4: Ensemble of call performance classifiers 
 
The outputs of classifiers were fed into a voting system. The voting system 

determined the final output of the ensemble. If the majority of the classifiers within 

the ensemble categorized an output into a certain class, the voting system would 

classify the output of the ensemble as the class. If all of the models within the 

ensemble classified an output into different classes, the voting system would classify 

the output of the ensemble as undecided. 
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Table 7.1: Classifiers used in Ensemble solution 

Accuracy Ensemble Classifiers used 
Validation Test 

MLP ANN 
(8 hidden nodes) 0.9844 0.9513 

RBF ANN 
(94 hidden nodes) 0.9499 0.9376 

‘Say account’ field 
Ensemble of classifiers 

SVM (Polynomial) 0.9223 0.9191 
MLP ANN 

(9 hidden nodes) 0.9199 0.9796 

RBF ANN 
(94 hidden nodes) 0.9143 0.9603 

‘Say amount’ field Ensemble
of classifiers 

SVM (Polynomial) 0.9246 0.9428 
MLP ANN 

(6 hidden nodes) 0.9628 0.9722 

RBF ANN 
(68 hidden nodes) 0.9443 0.9573 

‘Select beneficiary’ field 
Ensemble of classifiers 

SVM (RBF) 0.9641 0.9724 
MLP ANN 

(50 hidden nodes) 0.9557 0.9021 

RBF ANN 
(60 hidden nodes) 0.9588 0.9048 

‘Say confirmation’ field 
Ensemble of classifiers 

SVM (RBF) 0.9637 0.9095 
MLP ANN 

(10 hidden nodes) 0.9904 0.9918 

FIS 
(0.14 cluster radius) 0.9152 0.9108 

Call performance Ensemble 
of classifiers 

SVM (Linear) 0.9911 0.9923 
 

As shown in Table 7.2, the ensemble of classifiers proved to be an accurate solution. 

These committees yielded large accuracy values on both validation and test data sets. 

In order to confirm the performance of the classifiers created, the sensitivity and 

specificity values were also compared. 

 

Field ‘Say account’ MLP classifier is most accurate on validation and test data. When 

presented with validation data, the classifier achieved the largest sensitivity and 

specificity values. This classifier also yielded the largest sensitivity value on test data. 
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However, the field ‘Say account’ FIS classifier achieved the largest test data 

specificity value, one percent larger than the field MLP classifier. This indicates that 

the field FIS classifier has a larger negative classification rate on test data. The 

ensemble of ‘Say account’ classifiers is 0.74% less accurate than the MLP classifier. 

Therefore, the MLP classifier solution is the preferred classification solution for the 

‘Say account’ field.  

 

Ensemble of field ‘Say amount’ classifiers is the most accurate, achieving an 

accuracy of 92.61% on validation data. These classifiers also yielded the best 

sensitivity value on validation data. However, the field ‘Say amount’ MLP ANN 

achieved larger test data accuracy, only 0.67% more accurate then the ensemble of 

classifiers. This classifier also achieved the best test data sensitivity, only 0.47% 

larger then the ensemble of classifiers. The field ‘Say amount’ FIS classifiers 

achieved the best specificity values, but the lowest accuracy and specificity values. 

As a result, the ensemble of field classifiers as well as the MLP classifier solutions 

are preferred classification approaches for the ‘Say amount’ field. 

 

The field ‘Select beneficiary’ SVM classifier is most accurate on both data sets. 

When presented with both the data sets, this classifier also yielded the largest 

sensitivity values. Similar to the field ‘Say amount’ FIS classifiers the field ‘Select 

beneficiary’ FIS classifier achieved the best specificity values, but the lowest 

accuracy and specificity values. It should be noted that the ensemble of field ‘Select 

beneficiary’ classifiers were only 0.19% and 0.01% less accurate on validation and 

test data sets. Therefore, the ensemble of classifiers and SVM classifier are the 

preferred classification solutions for the ‘Select beneficiary’ field. 
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Table 7.2: Performance metrics of best classifiers per method considered 
 

Validation Test  Method 
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

MLP ANN 0.9844 0.9738 0.9951 0.9513 0.9269 0.9763 
RBF ANN 0.9499 0.9202 0.9806 0.9376 0.9049 0.9715 

FIS 0.8068 0.7200 0.9943 0.8077 0.6615 0.9863 
SVM 0.9223 0.8942 0.9513 0.9191 0.8899 0.9493 

Field ‘Say 
account’ 
classifier 

Ensemble 0.9679 0.9549 0.9812 0.9439 0.9205 0.9680 
MLP ANN 0.9199 0.8803 0.9613 0.9796 0.9711 0.9883 
RBF ANN 0.9143 0.8717 0.9590 0.9603 0.9404 0.9805 

FIS 0.8265 0.7022 0.9860 0.8254 0.6847 0.9951 
SVM 0.9246 0.8925 0.9579 0.9428 0.9178 0.9684 

Field ‘Say 
amount’ 
classifier 

Ensemble 0.9261 0.8950 0.9583 0.9729 0.9664 0.9794 
MLP ANN 0.9628 0.9394 0.9868 0.9722 0.9566 0.9880 
RBF ANN 0.9443 0.9132 0.9765 0.9573 0.9361 0.9789 

FIS 0.7843 0.6217 0.9900 0.7782 0.6273 0.9908 
SVM 0.9641 0.9456 0.9831 0.9724 0.9608 0.9841 

Field ‘Select 
beneficiary’ 
 Classifier 

Ensemble 0.9622 0.9418 0.9831 0.9723 0.9597 0.9850 
MLP ANN 0.9557 0.9206 0.9922 0.9021 0.8454 0.9625 
RBF ANN 0.9588 0.9428 0.9751 0.9048 0.8559 0.9565 

FIS 0.7951 0.7138 0.9958 0.7947 0.6576 0.9604 
SVM 0.9637 0.9453 0.9824 0.9095 0.8597 0.9621 

Field ‘Say 
confirmation’

 Classifier 

Ensemble 0.9636 0.9450 0.9826 0.9097 0.8603 0.9619 
MLP ANN 0.9904 0.9845 0.9963 0.9918 0.9877 0.9960 
RBF ANN 0.9068 0.9784 0.8404 0.9019 0.9677 0.8406 

FIS 0.9152 0.9455 0.8858 0.9108 0.9333 0.8888 
SVM 0.9911 0.9857 0.9965 0.9923 0.9889 0.9957 

Call 
performance 

classifier 

Ensemble 0.9925 0.9902 0.9949 0.9929 0.9908 0.9949 
 

When presented with validation data, the field ‘Say confirmation’ SVM classifier 

yielded the best accuracy and sensitivity values. However, when presented with test 

data, the ensemble of ‘Say confirmation’ classifiers achieved the best accuracy and 

sensitivity values. Similar to the previous field classifiers findings, the field ‘Say 

confirmation’ FIS classifier yields the best specificity, but lowest accuracy and 

sensitivity values. This suggests that the FIS networks have a larger negative 
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classification rate, which results in lower accuracy. As a result, the ensemble of 

classifiers and the SVM classifier are the preferred classification solutions for the 

‘Say confirmation’ field. 

 

The ensemble of call performance classifiers are the most accurate on both validation 

and test data sets. When presented with validation and test data, this approach 

achieved the best sensitivity values. However, the call performance SVM classifier 

yielded the best specificity values on both the data sets. As a result, the SVM 

classifier has a larger negative classification rate. Therefore, the ensemble of call 

performance classifiers is the preferred classification solution for call performance.  

 

Research that has been conducted in the utilization of computational intelligent 

methods to solve various classification and regression problems across different 

industries has yielded similar results. There are problems that are resolved most 

accurately by MLP ANN (Msiza et al., 2008), (Chen et al., 2007), (Shah and Salim, 

2006), (Amendolia et al., 2003). Similarly, there are problems that are resolved most 

accurately by SVM classifiers (Ahmad et al., 2009), (Lau et al., 2009), (Nizam et al., 

2009), (Radhika and Shashi, 2009), (Tolambiya and Kalra, 2008), (Angiulli et al., 

2005), (Habtemariam et al., 2005), (Osowski et al., 2004), (Pal and Mather, 2004), 

(Bello and Dobeck, 2003), (Sadri et al., 2003), (Chan et al., 2002), (Tarantino et al., 

2002), (Karras et al., 2001), (Ramaswamy et al., 2001), (Joachims, 1998). It can be 

concluded that the best solution for the problem is dependent on the application 

problem. The findings in this research as well as previous work conducted in 

computational intelligent techniques suggest that Empirical Risk Minimization 

(ERM) as well as SRM principles are appropriate techniques in resolving 

classification problems.  However, in this research ERM principle is most appropriate 

in resolving the field ‘Say account’ classification problem. The SRM approach is 

suited in resolving the field ‘Say amount’, ‘Select beneficiary’, ‘Say confirmation’ 

classification problems as well as the call performance classification problem. 
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Chapter 8  

 
 
 
Conclusions and further work 
 
 
 

8.1. Conclusion 
 
Contact centers experience operational challenges on a daily basis. The centers have 

to determine an optimal balance between reducing average call handling times and 

improve customer satisfaction rates. They have to reduce staffing expenses as well as 

decrease average call hold times. Interactive Voice Response (IVR) technology assist 

businesses in achieving this objective by providing contact centers with cost effective 

call management, automated call handling and informational messaging. IVR systems 

can also assist contact centers manage peak call volumes, enabling businesses to 

respond to a large number of customers. IVR technology provides customers twenty 

four hours, seven days a week services as well as privacy. 

 

Speech technology such as Advanced Speech Recognition (ASR) can dramatically 

improve the IVR implementation efficiency as well as call experience. The benefits 

of speech recognition enabled self-service applications are shorter call durations, 

increased usage, natural conversation interactions and, therefore, increased customer 
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satisfaction. Due to the implementation of ASR IVR applications, businesses have 

reported an increase in IVR utilization from thirty five to seventy percent. Therefore, 

if implemented correctly, callers prefer speech-enabled IVR applications.  

 

Today, customers interact with many businesses that provide excellent services. 

These interactions set customer expectations. As a result, in order to remain 

competitive in the current market, all customer-facing technologies should be 

scrutinized to ensure that these implementations support business service strategies 

and, therefore, deliver the expected, if possible, preferred customer experience.  

 

Best practices have stated that businesses should evaluate the performance of the IVR 

applications as the business would increase Customer Service Agent (CSA) 

productivity, quality and call resolution. Businesses should have the capabilities to 

measure the IVR system performance from the perspective of the caller; the influence 

the automated application has on accomplishing the objective of the customer. 

Business analytics for IVR can provide contact centers with these essential 

capabilities.  

 

This research entails the development of such a business analytics for IVR solution. 

The objectives of this research as stated in Chapter 1, section 1.4 were to: 

 

1 Design a business analytics for IVR solution based on computational 

intelligence to assist contact centers in determining IVR application 

performance in relation to caller experience.  

 

2 Develop a component within the proposed business analytics for IVR 

solution that assists contact centers to compute implementation detail 

performance indicators using computational intelligent techniques such as 

Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and 
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Support Vector Machine (SVM). As a result, to provide IVR application 

developers with the capability to identify areas of improvement rapidly.  

 

3 Utilizing ANN, FIS and SVM to develop a component within the 

proposed business analytics for IVR solution that provides contact centers 

with the capabilities of determining the complete call performance. 

 

4 Create an ensemble of classifiers for each of the proposed components. 

 

5 Compare the classifiers implemented to determine the superior approach 

for this application problem. 

 

These objectives have been achieved. Chapter 2 examines the computational 

intelligence methodologies utilized in the development of the business analytics for 

IVR solution. Chapter 3 details the design of the call classification system developed 

for a pay beneficiary IVR application. Chapter 4, Chapter 5 and Chapter 6 detail the 

implementation of the call classification system components utilizing ANN as well as 

Genetic Algorithm (GA) solutions, FIS and SVM Artificial Intelligence (AI) 

techniques. Chapter 7 details the implementation of an ensemble of classifiers 

solution. The chapter also examines the results achieved by the methods considered to 

identify the superior techniques.  

 

The proposed business analytics for IVR solution consisted of two components. 

These components were designed to provide the contact center as well as IVR 

application developers with business intelligence performance metric levels such as 

customer satisfaction, call containment, task completion, efficiency and usability.  

 

The field classification component employed classifiers that were utilized to 

categorize caller behaviour at a field within the IVR automated applications into 

specific interaction classes. These interaction classes were designed to assist 
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developers to determine implementation detail performance indicators. Field transfer 

reason, hang-up reason, recognition level duration and difficulty attempt field 

performance interaction classes provide IVR application developers with the 

capabilities to measure efficiency as well as usability for each task or field within the 

self-service applications. The experienced caller and field performance interaction 

classes provide the capabilities to quantify caller satisfaction. 

 

In order to facilitate rapid improvement of IVR applications with regards to caller 

experience, these field performance interaction classes can be used by developers to 

identify the modules that experienced unwanted caller behaviour. Utilizing the field 

interaction classes, IVR developers can determine the modules that experienced the 

largest number of transfers to Customer Service Agents (CSA) or the largest number 

of transfers to Dual Tone Multi Frequency (DTMF) due to difficulties. As a result, 

the field classification component provides developers with the capabilities to define 

specific performance indicators to assist in determining areas within the self-service 

application that requires improvement.  

 

The objective of the call performance classification component is to evaluate the 

complete customer interaction with the self-service application in relation to caller 

behaviour. The component utilizes the field performance interaction classes to 

achieve this. Caller performance and experienced caller output classes provide the 

contact center with the capabilities to quantify customer satisfaction in relation to the 

complete call. Self-service level and caller disconnect transferred call performance 

output classes enable the ability to determine call containment, task completion as 

well as usability metrics. Speech-enabled level output class provides further 

implementation details for developers to utilize. 

 

The computational intelligent techniques considered in this research yielded highly 

accurate field and call performance classifiers. Field ‘Say account’, ‘Say amount’, 
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‘Say confirmation’ and ‘Select beneficiary’ as well as call performance classifiers 

were developed. 

 

The MLP ANN and RBF ANN implementation process entailed determining the 

optimal number of hidden nodes. Binary and real coded GA solutions that employed 

normalized geometric ranking as well as tournament selection functions were used to 

compute the optimal number of hidden nodes. Computational efficiency and quality 

of solution were used to evaluate the performance of the GA solutions. These GA 

solutions yielded accurate MLP and RBF ANN classifiers. However, the field and 

call performance MLP ANN classifiers resulted in more accurate solutions. In order 

to improve the call performance RBF ANN accuracies, the classification threshold 

has been optimized. This process did result in an improvement in accuracy of 

approximately eight percent.  

 

The FIS classifiers were developed by initially identifying the cluster radius that 

resulted in the most accurate field and call performance classifications. Thereafter, 

the thresholds used to interpret these classifications were optimized. The accuracy of 

the field FIS classifiers did dramatically improve. However, the 0.5 classification 

threshold proved to be the optimal for the call performance FIS classifier. 

 

The SVM development involved the identification of the SVM kernel function that 

yielded the most accurate results. The polynomial kernel function resulted in the most 

accurate field ‘Say account’ and ‘Say amount’ classifiers. However, the RBF kernel 

function provided to be most appropriate for the field ‘Select beneficiary’ and ‘Say 

confirmation’ classifiers. The linear kernel function is most appropriate for the 

classification of call performance. 

 

Ensemble of field classifiers, consisting of the most accurate MLP ANN, RBF ANN 

and SVM classifiers has also been developed. Ensemble of call performance 

classifiers, consisting of the most accurate FIS, MLP ANN and SVM classifiers has 
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also be implemented. Accuracy, sensitivity and specificity performance metrics were 

computed and compared for the computational intelligent solutions.  

 

MLP classifier solution is the preferred classification solution for the field ‘Say 

account’, achieving an accuracy of 95.13%. Due to the ensemble of field classifiers 

and the MLP classifier solutions yielding similar performance metrics, these are 

preferred classification approaches for the ‘Say amount’ field. The ensemble of field 

‘Say amount’ classifiers and field ‘Say amount’ MLP classifier were 92.61% and 

91.99% accurate, respectively. The ensemble of classifiers and SVM classifier are the 

preferred classification solutions for the ‘Select beneficiary’ and ‘Say confirmation’ 

field. These solutions were 96.22% and 96.44% accurate for field ‘Select beneficiary’ 

classification, respectively. However, in the classification of ‘Say confirmation’ caller 

field interaction, these solutions were 90.97% and 90.95% accurate, respectively. The 

ensemble of call performance classifiers is the preferred classification solution for 

call performance, yielding an accuracy of 99.25%. 

 

The Empirical Risk Minimization (ERM) principle is employed by MLP ANN, RBF 

ANN and FIS solutions. This principle is concerned with reducing the training error. 

The Structural Risk Minimization (SRM) principle entails optimizing the training 

error as well as the classifier capacity. It can be concluded that both the Empirical 

Risk Minimization (ERM) and Structural Risk Minimization (SRM) principles are 

appropriate techniques in resolving the classification problems considered in this 

research. Specifically, the ERM principle is most appropriate for the field ‘Say 

account’ classification problem. The SRM principle is ideal in resolving the field 

‘Say amount’, ‘Select beneficiary’, ‘Say confirmation’ classification problems as well 

as the call performance classification problem. 
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8.2. Further work and recommendations 

 
This research entailed the development of a call classification system for a pay 

beneficiary self-service IVR application. The proposed system consisted of a field 

and call performance classification component. The field classification component 

comprised of field ‘Say account’, ‘Say amount’, ‘Select beneficiary’ and ‘Say 

confirmation’ classifiers.  

 

During this research ANN, specifically MLP and RBF feed-forward structured field 

as well as call performance classifiers were developed. FIS as well as SVM field and 

call performance classifiers were also implemented. Ensemble of classifier solutions 

were also developed for the field and call performance classification components.  

 

In order to further this research, investigations into Artificial Intelligence (AI) 

techniques such as Gaussian Mixture Models (GMM) is proposed. These experiments 

would assist in identifying additional computational intelligent techniques that may 

prove to be appropriate in resolving these classification problems. Hybrid techniques 

that use a combination of AI techniques such as Fuzzy Support Vector Machines 

(FSVM) and hybrid MLP-SVM are also proposed. Furthermore, to improve the 

classification accuracy of the SVM classifiers, optimization techniques such as GA 

solutions should be utilized to optimize the SVM kernel parameters. It is anticipated 

that these investigations will result in improvements in the accuracy of field and call 

performance classifications. 

 

In order to increase the capabilities of the call classification system, transcribed field 

utterances should be introduced to the field classification component. Field utterances 

contain recordings of actual caller responses to individual automated queries. When 

these utterances are transcribed, additional information that assists in capturing actual 

caller interaction such as coughing, sneezing and background noise is also included. 

Examples of background noise are people talking around the caller, music from a 
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radio that is in the vicinity of the caller and dogs barking within the surroundings of 

the caller. 

 

An additional classifier should be implemented within this component to interpret the 

transcribed field utterances. The classifier would determine whether the response of 

the caller contained valid words that the IVR application accommodates. 

Furthermore, the classifier would also indicate, using the information captured in the 

transcription, whether or not the caller field interaction comprised of interference 

such as background noise that may adversely affect ASR. Figure 8.1 illustrates the 

field utterance classifier. 

 

The transcribed field utterances would enable the system to determine the reason for 

the difficulties such as no matches and no inputs experienced within the call. The 

transcribed utterances would assist in determining whether the difficulties 

experienced within a call are due to the IVR application, the caller response or the 

caller environment. For example, if the transcriptions indicate that the caller sneezed 

after responding with a valid phrase, the reason for the difficulty experienced is due 

to caller sneezing and therefore due to the caller. However, if the caller did not sneeze 

and a difficulty such as a no match is experienced, the difficulty experienced is due to 

the IVR application. This would also improve the ability of the call classification 

systems to determine the reason for caller behaviour such as transfer to DTMF (Dual 

Tone Multi Frequency), transfer to Customer Service Agent (CSA) and caller 

disconnect. The outputs of the field utterance classifier would be utilized by the field 

classifier to compute the reason for difficulties.  
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Figure 8.1: Field transcription classifier 

 
In reality, there are callers that access several self-service applications within a single 

call to an IVR. As a result, it is proposed that the processes followed in this research 

to create the call classification system be employed to develop classification systems 

for self-service applications such as ‘Inter-account transfers’ and ‘Balance enquiry’. 

Thereafter, to provide a complete multi-application call classification, a new 

component should be added to the system. This component should utilize the call 

performance output classes of each call classification system to provide complete 

multi-application call performance metrics. It is anticipated that this component will 

enable the contact centers to compare performance of various self-service processes 

within their IVR solutions. Figure 8.2 illustrates the proposed system. 

 

It has been proposed in this research that the field interaction classes and call 

performance classes provide valuable insight into caller behaviour for IVR 

application developers as well as the contact center. In order to determine and 

identify further output classes, it is recommended that this system be deployed within 

an actual contact center for several months. Thereafter, an interview should be 

conducted involving the users of the system to determine future enhancements.  
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Figure 8.2: Proposed complete call classification system 

 

It is also recommended that this system be developed for IVR applications deployed 

in various diverse industries such as entertainment, travel and logistics. Thereafter, as 

mentioned above, the call classification system should be deployed within these 

contact centers to determine the actual value the system provides to IVR application 

developers and contact center analysts. 
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Abstract. Accurate classification of caller interactions within Interactive Voice 
Response systems would assist corporations to determine caller behaviour 
within these telephony applications. This paper proposes a classification system 
with these capabilities. Fuzzy Inference Systems, Support Vector Machine and 
ensemble of field classifiers for a pay beneficiary application were developed. 
Accuracy, sensitivity and specificity performance metrics were computed and 
compared for these classification solutions. Ideally, a field classifier should 
have high sensitivity and high specificity. The Support Vector Machine field 
classifiers are the preferred models for the ‘Say account’, ‘Select beneficiary’ 
and ‘Say confirmation’ fields as these solutions yield the best performance 
results. However, the ensemble of field classifiers is the most accurate for the 
‘Say amount’ field. 

1   Introduction 

Call centers experience operational challenges on a daily basis. The centers have to 
determine an optimal balance between reducing average call handling times and 
improve customer satisfaction rates. They have to reduce staffing expenses as well as 
decrease average call hold times. 

Interactive Voice Response (IVR) systems can assist in resolving these challenges 
by providing a convenient, reliable as well as repeatable caller experience. An IVR 
system is an automated telephony system that interacts with callers, gathers relevant 
information and routes calls to the appropriate destinations [1].  The inputs to the IVR 
system can be voice, Dual Tone Multi-Frequency (DTMF) key-pad selection or a 
combination of the 2. IVR systems can provide appropriate responses in the form of 
voice, fax, callback, e-mails and other media [1]. An IVR system solution may consist 
of telephony equipment, software applications, databases and supporting 
infrastructure. 

However, there are many IVR systems that have application design problems or 
are configured poorly that result in caller frustration when calling the system. An 
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example of a cause of caller frustration would be an IVR application that does not 
provide the caller sufficient time to respond to a prompt. Due to this, the system does 
not interpret the caller responses correctly. The caller experience is poor and this 
would probably result in a caller disconnect. 

The aim of this research is to develop a field classification application, using 
computational intelligent methods, which could assist companies in quantifying caller 
behaviour within their IVR systems. It is anticipated that this application would be 
used in conjunction with other customer behaviour analysis techniques such as 
listening to recorded calls. As a result, this application should be used to confirm the 
system performance in relation to customer interaction. 

IVR applications are developed in Voice Extensible Markup Language (VXML). 
VXML applications are voice-based dialog scripts that consist of form or dialog 
elements. The form or dialog elements are used to group input and output sections 
together. A field element is used to obtain and interpret user input information. As a 
result, the form or dialog elements contain field elements [2]. 

The classification system developed categorizes caller behaviour at a field within 
the IVR applications into specific interaction classes. As a result, these interaction 
classes can assist in determining trends of caller behaviour within the self service 
systems. For example, the field classification application can identify calls where the 
automated speech recognition at a particular field is low. Thereafter, analysts can 
listen to a sample of these calls and determine the reason for this. The field 
classification system can also identify the fields that resulted in the majority of the 
callers transferring to a Customer Service Agent (CSA) or caller disconnecting due to 
difficulties experienced. 

In order to develop such an application, the classification of data must be accurate. 
This paper compares field classifiers that were developed utilizing Support Vector 
Machine (SVM) and Fuzzy Inference System (FIS) techniques. Ensembles of 
classifiers were also developed. 

Support Vector Machines (SVMs) perform well for modeling challenging high-
dimensional data. SVMs have been used successfully in text mining [3], image 
mining [4], bioinformatics [5] and information fusion [6]. SVM performance has been 
demonstrated to be superior to the performance of decision trees, neural networks and 
Bayesian techniques [3][5][6]. 

A fundamental method in data mining and pattern recognition is clustering of data. 
Fuzzy clustering involves the natural grouping of data in a large data set and provides 
a basis for constructing rule-based fuzzy model [7]. Fuzzy c-means, mountain 
clustering, subtractive clustering and entropy-based fuzzy clustering are among the 
fuzzy clustering algorithms used. In this paper we are interested in subtractive 
clustering.  

The classification of data into various classes has been an important research area 
for many years. ANNs have been applied to pattern classification [8]. Research has 
also been conducted on fuzzy classification. This resulted in many algorithms, such as 
fuzzy K-nearest neighbour [9] and fuzzy c-means [10], being applied to classification 
problems. Fuzzy systems constructed using genetic algorithms have been utilized 
[11]. Fuzzy neural networks have also been employed in pattern classification 
applications [12]. 
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SVMs have been applied to multi-category classification problems [13]. These 
classification tasks have also been implemented by combining multiple simpler 
specialized classifiers [14]. 

The sections to follow examine the caller behaviour classification system as well as 
its implementation methodology. The paper ends with the comparison of the various 
field classifiers developed and the selection of the superior networks. 

2   The Developed System 

As the developed system is to be used to identify trends of caller behaviour at a field 
within the IVR VXML applications, the system is trained based on data extracted 
from IVR log event files. These files are generated by the IVR platform as specific 
events occur during a call to the system. Events such as call begin, form enter, form 
select, automatic speech recognition events, transfer events and call end events are 
written to the logs [15]. 

Table 1 shows the inputs and outputs of the field classification system. These 
specific inputs have been selected to characterize the caller experience at a field 
within a VXML application. The outputs of the classifiers summarize the caller field 
behaviour through the use of interaction classes. 

The confidence input illustrates the IVR speech recognition probability.  The value 
is a percentage. The larger the percentage, the greater the probability the system 
interpreted the caller successfully. 

A caller may answer a question the VXML application prompts with a response the 
application does not accommodate. These events are represented by the no match 
inputs. In general, most VXML applications accommodate 3 no match events per 
field. On a third no match event, the call is transferred to a DTMF field. If the caller 
fails to complete the DTMF field successfully on attempt 1, the call is transferred to a 
CSA. The same process is used for the third no input and maximum speech time out 
events. The no match field classifier inputs assist in identifying callers that 
misunderstood the VXML prompt as well as unique responses that the VXML 
application can use to improve field recognition coverage. 

In response to a prompt, a caller may remain silent. These events are represented 
by the no input parameters. VXML applications normally accommodate 3 no input 
events on each field. These input parameters assist in identifying callers that were 
confused when prompted with the automated application question. As a result, the 
caller remained silent.  

Callers may reply to VXML applications by talking beyond the allocated timeout 
period of the field. These events are represented by the maximum speech timeout 
input parameters of the field classifiers [16]. Maximum speech timeout input 
parameters are important as they assist in determining whether the timeout periods are 
adequate for callers to complete their responses. 

Barge-in input parameters illustrate whether or not a caller interrupted the 
application while the automated question prompt played.  Caller disconnects, transfer 
to DTMF, transfers to Customer Service Agents (CSAs) and System errors are 
represented by the hang-up, DTMF transfer, transfer to service agent and system error 
input parameters, respectively. These inputs can also assist in determining the level of 
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difficulty the caller experienced in the field. The duration input parameter illustrates 
the time the caller spent completing the field. Confirmation of transaction represents 
whether or not the caller verified the application recognition as being true.  

Table 1. The inputs and outputs of the field classifier 

Inputs Outputs Output interaction class 

Confidence Field performance Good, acceptable, investigate, bad 

No matches Field transfer reason Unknown, difficulty 

No inputs Field hang-up reason Unknown, difficulty 

Max speech timeouts Field difficulty attempt Attempt 1, attempt 2, attempt 3 

Barge-ins Field duration High, medium, low 

Hang-up Field recognition level High, medium, low 

Transfer to Service Agent Experienced caller True, false 

DTMF transfer   

Duration   

System error   

Confirmation of transaction   

The field performance output interaction class of the classifier will illustrate 
whether the caller behaviour is good, acceptable, investigate or bad. The field transfer 
reason and field hang-up reason interaction classes attempt to identify the motivation 
for the transfer to CSA or caller disconnect, respectively. Field difficulty attempt 
interaction class computes the number of difficulty events that occurred during the 
field interaction. The field duration as well as field recognition level classes illustrate 
3 categories of performance, low, medium and high. As a result, these output 
parameters will assist in characterizing the caller experience at a VXML field. 

Experienced caller output parameter categorizes whether or not the caller is a 
regular user of the application. In determining the number of experienced callers, the 
contact center can determine the usage of the application. 

3   Selection and Preprocessing of Data 

The data utilized in developing the classifiers is based on data extracted from IVR log 
event files. A business intelligence solution that involved Extract, Transform and 
Load (ETL) processes was created to extract and compute information such as 
recognition confidence values, duration values and call completion information. This 
information was stored within a database and was then manipulated utilizing specific 
rules to create the data sets. Rules such as if no hang-up, transfer to CSA, DTMF 
transfer, system error, no inputs, no matches or maximum speech timeouts occur, but 
the confidence level at the field is greater than 80%, the duration to complete the field 
is less than the average field duration and the field confirmation is true, the field 
performance interaction class would be computed as ‘good’, were followed. 
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No match, no input and maximum speech timeout information is presented to the 
field classifiers, using a binary notation. These inputs are presented by 3 digit binary 
words. For example, if a no match 1 and a no match 2 occur at a field, the binary 
notation will be ’011’. A similar binary notation is employed for the no input and 
maximum speech timeout classifier inputs. The barge-in, hang-up, transfer to CSA, 
DTMF transfer, system error and confirmation of transaction input information were 
represented by bit binary words. A similar binary notation scheme has also been 
utilized to interpret the interaction classes outputted.  

The confidence and duration input parameters of the classifiers were 
preconditioned by normalizing the data. Normalizing the data entails manipulating the 
data sets such that the values within the sets are between 0 and 1. Normalization is 
accomplished by acquiring the minimum and maximum values within the data sets. 
These values are then utilized to compute the normalized values. 

The research conducted entailed the creation of ‘Say account’, ‘Say amount’, 
‘Select beneficiary’ and ‘Say confirmation’ field classifiers. Caller behaviour per field 
is unique. For example, at a ‘Say confirmation’ field the caller is required to say ‘yes’ 
or ‘no’. However, the caller is requested to say the account name at the ‘Say account’ 
field. As a result, the duration to complete the VXML application field is much 
shorter at the confirmation field. Therefore, each classifier is trained with data 
relevant to the field. 

In order to ensure that over-fitting and under-fitting were avoided, the data has 
been divided into 3 sets. The data is divided into training, validation and test sets. The 
training data set is used to train the algorithms to find the general classification groups 
within the data. The validation data set is used to assess the classifier and the test data 
is used to confirm the classification capability of the developed models. 

4   Support Vector Machine Field Classifiers 

SVM is a reputable computational intelligent technique for resolving classification 
problems. SVMs have many advantages in solving small sample size, nonlinear and 
high-dimensional pattern recognition problems [17]. SVM utilizes support vector 
(SV) kernel functions to map the data in the input space to a higher dimensional 
feature space where the problem can be processed in a linear form [17]. As a result 
the kernel function is a key technology of SVM. The type of kernel function will 
affect the learning ability and generalization ability. Different kernel functions will 
construct different SVM classifiers. 

This research considers the linear, polynomial, Radial Basis Function (RBF) and 
sigmoid kernel functions. Linear kernel function is suitable to problems where the 
number of training instances is less than the number of features within the data [18]. 
RBF kernel function has the ability to accommodate non-linear relationships between 
input instances and output classes. The sigmoid kernel function behaves similar to the 
RBF kernel functions for certain parameters. The RBF kernel function has less 
hyperparameters than the polynomial kernel function [18]. For detailed information 
on these kernel functions refer to [19]. 

SVM implementation process involved creating field classifiers that employed the 
kernel functions mentioned above. The validation and test data set accuracies of the 
resulting SVM classifiers were then compared to determine the kernel function most 
suitable for this application. Since this is a classification implementation, a confusion 
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matrix is employed to identify the number of true and false classifications that are 
generated by the model developed. This is then utilized to compute the true accuracy 
of the classifiers, using the accuracy equation stated in [8].  

Good results were obtained that yielded field classifiers with excellent 
generalization capabilities.  Table 2 illustrates the results of the SVM implementation. 
It is evident that the polynomial kernel function resulted in the most accurate ‘Say 
account’ field classifier. The linear and RBF kernel function classifiers were only 2% 
less accurate on unseen ‘Say account’ data. Similarly, the sigmoid kernel function 
‘Say amount’ classifiers were most accurate. The linear kernel function proved to be 
most appropriate for the ‘Select beneficiary’ and ‘Say confirmation’ field classifiers. 

The SVM field classifiers created employed a classification threshold value of 0.5. 
This threshold value of 0.5 proved to be adequate for the implementations, resulting 
in 90% accurate classifications on the training, validation and test data sets. 

Table 2. Results of support vector machine implementation 

Kernel function Field classifier Accuracy (Validation) Accuracy (Test) 

‘Say account’ 0.9688 0.8814 

‘Say amount’ 0.9068 0.9691 

‘Select beneficiary’ 0.9447 0.9453 
Linear 

‘Say confirmation’ 0.9630 0.9029 

‘Say account’ 0.9047 0.9052 

‘Say amount’ 0.8521 0.8473 

‘Select beneficiary’ 0.8756 0.8418 
Polynomial 

‘Say confirmation’ 0.9005 0.8583 

‘Say account’ 0.9627 0.8832 

‘Say amount’ 0.9085 0.9401 

‘Select beneficiary’ 0.8950 0.8594 
RBF 

‘Say confirmation’ 0.9257 0.8994 

‘Say account’ 0.9519 0.8776 

‘Say amount’ 0.9093 0.9263 

‘Select beneficiary’ 0.8939 0.8571 
Sigmoid 

‘Say confirmation’ 0.9064 0.8703 

5   Fuzzy Inference System Field Classifiers 

The FIS utilized in the development of the field classifiers, employed subtractive 
clustering to generate the required membership functions and set of fuzzy inference 
rules. The objective of clustering is to locate “natural classes” in a set of given inputs 
such that similar inputs are grouped together in the same class [20]. 

The cluster radius indicates the range of influence of a cluster. A small cluster 
radius results in small clusters in the data and, therefore, many fuzzy rules. Large 
cluster radii yield few large clusters in the data and, hence, fewer fuzzy rules [20]. 
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The cluster radius has been optimized by minimizing an error function that mapped 
the radius to the accuracy of the developed inference systems. This process was 
performed on the validation data sets. 

The optimization process followed entailed the construction of various inference 
systems with the cluster radius ranging from 0.01 to 1. During the cluster radius 
optimization, classification threshold of 0.5 has been employed. Once the optimal 
cluster radii have been identified, the classification threshold is optimized. 

 Table 3 illustrates the cluster radii that resulted in the most accurate field 
classifiers. FIS ‘Say account’ field classifier proved to the most accurate, yielding an 
accuracy of 78.00% on validation data set. However, the FIS ‘Say amount’ classifier 
is the least accurate, producing an accuracy of 63.11% on validation data set. 

In order to improve the accuracy of the FIS field classifiers, the classification 
threshold is optimized. The classification threshold is optimized by minimizing an 
error function that mapped the classification thresholds to the accuracy of the 
developed classifiers. The process is performed on the validation and test data sets.  

This optimization process involved varying the classification threshold from 0.1 to 
0.5 in iterations of 0.01. During this process, the optimized cluster radii identified 
above has been used. For each of the threshold values the accuracy of the FIS is 
calculated using the accuracy equation  mentioned in [8]. 

Table 3 illustrates the threshold values that resulted in the largest accuracy value 
for the validation and test data sets. It is evident that the validation data set accuracy 
of the field classifiers has improved. The FIS ‘Say amount’ classifier has become the 
most accurate with an accuracy of 82.54% on test data. The least accurate is the FIS 
‘Select beneficiary’ classifier, yielding an accuracy of 77.82% on test data. 

Table 3. Results of FIS optimization 

Radius  Threshold Field classifier Accuracy (Validation) Accuracy (Test) 

Cluster radius optimization 

0.16 0.50 ‘Say account’ 0.7800 0.8723 

0.26 0.50 ‘Say amount’ 0.6311 0.9566 

0.40 0.50 ‘Select beneficiary’ 0.7288 0.9339 

0.78 0.50 ‘Say confirmation’ 0.7074 0.8674 

Classification threshold optimization 

0.16 0.16 ‘Say account’ 0.8068 0.8077 

0.26 0.15 ‘Say amount’ 0.8265 0.8254 

0.40 0.11 ‘Select beneficiary’ 0.7843 0.7782 

0.78 0.21 ‘Say confirmation’ 0.7951 0.7947 

6   Comparison of the Support Vector Machine and Fuzzy 
Inference System Field Classifiers 

It is evident, from the investigations conducted, that the SVM ‘Say account’, SVM 
‘Say amount’, SVM ‘Select beneficiary’ and SVM ‘Say confirmation’ field 



206 P.B. Patel and T. Marwala 

classifiers are more accurate than the corresponding FIS classifiers by 
approximately 10%, 8%, 16% and 11%, respectively. The 3 most accurate SVM 
field classifiers were used in ensembles of classifiers. The outputs of classifiers 
that employed these kernel functions were fed into a voting system. The voting 
system determined the final output of the ensemble. If the majority of the 
classifiers within the ensemble categorized an output into a certain class, the 
voting system would generate an output as the class. If all of the models within  
the ensemble classified an output into different classes, the voting system would 
classify the output of the ensemble as undecided. 

In relation to this application, the ensemble does not always result in a more 
accurate solution. The ‘Say account’, ‘Say amount’, ‘Select beneficiary’ and ‘Say 
confirmation’ ensemble of field classifiers produced validation data accuracy 
values of 96.16%, 90.88%, 89.66% and 92.68%, respectively. These ensembles 
achieved test data accuracy values of 88.04%, 94.45%, 86.09% and 89.84%, 
respectively.  

The most accurate SVM classifier outperforms the ensemble on validation data. 
This is true for all fields. The ‘Say account’ ensemble of field classifiers is 6% more 
accurate on validation data. However, the SVM ‘Say account’ field classifier 
produces similar accuracy values on both data sets. This demonstrates good 
generalization capabilities.  

The ‘Say amount’ ensemble of classifiers is only 0.05% more accurate on 
validation data. The ‘Say amount’ field classifier is almost 2% less accurate on test 
data. As a result, the ‘Say amount’ ensemble of classifiers is appropriate for this 
application.  The FIS classifiers are outperformed by the ensemble of SVM models.  

In order to confirm the accuracy of the various classifiers developed, sensitivity 
and specificity were calculated using the equations in [21]. In this research, sensitivity 
is defined as the probability that the field classifier categorizes a set of caller 
behaviour inputs to the correct specific interaction classes. Specificity is defined as 
the probability that the classifier indicates that a set of caller behaviour inputs does 
not correctly belong to specific interaction classes. The former measure describes the 
effectiveness of the classifier at categorizing interaction classes correctly, while the 
latter characterizes the performance of the classifier at discarding the other interaction 
classes.   

Table 4 illustrates these performance metrics for the most accurate FIS, SVM and 
ensemble of SVM field classifiers. Ideally, a field classifier should have high 
sensitivity as well as high specificity. This is evident in the SVM and ensemble of 
SVM field classifiers performance metrics. 

The SVM ‘Say account’ field classifier yields similar performance results on both 
validation and test data. This is not the case for the ensemble. As a result, the SVM 
‘Say account’ field classifier has good generalization capabilities and is the preferred 
model for this field. The ensemble is more accurate, has greater sensitivity and 
specificity values for the ‘Say amount’ test data. Therefore, the ensemble of SVM 
‘Say amount’ field classifiers is the preferred model. The SVM ‘Select beneficiary’ 
and ‘Say confirmation’ field classifiers are the preferred models for these fields due to 
the best performance metrics achieved. 
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Table 4. Performance metrics of field classifiers 

Field 

classifier 
Method Sensitivity Specificity Sensitivity Specificity 

  Validation Test 

SVM (Polynomial) 0.8655 0.9457 0.8766 0.9347 

FIS 0.7200 0.9943 0.6615 0.9863 ‘Say account’ 

Ensemble 0.9439 0.9798 0.8042 0.9638 

SVM(Sigmoid) 0.8681 0.9524 0.8948 0.9589 

FIS 0.7022 0.9860 0.6847 0.9951 ‘Say amount’ 

Ensemble 0.8623 0.9577 0.9180 0.9717 

SVM (Linear) 0.9151 0.9754 0.9159 0.9756 

FIS 0.6129 0.9900 0.6097 0.9931 
‘Select 

 beneficiary’ 
Ensemble 0.8468 0.9493 0.7795 0.9509 

SVM (Linear) 0.9498 0.9764 0.8523 0.9564 

FIS 0.7138 0.9958 0.6576 0.9604 
‘Say  

confirmation’ 
Ensemble 0.8944 0.9603 0.8439 0.9564 

7   Conclusion 

This research entailed the development of a field classification application. ‘Say 
account’, ‘Say amount’, ‘Say confirmation’ and ‘Select beneficiary’ field classifiers 
were created using FIS, SVM and ensemble of classifiers. 

The implementation process entailed identifying the SVM kernel function that 
yielded the most accurate results. The polynomial and sigmoid kernel function 
resulted in the most accurate ‘Say account’ and ‘Say amount’ field classifiers, 
respectively. However, the linear kernel function provided to be most appropriate for 
the ‘Select beneficiary’ and ‘Say confirmation’ field classifiers. 

The FIS classifiers were developed by initially identifying the cluster radius that 
resulted in the most accurate model. Thereafter, the thresholds used to interpret the 
classification were optimized. The accuracy of the FIS classifiers did improve, but the 
SVM approach has been found to be more accurate. 

Ensemble of field classifiers, consisting of the 3 most accurate SVM classifiers, 
has also been developed. Performance metrics were computed and compared for the 
computational intelligent solutions. The SVM and ensemble of field classifiers 
achieved high accuracy, sensitivity and specificity. The SVM field classifiers are the 
preferred models for the ‘Say account’, ‘Select beneficiary’ and ‘Say confirmation’ 
fields as they yield the best performance results. It has also been determined that the 
ensemble of field classifiers is the most accurate for the ‘Say amount’ field. 
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Abstract. This paper employs pattern classification methods for as-
sisting contact centers in determining caller interaction at a ’Say ac-
count’ field within an Interactive Voice Response application. Binary
and real coded genetic algorithms (GAs) that employed normalized geo-
metric ranking as well as tournament selection functions were utilized to
optimize the Multi-Layer Perceptron neural network architecture. The
binary coded genetic algorithm (GA) that used tournament selection
function yielded the most optimal solution. However, this algorithm was
not the most computationally efficient. This algorithm demonstrated ac-
ceptable repeatability abilities. The binary coded GA that used normal-
ized geometric selection function yielded poor repeatability capabilities.
GAs that employed normalized geometric ranking selection function were
computationally efficient, but yielded solutions that were approximately
equal. The real coded tournament selection function GA produced clas-
sifiers that were approximately 3% less accurate than the binary coded
tournament selection function GA.

1 Introduction

This research focuses on a pattern classification problem utilized within an appli-
cation that could assist contact centers in determining customer activities within
their Interactive Voice Response (IVR) systems. During the last 5 years, the
South African contact centre industry has experienced exceptional growth [1].
In order to gain a competitive advantage, contact centers are to fulfill customer
expectations efficiently with informed responses and actions while discovering
techniques to reduce overall cost of providing such a service [2]. It is therefore
essential that contact centers evaluate the performance of their solutions in re-
lation to customer interaction. This will assist in quantifying the self-service
customer perception.

Customers want to resolve problems on their first call. They want convenient
and reliable information fast. IVR systems can provide this. An IVR system
is an automated telephony system that interacts with callers, gathers relevant
information and routes calls to the appropriate destinations [2]. The inputs to the
IVR system can be voice, Dual Tone Multi-Frequency (DTMF) keypad selection
or a combination of the 2.

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 728–735, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The aim of this research is to develop a field classification application, using
computational intelligent methods, which could assist companies in quantifying
customer activities within their IVR systems.

IVR applications are developed in Voice Extensible Markup Language (VXML).
VXML applications are voice-based dialog scripts that consist of form or dia-
log elements. The form or dialog elements are used to group input and output
sections together. A field element is used to obtain and interpret user input
information. As a result, the form or dialog elements contain field elements [3].

The classification system developed categorizes caller behaviour at a field
within the IVR applications into specific interaction classes. As a result, these
interaction classes can assist in determining trends of caller behaviour within the
self-service systems. For example, the field classification application can identify
areas within the self-service applications that experienced the most caller dis-
connects. Thereafter, analysts can listen to a sample of these calls and determine
the reason for this. The field classification system can also identify the fields that
resulted in the majority of the callers transferring to a Customer Service Agent
(CSA) due to difficulties experienced.

In order to develop such an application, the classification of data must be
accurate. This paper details the development of artificial neural network (ANN)
field classifiers using Multi- Layer Perceptron (MLP) neural network and genetic
algorithms (GAs). GAs employing floating-point and binary representations are
considered. Detailed explanations on these ANN architectures can be found
in [4].

GAs are known to be robust optimization procedures based on the mechanism
of the natural evolution. GAs have the capability of locating a global optimum
as these procedures do not use any derivative information and GAs search from
multiple points. In traditional GAs, binary representation has been used for
chromosomes. Floating-point representation, real-coded GAs, of parameters as
a chromosome has also been used [5].

The classification of data into various classes has been an important research
area for many years. Artificial neural networks (ANNs) have been applied to
pattern classification [6][7][8]. Fuzzy systems [9] and neural networks constructed
using GAs have been utilized [10].

The section to follow provides a brief explanation of the field classification sys-
tem. Thereafter, the implementation methodology is described. The paper ends
with the comparison of the various field classifiers developed and the selection
of the superior networks.

2 The Developed System

As the developed system is to be used to identify trends of caller behaviour at
a field within the IVR VXML applications, the system is trained based on data
extracted from IVR log event files. These files are generated by the IVR platform
as specific events occur during a call to the system. Events such as call begin,
form enter, form select, automatic speech recognition events, transfer events and
call end events are captured in the logs [11].
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Table 1. The inputs and outputs of the field classifier

Inputs Outputs Output
interaction class

Confidence Field performance Good, acceptable,
bad

No matches Field transfer reason Unknown, difficult
No inputs Field hang-up reason Unknown, difficult
Max speech timeouts Field duration High, medium, low
Barge-ins Field recognition level High, medium, low
Hang-ups
Transfer to Customer Service Agent
Duration

Table 1 shows the inputs and outputs of the field classification system. These
specific inputs have been selected to characterize the caller difficulty experienced
at a field within a VXML application. The outputs of the classifiers summarize the
caller field behaviour through the use of interaction classes. The confidence input
illustrates the IVR speech recognition probability. The value is a percentage. A
caller may answer a question the VXML application poses with a response the ap-
plication did not anticipate. These events are represented by the no match inputs.
Callers may reply to VXML applications by talking beyond the allocated time-
out period of the field. These events correspond to the maximum speech timeout
input parameters of the field classifiers [12]. When a question is presented by the
automated application, a caller may remain silent. No input events represent these
occurrences. In general, most self-service applications accommodate 3 of the above
events per field. On the third attempt, if the caller is unsuccessful in completing
the field, the caller is usually transferred to a CSA. These inputs are important as
they assist in identifying difficulties experienced at the field.

The duration input parameter illustrates the time the caller consumed com-
pleting the VXML application field. The barge-in input parameter illustrates
whether or not a caller interrupted the application while the automated question
prompted played. Caller disconnects and transfers to Customer Service Agents
(CSAs) are represented by the hang-up and transfer to agent input parameters,
respectively. These inputs can also assist in determining the level of difficulty
the caller experienced in the field.

The field performance output interaction class of the classifier will illustrate
whether the caller behaviour is good, acceptable or bad. The field transfer reason
and field hang-up reason interaction classes attempt to identify the motivation
for the transfer to CSA or caller disconnect, respectively. The field duration as
well as field recognition level classes illustrate 3 categories of performance, low,
medium and high. As a result, these output parameters will assist in character-
izing the caller experience at a VXML field.

Once the field classification system has been employed to assess the perfor-
mance of various interaction areas within the VXML applications, the caller
perception of the solution can be determined. For example, after analyzing the
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outputs of the classifiers, it is determined many callers are disconnecting due
to difficulties experienced during the preliminary fields of an application, it can
be concluded that the callers are frustrated with the system. In order to reduce
the caller dissatisfaction, it would be essential to optimize the various grammars
that interpret the caller responses.

3 Implementation Methodology

The development process was divided into various stages. The remainder of this
section will elaborate on these stages of implementation The following procedure
has been pursued in the creation of the various classifiers employed:
1. Selection and pre-processing of data to be used by the classifiers.
2. Optimization of the classifier architectures using GAs.
3. Comparison of the various GAs developed and the selection of the superior
network.

3.1 Selection and Pre-processing of Data

The data utilized in developing the ANNs is based on data extracted from IVR
log event files. A parsing application that extracted information such as recogni-
tion confidence values, caller barge-in information has been utilized to generate
the data sets. This application also executed specific instructions in the creation
of the data sets. Rules such as if 3 occurrences of no inputs, no matches or
maximum speech timeouts occur within the caller interaction to a particular
field and a transfer occurs thereafter, the field transfer reason computed will be
’difficulties’ were followed.

In order to present the no match, no input and maximum speech timeout in-
formation to the field classifiers, a binary notation has been employed. These in-
puts are presented by 3 digit binary words. For example, if a no match 1 and a no
match 2 occur at a field, the binary notation will be ’011’. A similar binary notation
is employed for the no input and maximum speech timeout classifier inputs. The
barge-in, hang-up and transfer to CSA input information were represented by bit
binary words. A similar binary notation scheme has also been utilized to interpret
the interaction classes outputted. The data is divided into training, validation and
test sets. The validation data set is used to assess the network and the test data is
used to confirm the classification capability of the developed networks.

The confidence and duration input parameters of the classifiers were precon-
ditioned by normalizing the data. Due to the binary word representation utilized
to present the remaining inputs, normalization of these input parameters is not
necessary.

3.2 Optimization of Classifier Architecture Using Genetic
Algorithms

This stage of implementation involved the optimization of the ANN architec-
tures. As a result, this step of development involved the identification of the
correct number of hidden neurons that would yield the most accurate results.
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Binary and real coded GAs were employed to optimize the field classifier
architecture. Populations of MLP ANNs were generated by the GAs. Due to
the MLP ANN non-linear capabilities, they are said to be excellent universal
approximators that provide highly accurate solutions. As a result, these networks
produce very practical tools for classification and inversion problems [4].

It has been stated that a network with 1 hidden layer, provided with suffi-
cient data, can be used to model any function [4]. Therefore, the MLP ANNs
employed consisted of only 1 hidden layer. The MLP ANN hidden layer consists
of non-linear activation functions. The choice of the activation function is largely
dependent on the application of the model [4]. However, it has been found that
the hyperbolic tangent activation function offers a practical advantage of faster
convergence during training [6]. As a result, this function has been employed
within the MLP network. The most appropriate selection of the output layer
activation function for a classification problem is the logistic sigmoidal function
[6]. Therefore, this function has been employed within the output layer of the
MLP network.

An error function that mapped the number of hidden nodes to the accuracy
of the developed network was used as the evaluation function for the GAs. The
fitness of the individuals within a population was determined by calculating the
accuracy of the ANNs when presented with validation and test data sets. The
minimum value of these accuracies determined the fitness of the individual.The
outputs of the ANNs were interpreted by utilizing a classification threshold value
of 0.5. This value proved to be adequate for the MLP ANN implementations. A
confusion matrix is utilized to identify the number of true and false classifications
that are generated by the models developed. This is then used to calculate the
true accuracy of the classifiers, using the following equation:

Accuracy =

√
TP ∗ TN

(TP + FN) ∗ (FP + TN)
(1)

where
TP is the true positive (1 classified as a 1),
TN is the true negative (0 classified as a 0),
FN is the false negative (1 classified as a 0),
FP is the false positive (0 classified as a 1).

The GAs produced 25 generations of 10 MLP ANN individuals within the
population. The GAs were limited to produce MLP ANN individuals with the
number of hidden nodes between 5 and 100. Networks with hidden nodes greater
than 100 were not developed due to the generalization capabilities reducing as
the number of intermediate units increase [13].

In order to produce successive generations, the selection function determines
which of the individuals will survive to the next generation. Roulette wheel se-
lection, scaling techniques, tournament, normal geometric, elitist models and
ranking methods are examples of selection functions used [5]. The selection ap-
proach assigns a probability of selection to each individuals based on its fitness
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value. This research compares solutions produced by GAs that employ normal-
ized geometric ranking and tournament selection functions.

3.3 Comparison of the Various Genetic Algorithms and Selection of
the Superior Model

The binary and real coded GAs were compared in terms of their repeatability,
computational efficiency as well as quality of the solution.

Repeatability is defined as the number of repetitions that returned the same
optimal number of hidden nodes. Repeatability has been demonstrated by exe-
cuting 8 repetitions of the binary and real coded GAs. This investigation revealed
that the binary coded ranking selection GA returned different number of hidden
nodes with different fitness values on each execution of the algorithm. Figure
1 also illustrates that the remaining GAs returned the same number of hidden
nodes with the same fitness value for a number of the repetitions.

Computational efficiency, in this context, is defined as the number of gen-
erations the GA utilized to converge to the most optimal number of hidden
nodes. Figure 1 illustrates that, the real coded tournament selection GA is most
efficient. In the majority of the repetitions, this GA converged to an optimal
solution before 9 generations. In the majority of the investigations, the binary
coded ranking and the binary coded tournament selection GA converged to an
optimal solution before 10 generations. However, the real coded ranking selection
GA, in majority of the repetitions, converged before generation 13. Figure 1 also
illustrates that the binary coded tournament selection GA resulted in the most
accurate MLP ANNs with accuracies of approximately 96.45%. This algorithm
returned the same fitness value for 2 of the 8 repetitions. The number of hidden
nodes corresponding to this accuracy is 5. However, the algorithm converged to
this solution at generation 23.

Quality of the GA solution is the verification that the number of hidden nodes
returned by the GA is really the most optimal value. It has been determined that
5, 6, 7 and 9 number of hidden nodes resulted in the most accurate MLP classi-
fiers. This has been determined by identifying the most accurate MLP classifiers
generated from the 8 GA repetitions executed. These number of hidden nodes
were identified by the binary coded tournament, real coded ranking, binary coded
ranking and real coded tournament selection GAs, respectively. In order to de-
termine the quality of the GA solutions, MLP classifiers were created containing
these number of hidden nodes. The accuracy of these networks was determined
by using equation 1. The sensitivity and false positive ratio were also calculated
to measure the true performance of the networks. Table 2 illustrates the results
of the quality of solution investigation. As illustrated, the number of hidden
nodes that resulted in the most accurate MLP classifier is 5. This number of
hidden nodes creates a network that performs accurately on both the validation
and test data sets. As a result, the classifier has good generalization capabilities,
as compared to the other MLP classifiers that perform approximately 4% more
accurately on the test data set. The sensitivity and false positive ratio values
also support these findings.
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Fig. 1. This figure shows the Fitness vs. Generation for all 8 repetitions

Table 2. This table illustrates the various models that were created. Accuracies are
presented as percentages.

Hidden Accuracy Accuracy Hit Rate Hit Rate False Alarm False Alarm
Nodes (Validation) (Test) (Validation) (Test) Rate (Validation) Rate (Test)

5 96.36 96.80 95.02 95.12 0.023 0.015
6 93.73 98.17 90.12 97.08 0.025 0.007
7 93.68 98.00 89.98 96.75 0.025 0.007
9 93.60 97.98 89.83 96.74 0.025 0.008

4 Conclusion

This research entailed the development of a ’Say account’ field classification
system. MLP networks were used to classify caller interactions. Binary coded and
real coded GAs that utilized ranking as well as tournament selection functions
were also employed to optimize the classifier architecture.

The development methodology utilized for creating all the networks involved,
initially, pre-processing the data sets. This ensured that the classifiers would
interpret the inputs proficiently. Thereafter, the numbers of hidden nodes were
optimized utilizing the GA algorithm. This resulted in creating acceptable net-
work architecture. GA results were compared in terms of computational efficient,
repeatability and the quality of the solution. These analyses assisted in deter-
mining the algorithm that was most suited to this application and the algorithm
that yielded the most accurate classifier. Acceptable classification accuracies
were achieved. The most accurate network that illustrated excellent generaliza-
tion capabilities yielded accuracies of approximately 96%. This illustrates that
MLP ANNs are proficient in classifying field caller interaction.
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The binary coded GA that utilized tournament selection yielded the most
accurate MLP classifier. The algorithm yielded the same result on 2 of the 8
repetitions. The number of hidden nodes of 5 returned by the algorithm was
confirmed to be the optimal in the quality of the solution investigation. However,
the algorithm converged at this solution at generation 23 of 25 generations. As a
result, it can be concluded that this GA is most suited to this application in terms
of optimal solution, but it is not the most computational efficient algorithm.
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Abstract—T Accurate classification of caller interaction within 
Interactive Voice Response systems would assist corporations to 
determine caller behaviour within these solutions. This paper 
proposes an application, which employs artificial neural 
networks that could assist contact centers to determine caller 
activity within their automated systems. Multi-layer perceptron 
and Radial Basis Function neural network architectures are 
implemented as classifiers to determine caller interaction. Field 
classifiers for a pay beneficiary application were developed. ‘Say 
account’ networks were created utilizing ‘generated’ and ‘live’ 
data sources. Multi-layer perceptron networks proved 
appropriate for this application. The most accurate network 
created, 99.99%, is the ‘Say account’ classifier. The difference in 
accuracy between the ‘generated’ and ‘live’ classifiers is 
approximately 2%. However, greater development effort is 
required to implement the former. As a result, the ‘live’ data 
source methodology is preferred. T 

Keywords— neural networks, classification of data, contact 
center analytics,  Interactive Voice Response, Voice Extensible 
Markup Language 

I.  INTRODUCTION 
Research conducted for NCR Corporation, an international 

company specializing in self-service technologies, by Opinion 
Research Corporation in the United States found that customers 
spend approximately 2 days each year waiting in line for 
service [1]. Approximately 40% of the participants of the study 
were willing to utilize self-service kiosks or other self-service 
devices to reduce time consumed waiting for service [1]. 

Customers want to resolve problems on their first call to the 
contact center. They want convenient and reliable information 
fast. Interactive Voice Response (IVR) systems can provide 
this. An IVR system is an automated telephony system that 
interacts with callers, gathers relevant information and routes 
calls to the appropriate destinations [2].  The inputs to the IVR 
system can be voice, Dual Tone Multi-Frequency (DTMF) 
keypad selection or a combination of the 2. IVR systems can 
provide appropriate responses in the form of voice, fax, 
callback, e-mails and other media [2]. An IVR system solution 
may consist of telephony equipment, software applications, 
databases and supporting infrastructure. 

However, there are many companies that have IVR 
systems, which are poorly designed or implemented that result 
in caller frustration when utilizing the automated solutions [3]. 
An example of a cause of caller frustration would be a voice 

prompt that plays a long list of menu options until the caller is 
confused on what to do. As a result, the customer would 
probably end the call. 

The aim of this research is to develop a field classification 
application, using computational intelligent methods, which 
could assist companies in determining customer activities 
within their IVR systems. It is anticipated that this application 
would be used in conjunction with other customer behaviour 
analysis techniques such as listening to recorded calls. As a 
result, this application should be used to confirm the system 
performance in relation to customer interaction. 

IVR applications are developed in Voice Extensible 
Markup Language (VXML). VXML applications are voice-
based dialog scripts that consist of form or dialog elements. 
The form or dialog elements are used to group input and output 
sections together. A field element is used to obtain and interpret 
user input information. As a result, the form or dialog elements 
contain field elements [4]. 

The classification system developed categorizes caller 
behaviour at a field within the IVR applications into specific 
interaction classes. As a result, these interaction classes can 
assist in determining trends of caller behaviour within the self-
service systems. For example, the field classification 
application can identify calls where the automated speech 
recognition at a particular field is low. Thereafter, analysts can 
listen to a sample of these calls and determine the reason for 
this. The field classification system can also identify the fields 
that resulted in the majority of the callers transferring to a 
Customer Service Agent (CSA). 

In order to develop such an application, the classification of 
data must be accurate. This paper compares field classifiers that 
were developed utilizing different data sources. However, the 
trained classifiers were tested with the same ‘live’ input data 
source. 

The classification of data into various classes has been an 
important research area for many years. ANNs have been 
applied to pattern classification [5]. Research has also been 
conducted on fuzzy classification. This resulted in many 
algorithms, such as fuzzy K-nearest neighbour [6] and fuzzy c-
means [7], being applied to classification problems. Fuzzy 
systems constructed using genetic algorithms have been 
utilized [8] [9] [10]. Fuzzy neural networks have also been 
employed in pattern classification applications [11] [12] [13]. 
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Support Vector Machines have been applied to multi-
category classification problems [14]. These classification tasks 
have also been implemented by combining multiple simpler 
specialized classifiers [15] [16] [17]. 

The section to follow examines the field classification 
system as well as its implementation methodology. The paper 
ends with the comparison of the various field classifiers 
developed and the selection of the superior networks. 

II. THE DEVELOPED SYSTEM. 
As the developed system is to be used to identify trends of 

caller behaviour at a field within the IVR VXML applications, 
the system is trained based on data extracted from IVR log 
event files. These files are generated by the IVR platform as 
specific events occur during a call to the system. Events such as 
call begin, form enter, form select, automatic speech 
recognition events, transfer events and call end events are 
captured in the logs [18]. 

Table I shows the inputs and outputs of the field 
classification system. These specific inputs have been selected 
to characterize the caller difficulty experienced at a field within 
a VXML application. The outputs of the classifiers summarize 
the caller field behaviour through the use of interaction classes. 

The confidence input illustrates the IVR speech recognition 
probability.  The value is a percentage. The larger the 
percentage, the greater the probability the system interpreted 
the caller successfully. 

A caller may answer a question the VXML application 
prompts with a response the application did not anticipate. 
These events are represented by the no match inputs. In 
general, most VXML applications accommodate 3 no match 
events per field. On the third attempt, if the caller replies with 
another response that the application does not accommodate, 
the caller is usually transferred to a CSA.  The no match input 
parameters to the field classification system is important as 
they can be utilized to assist in determining the number of 
callers that understood the VXML prompt correctly as well as 
the number of callers that misinterpreted the question 
prompted. 

A caller may not answer a question presented by the 
automated application. When the application anticipates a 
response, the caller remains silent. These events are represented 
by the no input parameters. VXML applications normally 
accommodate 3 no input events on each field. A transfer to 
CSA usually occurs after the third no input event. These input 
parameters are also important as they assist in identifying 
callers that were confused when prompted with the automated 
application question. As a result, the caller remained silent. 

Callers may reply to VXML applications by talking beyond 
the allocated timeout period of the field. These events are 
represented by the maximum speech timeout input parameters 
of the field classifiers [19]. In general, VXML applications 
accommodate 3 of these events. Similar to the no match and no 
input events, on the third attempt, if a maximum speech 
timeout occurs, the caller is transferred to a CSA. These inputs 
are important as they assist in determining whether the timeout 
periods are adequate for callers to complete their responses. 

TABLE I.  THE INPUTS AND OUTPUTS OF THE FIELD 
CLASSIFIER 

Inputs Outputs Output interaction 
class 

Confidence. Field performance. Good, acceptable, 
bad. 

No matches. Field transfer reason. Unknown, difficult.  
No inputs Field hang-up reason. Unknown, difficult. 
Max speech timeouts. Field duration. High, medium, low. 
Barge-ins. Field recognition level. High, medium, low. 
Hang-ups.   
Transfer to Customer 
Service Agent. 

  

Duration.   
 

The duration input parameter illustrates the time the caller 
consumed completing the VXML application field. The barge-
in input parameter illustrates whether or not a caller interrupted 
the application while the automated question prompted played.  
Caller disconnects and transfers to Customer Service Agents 
(CSAs) are represented by the hang-up and transfer to agent 
input parameters, respectively. These inputs can also assist in 
determining the level of difficulty the caller experienced in the 
field. 

The field performance output interaction class of the 
classifier will illustrate whether the caller behaviour is good, 
acceptable or bad. The field transfer reason and field hang-up 
reason interaction classes attempt to identify the motivation for 
the transfer to CSA or caller disconnect, respectively. The field 
duration as well as field recognition level classes illustrate 3 
categories of performance, low, medium and high. As a result, 
these output parameters will assist in characterizing the caller 
experience at a VXML field. 

III. IMPLEMENTATION METHODOLOGY. 
The development process was divided into various stages. 

The following procedure has been pursued in the creation of 
the various ANN architectures employed: 

• Selection and processing of data to be used by ANNs 
during training, validation and testing. 

• Optimization of the number of iterations used to train 
the ANNs. 

• Optimization of the number of hidden neurons or nodes 
within the ANN. 

• Comparison of the various networks developed and the 
selection of the superior network. 

The remainder of this section will elaborate on the various 
stages of the procedure stated above. 

A. Selection and processing of data. 
The data utilized in developing the ANNs is based on data 

extracted from IVR log event files. 2 Distinct data sources were 
utilized in the development of the classifiers. The ‘generated’ 
data source included data computed by a rule based application. 
The ‘live’ data source consisted of caller information extracted 
from actual IVR log event files. 
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The rule based application executed specific instructions in 
the creation of the data to be used in the development of the 
ANNs.  Rules such as if 3 occurrences of no inputs, no matches 
or maximum speech timeouts occur within the caller interaction 
to a particular field and a transfer occurs thereafter, the field 
transfer reason computed will be ‘difficulties’ were followed. 
Various combinations of input parameters that were based on 
speech analysis experience were generated and propagated 
through the rule based application to create the ‘generated’ 
input output data sets. 

A parsing application that extracted information such as 
recognition confidence values, caller barge-in information has 
been utilized to develop the ‘live’ data source. This information 
is also propagated through the rule based application to 
produce the ‘live’ output data sets. 

The research conducted entailed the creation of ‘Say 
account’, ‘Say amount’, ‘Select beneficiary’ and ‘Say 
confirmation’ field classifiers. Caller behaviour per field is 
unique. For example, at a ‘Say confirmation’ field the caller is 
required to say ‘yes’ or ‘no’. However, the caller is requested to 
say the account name at the ‘Say account’ field. As a result, the 
duration to complete the VXML application field is much 
shorter at the confirmation field. Therefore, each classifier is 
trained with data relevant to the field. 

Networks developed utilizing the ‘generated’ data source 
were only created for the ‘Say account’ field classifier. These 
networks were compared in accuracy with the corresponding 
classifiers developed using the ‘live’ data source. The 
remaining field classifiers developed employed ‘live’ data 
sources. 

In order to present the no match, no input and maximum 
speech timeout information to the field classifiers, a binary 
notation has been employed. These inputs are presented by 3 
digit binary words. For example, if a no match 1 and a no 
match 2 occur at a field, the binary notation will be ‘011’. A 
similar binary notation is employed for the no input and 
maximum speech timeout classifier inputs. The barge-in, hang-
up and transfer to CSA input information were represented by 
bit binary words. Table II shows the input representation 
format. 

A similar binary notation scheme has also been utilized to 
interpret the interaction classes outputted. Table III illustrates 
the manner in which the outputs are to be translated. 

In order to ensure that over-fitting and under-fitting were 
avoided, the data has been divided into 3 sets. Over-fitting 
occurs when the network does not generalize but rather tends to 
memorize the training data. Under-fitting occurs when the 
network does not follow the data at all [20]. The data is divided 
into training, validation and test sets. The training data set is 
used to train the ANN to find the general pattern between its 
inputs and outputs. The validation data set is used to assess the 
network and the test data is used to confirm the classification 
capability of the developed networks. 

 

 

TABLE II.  THE INPUT REPRESENTATION FORMAT 

Input Input value Binary 
notation 

No matches No match 1 0 0 1 
No matches No match 2 0 1 0 
No matches No match 3 1 0 0 
No matches No match 1 and no match 2 0 1 1 
No matches No match 1, no match 2 and no match 

3 
1 1 1 

No inputs No input 1 0 0 1 
No inputs No input 2 0 1 0 
No inputs No input 3 1 0 0 
No inputs No input 1 and no input 2 0 1 1 
No inputs No input 1, no input 2and no input 3 1 1 1 
Max speech 
timeout 

Max speech timeout 1 0 0 1 

Max speech 
timeout 

Max speech timeout 2 0 1 0 

Max speech 
timeout 

Max speech timeout 3 1 0 0 

Max speech 
timeout 

Max speech timeout 1 and max speech 
timeout 2 

0 1 1 

Max speech 
timeout 

Max speech timeout 1, max speech 
timeout 2 and max speech timeout 3 

1 1 1 

Barge-in Occurred - - 1 
Hang-up Occurred - - 1 
Transfer to 
CSA 

Occurred - - 1 

TABLE III.  THE OUTPUT REPRESENTATION FORMAT 

Output Output interaction class Binary 
notation 

Field performance Good 0 0 1 
Field performance Acceptable 0 1 0 
Field performance Bad 1 0 0 
Field transfer reason Difficulties - 0 1 
Field transfer reason Unknown - 1 0 
Field hang-up reason Difficulties - 0 1 
Field hang-up reason Unknown - 1 0 
Field duration High 1 0 0 
Field duration Medium 0 1 0 
Field duration Low 0 0 1 
Field recognition level High 1 0 0 
Field recognition level Medium 0 1 0 
Field recognition level Low 0 0 1 

 

The confidence and duration input parameters of the 
classifiers were preconditioned by normalizing the data. 
Normalizing the data entails manipulating the data sets such 
that the values within the sets are between 0 and 1. The 
networks developed were trained utilizing the normalized data 
sets. Due to the binary word representation utilized to present 
the remaining inputs, normalization of these input parameters is 
not necessary. 

Normalization is accomplished by acquiring the minimum 
and maximum values within the data sets. These values are 
then utilized to compute the normalized values. 

The purpose of normalizing the data sets is to modify the 
variable levels to a reasonable value. If such a transformation is 
not employed, the value of the variable could be too large for 
the network to process, especially when several layers of nodes 
within the ANN are involved [20]. Normalizing the data sets 
also reduces the fluctuation and noise within the data [20]. 
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There are a variety of practical reasons that illustrate 
normalizing the data sets can result in faster training and reduce 
the chances of obtaining local optima. Some of these reasons 
include better numerical conditioning (Hessian matrices), better 
weight initialization values and better weight decay estimates 
[20]. 

B. Optimization of the number of iterations used to train the 
neural network. 
Multi-layer Perceptron (MLP) and the Radial Basis 

Function (RBF) neural network architectures were utilized in 
the classification of call behaviour. The MLP and RBF neural 
network architectures are possibly the most extensively 
employed ANNs in pattern classification [5]. Due to the non-
linear capabilities of these networks, they are said to be 
excellent universal approximators that provide highly accurate 
solutions. As a result, these networks produce very practical 
tools for classification and inversion problems [20]. 

It has been stated that a network with 1 hidden layer, 
provided with sufficient data, can be used to model any 
function [20]. As a result, the MLP and RBF neural network 
architectures employed consisted of only 1 hidden layer. 

The MLP network hidden layer consists of non-linear 
activation functions. There are 3 major forms of the function 
that should be considered. These are the linear, logistic 
sigmoidal and softmax activation functions [5].The choice of 
the activation function is mainly dependant on the application 
of the network [20]. However, it has been found that the 
hyperbolic tangent activation function offers a practical 
advantage of giving rise to faster convergence during training 
[5]. As a result, this function has been utilized within the MLP 
networks. 

The MLP network output layer also consists of activation 
functions. There are 3 major forms of functions that should be 
considered. These are the linear, logistic sigmoidal and softmax 
activation functions [5]. It has been stated that the appropriate 
selection of the output-unit activation function for a 
classification problem is the logistic sigmoidal function [5]. As 
a result, this function has been employed within the output 
layer of the MLP network. 

The RBF network that has been developed contained a 
Gaussian activation function within its hidden layer and a 
linear activation function within its output layer. 

During this stage of implementation, the number of hidden 
nodes within the ANNs was assumed to be arbitrary. This will 
be optimized at a later stage of development. During this stage 
of development, the number of hidden nodes within the ANNs 
was 8. This stage of implementation involved the optimization 
of the number of iterations utilized to train the classifiers. As a 
result, this involved the selection of an appropriate number of 
iterations that would result in classifiers with excellent 
generalization capabilities. 

The number of iterations has been optimized by minimizing 
an error function that mapped the number of iterations to the 
accuracy of the developed classifiers. The process has been 
performed on the validation and test data sets. 

Since this is a classification implementation, a confusion 
matrix is employed to identify the number of true and false 
classifications that are generated by the ANN developed. This 
is then utilized to calculate the true accuracy of the ANN 
classifiers. The sensitivity and false positive ratio were also 
calculated to assist in measuring true performance. The 
following equations were used: 
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where 

TP is the true positive (1 classified as a 1), 

TN is the true negative (0 classified as a 0), 

FN is the false negative (1 classified as a 0), 

FP is the false positive (0 classified as a 1). 

The outputs of the ANNs were interpreted by utilizing a 
classification threshold value of 0.5.  This implies that if the 
classifier outputs a value less than 0.5, the output will be 
regarded as a 0. Similarly, if the output value is larger than or 
equal to 0.5, the output will be interpreted as a 1. This threshold 
value of 0.5 proved to be adequate for the MLP and RBF ANN 
implementations. 

The number of iterations has been optimized by 
constructing various MLP and RBF networks with the number 
of iterations ranging from 50 to 1000. 

Utilizing the training data set, these networks were trained. 
Thereafter, the validation and test data set was presented to the 
networks. The accuracy of the developed networks was 
calculated for the training, validation and test data sets. MLP 
and RBF networks trained with the number of iterations that 
resulted in the largest accuracy value, when presented with the 
validation and test data sets, were analyzed. 

Good results were obtained that yielded both MLP and RBF 
networks with excellent generalization capabilities.  Table IV 
and Table V illustrates the results of this stage of 
implementation. 

Networks consisting of these optimized iteration values 
were developed in the next stage of implementation. 

C. Optimization of the number of hidden nodes within the 
neural network. 
This stage of implementation involved the optimization of 

the ANN architecture. As a result, this step of development 
entailed selecting the correct number of hidden neurons that 
would yield the most accurate results. 
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TABLE IV.  RESULTS OF VARIED NUMBER OF ITERATIONS. 

Network 
architecture Iterations Hidden 

nodes 
Accuracy 

(Validation) 
Accuracy 

(Test) 
‘Say account’ classifier (‘Live’ data source). 

MLP 400 8 0.9471 0.9113 
MLP 500 8 0.9445 0.9121 
RBF 600 8 0.7887 0.8245 
RBF 700 8 0.8679 0.8971 

‘Say account’ classifier. (‘Generated’ data source). 
MLP 450 8 0.9999 0.9296 
MLP 550 8 0.9999 0.9488 
RBF 450 8 0.7942 0.7849 
RBF 550 8 0.8384 0.8373 

‘Say amount’ classifier. 
MLP 450 8 0.9872 0.9715 
MLP 550 8 0.9899 0.9744 
RBF 800 8 0.8391 0.8076 
RBF 900 8 0.9195 0.9072 

‘Say confirmation’ classifier. 
MLP 20 8 0.9662 0.9817 
MLP 40 8 0.9881 0.9952 
RBF 520 8 0.9338 0.9500 
RBF 540 8 0.9826 0.9893 

‘Select beneficiary’ classifier. 
MLP 850 8 0.9518 0.9853 
MLP 950 8 0.9589 0.9869 
RBF 200 8 0.9316 0.9030 
RBF 300 8 0.9601 0.9560 

TABLE V.  RESULTS OF VARIED NUMBER OF ITERATIONS (ROC CURVE). 

Validation Test  Iterations Nodes 
FA HR FA HR 

‘Say account’ classifier (‘Live’ data source). 
MLP 500 8     
RBF 700 8     

‘Say account’ classifier. (‘Generated’ data source). 
MLP 550 8     
RBF 550 8     

‘Say amount’ classifier. 
MLP 550 8     
RBF 900 8     

‘Say confirmation’ classifier. 
MLP 40 8     
RBF 540 8     

‘Select beneficiary’ classifier. 
MLP 950 8     
RBF 300 8     
 

The number of hidden neurons or nodes has been optimized 
by minimizing an error function that mapped the number of 
hidden nodes to the accuracy of the developed networks. The 
process has been performed on the validation and test data sets. 

The hidden neurons or intermediate units were optimized 
by creating various MLP and RBF ANNs with hidden nodes of 
5 to 25. Networks with hidden nodes greater than 25 were not 
developed due to the predictive capabilities or generalization 
capabilities reducing as the number of intermediate units 
increase. More hidden nodes increases the dimensionality of 
the function being fitted, enabling easier training which results 
from higher training capacity. However, this detrimentally 
affects the generalization capabilities of the network. A major 
consideration when developing a suitable ANN for a 
classification application is to make a trade-off between 
convergence and generalization [21]. 

Utilizing the training data set, these networks were trained. 
The validation and test data set was then presented to the 
networks. Thereafter, the accuracy of the developed networks 
was calculated for the training, validation and test data sets. 
MLP and RBF networks with the number of hidden nodes that 
resulted in the largest accuracy value, when presented with the 
validation and test data sets, were analyzed. 

Table VI illustrates the hidden nodes that resulted in the 
largest accuracy value for the validation data set. The networks 
also employed the same activation functions mentioned in the 
previous section. 

D. Comparison of the various networks developed and the 
selection of the superior network. 
This stage of development entailed the comparison of the 

various ANNs that were created. It also involves the selection 
of the best networks to classify caller field behaviour into 
interaction classes. 

It is evident, from the investigations conducted, that the 
ANNs illustrated in Table VII and Table VIII resulted in the 
most accurate classifiers. 

It is also evident that the difference in accuracy between the 
field classifiers created utilizing the ‘generated’ and ‘live’ data 
source is small. The difference between the networks is 
approximately 2%. However, the development effort required 
to implement the field classifier using the ‘generated’ data 
source is much greater. It requires a training data set to be 
created based on expert knowledge of caller behaviour within 
VXML applications. This is required to create a training data 
set that represents input parameter combinations that reflect 
actual caller behaviour. However, the ‘live’ data source 
development method extracts information from actual log files 
that contain real caller behaviour. As a result, less effort is 
required and is therefore the preferred method. 

It has also been determined that the MLP network 
architecture is particularly suited for this application. This is 
relevant for all the networks except the ‘Select beneficiary’ 
field classifier. The difference in accuracy between the 2 
network architectures is on average 1%. 

TABLE VI.  RESULTS OF VARIED HIDDEN NODES. 

Network architecture Number of hidden nodes 
‘Say account’ classifier (‘Live’ data source). 

MLP 10, 15, 17. 
RBF 18, 20, 22. 

‘Say account’ classifier. (‘Generated’ data source). 
MLP 13, 19, 21. 
RBF 19, 22, 23. 

‘Say amount’ classifier. 
MLP 7, 13, 14. 
RBF 19, 24, 25. 

‘Say confirmation’ classifier. 
MLP 8, 22, 24. 
RBF 21, 23, 24. 

‘Select beneficiary’ classifier. 
MLP 6, 20, 25. 
RBF 15, 18, 20. 
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TABLE VII.  NETWORKS SELECTED. 

Network 
architecture Iterations Hidden 

nodes 
Accuracy 

(Validation) 
Accuracy 

(Test) 
‘Say account’ classifier (‘Live’ data source). 

MLP 500 15 0.9989 0.9629 
RBF 700 22 0.9425 0.9355 

‘Say account’ classifier. (‘Generated’ data source). 
MLP 550 21 1 0.9999 
RBF 550 22 0.9817 0.9816 

‘Say amount’ classifier. 
MLP 550 13 0.9997 0.9922 
RBF 900 25 0.9751 0.9599 

‘Say confirmation’ classifier. 
MLP 40 22 0.9962 0.9921 
RBF 540 24 0.9931 0.987 

‘Select beneficiary’ classifier. 
MLP 950 20 1 0.9420 
RBF 300 18 0.9871 0.9752 

TABLE VIII.  RESULTS OF VARIED NUMBER OF ITERATIONS (ROC CURVE). 

Validation Test  Iterations Nodes 
FA HR FA HR 

‘Say account’ classifier (‘Live’ data source). 
MLP 500 8     
RBF 700 8     

‘Say account’ classifier. (‘Generated’ data source). 
MLP 550 8     
RBF 550 8     

‘Say amount’ classifier. 
MLP 550 8     
RBF 900 8     

‘Say confirmation’ classifier. 
MLP 40 8     
RBF 540 8     

‘Select beneficiary’ classifier. 
MLP 950 8     
RBF 300 8     
 

IV. CONCLUSION 
This research entailed the development of a field 

classification system. ‘Say account’, ‘Say amount’, ‘Say 
confirmation’ and ‘Select beneficiary’ field classifiers were 
created. The ‘Say account’ field classifier was created utilizing 
‘generated’ data sources and ’live’ data sources. The networks 
were then compared to determine the technique that required 
least development effort and yield the most accurate classifier. 

The development methodology utilized for creating all the 
networks involved, initially, varying the number of iterations 
employed to train the classifiers. This ensured that the 
classifiers were not over-trained or under-trained. Thereafter, 
the numbers of hidden nodes were varied. This resulted in 
creating an acceptable network architecture. 

Acceptable classification accuracies were achieved. It has 
been determined that the MLP network architecture was 
exceptionally proficient for this application. The best and worst 
accuracy levels obtained were 99.99% and 94.20%, 
respectively. These accuracy levels were attained for the ‘Say 
account’ and the ‘Select beneficiary’ field classifiers, 
respectively. This ‘Say account’ classifier was created utilizing 
the ‘generated’ data source. As a result, it can be concluded that 

the ‘generated’ data source approach is relevant and can result 
in highly accurate solutions. 

However, the ‘live’ data source development effort required 
less effort than the ‘generated’ data source approach. The 
difference in accuracy of these networks was approximately 
2%. This is small. As a result, it can be concluded that the 
‘live’ data source development methodology is the preferred 
technique. 
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Abstract—Accurate classification of caller interactions within 
Interactive Voice Response systems would assist corporations 
to determine caller behavior within these telephony 
applications. This paper details the development of such a 
classification system for a pay beneficiary application. Fuzzy 
Inference Systems, Multi-Layer Perceptron, Support Vector 
Machine and ensemble of classifiers were developed. Accuracy, 
sensitivity and specificity performance metrics were computed 
as well as compared for these classification solutions. Ideally, a 
classifier should have high sensitivity and high specificity. 
Exceptional results were achieved. The ensemble of classifiers 
is the preferred solution, yielding an accuracy of 99.17%. 

Keywords-Artificial Neural Networks, Genetic Algorithms, 
Fuzzy Inference Systems, Support Vector Machines, Ensemble of 
classifiers, Interactive Voice Response, Caller experience 
performance classification. 

I.  INTRODUCTION 
Customer satisfaction fosters loyalty, increases the 

probability of selling additional products and services as well 
as reduces the chances of competitive replacement. 
However, customer dissatisfaction results into direct revenue 
losses due to customer churn and indirect losses such as 
damage to reputation. Improving the customer experience is 
a vital priority for contact centers across different industries.  

In order to provide customers with access to convenient 
and reliable information fast, Interactive Voice Response 
(IVR) systems have been adopted by businesses. If 
implemented correctly, these systems can assist in improving 
the customer experience [1]. An IVR system is an automated 
telephony system that interacts with callers, gathers relevant 
information and routes calls to the appropriate destinations 
[1].  The inputs to the IVR system can be voice, Dual Tone 
Multi-Frequency (DTMF) keypad selection or a combination 
of the 2. IVR systems can provide appropriate responses in 
the form of voice, fax, callback, e-mails and other media [1]. 
An IVR system solution may consist of telephony 
equipment, software applications, databases and supporting 
infrastructure.  

The aim of this research is to develop a call performance 
classification application, using computational intelligent 
methods, which could assist companies in determining 
customer activities within their IVR systems. IVR 
applications are developed in Voice Extensible Markup 
Language (VXML). These applications are voice-based 
dialog scripts that consist of form or dialog elements. Input 
and output sections are grouped together using these form or 
dialog elements. In order to acquire and interpret caller input 
information, a field element is used. As a result, the form or 
dialog elements contain field elements [2]. 

The classification system developed consists of field 
categorization and call performance classification processes. 
The field categorization process computes statistics that are 
used to classify caller behavior experienced at various fields 
within IVR applications into specific interaction classes. 
Utilizing these interaction classes, the call performance 
classification process, using computational intelligent 
methods, evaluates the performance of the customer call in 
relation to caller behavior experienced. 

Therefore, the output call performance classification 
application classes can assist in determining trends of caller 
behavior within the self service systems. For example, the 
developed application can identify calls that transferred or 
disconnected at the final step of the automated process as 
well as calls where the automated speech recognition 
performed poorly. Thereafter, analysts can listen to a sample 
of these calls and determine the reason for this. 

In order to develop such an application, the classification 
of data must be accurate. This paper compares classifiers that 
were developed utilizing Genetic Algorithms (GAs), 
Artificial Neural Network (ANN), Support Vector Machine 
(SVM) and Fuzzy Inference System (FIS) techniques. 
Ensembles of classifiers were also considered. 

The classification of data into various classes has been an 
important research area for many years. ANNs have been 
applied to pattern classification [3]. Research has also been 
conducted on fuzzy classification. This resulted in many 
algorithms, such as fuzzy K-nearest neighbor [4] and fuzzy 
c-means [5], being applied to classification problems. Fuzzy 



systems constructed using genetic algorithms have been 
utilized [6]. Fuzzy neural networks have also been employed 
in pattern classification applications [7]. 

Support Vector Machines have been applied to multi-
category classification problems [8]. These classification 
tasks have also been implemented by combining multiple 
simpler specialized classifiers [9]. 

The section to follow examines the classification system 
as well as its implementation methodology. The paper ends 
with the comparison of the various call performance 
classifiers developed and the selection of the superior 
networks. 

II. THE DEVELOPED SYSTEM 
The research conducted entailed the creation of a call 

classification system for a beneficiary payment IVR 
application. Field categorization process extracts data from 
IVR log event files that is generated by the IVR platform as 
specific events occur during a call to the system. Events such 
as call begin, form enter, form select, automatic speech 
recognition events, transfer events and call end events are 
written to the logs [10].  

Fig. 1 shows the field categorization process computed 
caller field statistics and outputs as well as corresponding 
interaction classes. Call begin, automatic speech recognition, 
form select, no match, no input, maximum speech timeout, 
prompt barge-in, system error, filling, call end events are 
extracted from log files during this process to calculate the 
caller field statistics. These events characterize the caller 
experience at a field within the VXML application. For 
detailed explanations of these events, refer to [2].  

The IVR application consists of ‘Say account’, ‘Say 
amount’, ‘Select beneficiary’ and ‘Say confirmation’ fields. 
This application accommodates 3 no match events per field. 
On a third no match event, the call is transferred to a DTMF 
field. If the caller fails to complete the DTMF field 
successfully on attempt 1, the call is transferred to a service 
agent. The same process is used for the third no input and 
maximum speech timeout events. As a result, the field 
categorization process caters for only 3 no match, no input 
and maximum speech timeout events. 

The field performance output interaction class illustrates 
whether the caller behavior is good, acceptable, investigate 
or bad. The field transfer reason and field hang-up reason 
interaction classes attempt to identify the motivation for the 
transfer to agent or caller disconnect, respectively. Field 
difficulty attempt interaction class computes the number of 
difficulty events that occurred during the caller interaction. 
The field duration as well as field recognition level classes 
calculate 3 categories of performance; low, medium and 
high. As a result, these outputs will assist in characterizing 
the caller experience at a VXML field. 

Experienced caller output indicates whether or not the 
caller is a regular user of the application and is therefore 
comfortable with the application call flow. In determining 
the number of experienced callers, the contact center can 
determine the usage of the application. 

The call performance classifier utilizes these interaction 
classes as inputs. The function of the call performance 

process is to provide a summarized performance evaluation 
of the complete call based on all fields accessed during the 
call. Fig. 1 also illustrates the inputs and outputs of the 
component.  

The call performance output class provides a measure of 
the call performance based on field performance interaction 
classes. Experienced caller output parameter assists in 
determining whether the caller is familiar with the IVR 
application as the caller has used the application previously. 
Self-service level illustrates a measure of the extent of the 
IVR application usage before the application ended the call, 
caller disconnects or transfer to service agent event occurs. 
Speech-enabled level output parameter illustrates 3 
categories of performance; good, acceptable or investigate. 
This provides a measure of the number of fields the caller 
completed successfully using speech recognition. The caller 
disconnect transferred call performance output parameter 
identifies the field a caller disconnect or transfer event 
occurred utilizing the field classifier disconnect and transfer 
interaction classes. 

III. SELECTION AND PREPROCESSING OF DATA 
The field categorization process utilized a business 

intelligence solution that extracted and computed 
information such as recognition confidence values, duration 
values and call completion information. This information is 
stored within a database and is then manipulated utilizing 
specific rules to generate the data sets. Rules such as if no 
hang-up, transfer to agent, DTMF transfer, system error, no 
inputs, no matches or maximum speech timeouts occur, but 
the confidence level at the field is greater than 80%, the 
duration to complete the field is less than the average field 
duration and the field confirmation is true, the field 
performance interaction class would be computed as ‘good’, 
were followed. 

The call performance classifier input data set values were 
calculated using the interaction classes computed based on 

 

Figure 1.   Call performance classification system. 



the rules mentioned above. Similar rules such as when the 
field performance interaction class is good, acceptable, 
investigate or bad for all the fields, the call performance 
level would be good, acceptable, investigate or bad, 
respectively, were used to create the call performance 
classification output data set. 

The experienced call output class used the experienced 
caller interaction class to generate an output value. If 2 or 
more of the experienced caller interaction classes is set to 
true, the experienced call output class would also be true.   

The speech-enabled level, self-service level and caller 
disconnect transferred output parameters utilized the caller 
disconnect and transfer interaction classes to compute an 
output value. However, the speech enabled level output 
value calculation is also based on DTMF transfer 
information.  

A binary notation has been used to present the interaction 
classes. The field performance interaction classes are 
presented by 4 digit binary words. For example, if the field 
performance is categorized as investigate; the binary notation 
will be ’0010’. A similar 3 digit binary notation is employed 
for field difficulty attempt, field duration and field 
recognition level classifier inputs. Field transfer reason and 
field hang-up reason input information were represented by 2 
digit binary words. However, the experienced caller 
interaction class is presented to the classifier using bit binary 
word. This data presentation method has also been employed 
in interpreting the call performance classification process 
output values. 

In order to ensure that over-fitting and under-fitting were 
avoided, the data has been divided into training, validation 
and test sets. The training data set is used to train the 
algorithms to identify the general classification groups 
within the data. The validation data set is used to assess the 
classifier and the test data is used to confirm the 
classification capability of the developed models. 

IV. MULTI-LAYER PERCEPTRON NEURAL NETWORK 
ARCHITECTURES 

The MLP ANN architectures are possibly the most 
extensively employed ANNs in pattern classification [11]. 
Due to the non-linear capabilities of these networks, they are 
said to be excellent universal approximators that provide 
highly accurate solutions. As a result, these networks 
produce very practical tools for classification and inversion 
problems [12]. Detailed explanations of these ANN 
architectures can be found in [11]. 

The MLP neural network architectures employed 
consisted of only 1 hidden layer. Hyperbolic tangent hidden 
layer activation function is used due to its practical 
advantage of faster convergence during training [11]. 
Similarly, the logistic sigmoidal output-unit activation 
function is utilized as it is most appropriate for classification 
problems [11]  

The MLP ANN implementation process involved the 
optimization of the network architectures. As a result, this 
entailed the identification of the correct number of hidden 
neurons that would yield the most accurate results. 

Binary and real coded GAs that used normalized 
geometric ranking and tournament selection functions were 
employed to optimize the call performance ANN classifier 
architectures. The binary coded GAs utilized binary mutation 
and the real coded GAs used non-uniform mutation genetic 
operators. Arithmetic and simple cross over operators have 
been used within the binary and real coded GAs, 
respectively. Refer to [13] for further information about 
these GAs.  

Populations of MLP ANN individuals were generated by 
the GAs. An error function that mapped the number of 
hidden nodes to the accuracy of the developed network has 
been used as the evaluation function for the GAs. The fitness 
of the individuals within a population is determined by 
calculating the accuracy of the ANNs when presented with 
validation and test data sets. The minimum value of these 
accuracies determined the fitness of the individual.  

Since this is a classification implementation, a confusion 
matrix is employed to identify the number of true and false 
classifications. This is then utilized to calculate the true 
accuracy of the ANN classifiers, using the following 
equation:  
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= ,             (1) 

where 
TP is the true positive (1 classified as a 1), 
TN is the true negative (0 classified as a 0), 
FN is the false negative (1 classified as a 0), 
FP is the false positive (0 classified as a 1). 
 
The GAs produced 25 generations of 10 ANN 

individuals within the population. The GAs were limited to 
produce ANN individuals with the number of hidden nodes 
between 5 and 100. Networks with hidden nodes greater than 
100 were not developed due to the predictive capabilities or 
generalization capabilities reducing as the number of 
intermediate units increase. A major consideration when 
developing a suitable ANN for a classification application is 
to make a trade-off between convergence and generalization 
[14]. 

Binary and real coded GA solutions were compared in 
terms of computational efficiency and quality of the GA 
solution. Computational efficiency, in this context, is defined 
as the number of generations the GA utilized to converge to 
the most optimal number of hidden nodes. Quality of the GA 
solution is the verification that the number of hidden nodes 
returned by the GA is really the most optimal value. 

Table I illustrates the results of the ANN implementation. 
It is evident, in terms of computational efficiency; the binary 
coded normalized geometric ranking selection GA 
outperformed all GA solutions considered in optimizing the 
MLP number of hidden nodes. This algorithm converged at a 
solution at the generation 1. 
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In order to determine the quality of the GA solutions, 
MLP classifiers were created containing the optimal number 
of hidden nodes returned by the algorithms. 

As illustrated in Table I, the number of hidden nodes that 
resulted in the most accurate MLP ANN classifier is 10. This 
number of hidden nodes creates a network that performs 
accurately on both the unseen data sets. As a result, the 
classifier has good generalization capabilities. 

Therefore, in terms of quality of GA solution, the real 
coded normalized geometric ranking selection GA is most 
suited in optimizing the MLP network architecture. 
However, this algorithm converged to this solution at 
generation 21 of 25. 

V. FUZZY INFERENCE SYSTEM 
FISs utilize fuzzy inference rules that enable the 

categorizing of data [15]. Fuzzy inference methods are 
algorithms that deduce results from the fuzzy inference rules 
and present inputs. Fuzzy inference methods are based on 
fuzzy logic. FISs are universal approximators [15]. 

The FIS utilized in the development of the call 
performance classifiers, employed subtractive clustering to 
generate the required membership functions and set of fuzzy 
inference rules. The objective of clustering is to locate 
“natural classes” in a set of given inputs such that similar 
inputs are grouped together in the same class [16].  

The cluster radius indicates the range of influence of a 
cluster. A small cluster radius results in small clusters in the 
data and, therefore, many fuzzy rules. Large cluster radii 
yield few large clusters in the data and, hence, fewer fuzzy 
rules [17]. The cluster radius has been optimized by 
minimizing an error function that mapped the radius to the 
accuracy of the developed inference systems. This process 
has been performed on the validation data sets. 

The optimization process followed entailed the 
construction of various inference systems with the cluster 
radius ranging from 0.01 to 1. Fig. 2 illustrates the results of 
the FIS cluster radius optimization. It is evident that cluster 
radii of 0.13 and 0.14 yield the same validation and test data 
set accuracies. These cluster radii also achieve the best 
accuracies, 92% and 91% on validation and test data sets, 
respectively. 

VI. SUPPORT VECTOR MACHINES 
The type of kernel function utilized within a SVM will 

affect the learning ability and generalization ability. 
Different kernel functions will construct different SVM 
classifiers. This research considers the linear, polynomial, 
Radial Basis Function (RBF) and sigmoid kernel functions. 
For detailed information on these kernel functions refer to 
[18]. 

 
 
 
 
 
 
 

TABLE I.  MLP IMPLEMENTATION RESULTS 

GA Hidden 
nodes 

Gen P

a
P
 Accuracy 

(Validation) 
Accuracy  

(Test) 
Binary 
coded 
normalized 
geometric 
ranking 
selection 

75 1 0.9891 0.9896 

Binary 
coded 
tournament 
selection 

47 16 0.989 0.9901 

Real coded 
normalized 
geometric 
ranking 
selection 

10 21 0.9904 0.9918 

Real coded 
tournament 
selection 

69 6 0.9888 0.9893 

a. Gen represents Generation 

 
SVM implementation process involved creating call 

performance classifiers that employed the kernel functions 
mentioned above. The validation and test data set accuracies 
of the resulting SVM classifiers were then compared to 
determine the kernel function most suitable for this 
application.  As a result, this involved the selection of an 
appropriate kernel function that would result in classifiers 
with excellent generalization capabilities. 

Good results were obtained that yielded call performance 
classifiers with excellent generalization capabilities. The 
kernel functions used created classifiers with accuracies 
larger than 95% on validation and test data sets. Table II 
illustrates the results of the SVM implementation. It is 
evident that the linear kernel function resulted in the most 
accurate call performance classifier. 

 
 

Figure 2.  FIS Accuracy versus cluster radius. 

 



TABLE II.  SVM IMPLEMENTATION RESULTS 

Kernel function Accuracy 
(Validation) 

Accuracy  
(Test) 

Linear 0.9896 0.9919 

Polynomial 0.9609 0.963 

Radial Basis Function 0.9756 0.9736 

Sigmoid 0.9713 0.9696 

 

VII. COMPARISON OF THE VARIOUS METHODS 
CONSIDERED 

The computational intelligent methods considered in this 
research produced highly accurate call performance 
classifiers. As illustrated in Table III, these classifiers 
achieved accuracy values larger than 90% with the SVM 
classifier achieving an accuracy value of 99.19% on test data 
set. However, the MLP ANN performed the best on 
validation data set. In order to determine if this accuracy 
value could be improved, an ensemble of the classifiers 
consisting of MLP ANN, FIS and SVM call performance 
classifiers has been created.  

The outputs of classifiers were fed into a voting system 
that determined the final output of the ensemble 

. If the majority of the classifiers within the ensemble 
categorized an output into a certain class, the voting system 
would classify the output of the ensemble as the class. If all 
of the models within the ensemble classified an output into 
different classes, the voting system would classify the output 
of the ensemble as undecided.  

As shown in Table III, the ensemble of classifiers proved 
to be an accurate solution. The models yielded large 
accuracy values on both validation and test data sets. When 
comparing the call performance classifiers developed, the 
ensemble of classifiers has the best generalization 
capabilities and is the preferred solution. 

In order to confirm the performance of the classifiers 
created, the sensitivity and specificity values were also 
compared. Sensitivity is defined as the probability that the 
classifier categorizes a set of interaction class inputs to the 
correct specific call performance classes. Specificity is 
defined as the probability that the classifier indicates that a 
set of interaction class inputs does not correctly belong to 
specific output classes. The former measure describes the 
effectiveness of the classifier at categorizing interaction 
classes correctly, while the latter characterizes the 
performance of the classifier at discarding the other 
interaction classes. Equation (2) and (3) below illustrate the 
sensitivity and specificity formula utilized, respectively.  

FNTP
TPySensitivit
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+

= ,             (3) 

where 
TP is the true positive (1 classified as a 1), 
TN is the true negative (0 classified as a 0), 
FN is the false negative (1 classified as a 0), 
FP is the false positive (0 classified as a 1). 
 
These metrics confirmed that the ensemble of call 

performance classifiers outperform the MLP ANN, FIS and 
SVM classifiers. These classifiers produced large sensitivity 
and specificity values. As a result, the ensemble has a high 
positive as well as negative classification rate on both the 
validation and test data sets. 

VIII. CONCLUSION 
The system detailed in this paper consisted of field 

categorization and call performance classification processes. 
The field categorization component computed caller field 
statistics that were used to determine caller interaction 
classes. Call performance classifier used these interaction 
classes as inputs. The function of the call performance 
classifier is to provide a summarized performance evaluation 
of the complete call based on all fields accessed during the 
call. 

Call performance classifiers were developed using MLP 
ANN, FIS, SVM and ensemble of classifiers. 

The MLP ANN implementation process entailed 
determining the optimal number of hidden nodes. Binary and 
real coded GAs that employed normalized geometric ranking 
and tournament selection functions were used to compute the 
optimal number of hidden nodes. Computational efficiency 
and quality of solution were used to evaluate the 
performance of the GA solutions. These GA solutions 
yielded accurate MLP ANN classifiers. Binary coded 
normalized geometric ranking selection GA outperformed all 
GA solutions considered in terms of computational 
efficiency. This GA solution converged to the optimal 
number of hidden nodes at generation 1. However, the real 
coded normalized geometric ranking selection GA is most 
suited in optimizing the MLP network architecture, in regard 
to quality of solution. However, this algorithm converged to 
this solution at generation 21 of 25. 

TABLE III.  CALL PERFORMANCE CLASSIFIERS DEVELOPED 

Method Accuracy Sensitivity Specificity 
Validation 

MLP ANN 0.9904 0.9845 0.9963 

FIS 0.9152 0.9455 0.8858 

SVM 0.9896 0.9844 0.9949 

Ensemble 0.9917 0.9901 0.9933 

Test 

MLP ANN 0.9918 0.9877 0.9960 

FIS 0.9108 0.9333 0.8888 

SVM 0.9919 0.9889 0.9949 

Ensemble 0.9925 0.9908 0.9941 



The SVM and FIS development involved the 
identification of the SVM kernel function and cluster radius 
that yielded the most accurate results, respectively. Linear 
kernel function resulted in the most accurate call 
performance SVM classifier. Custer radii of 0.13 and 0.14 
yielded the most accurate classification systems.  

Ensemble of call performance classifiers, consisting of 
the most accurate FIS, MLP ANN and SVM classifiers has 
also been developed. Accuracy, sensitivity and specificity 
performance metrics were computed and compared for the 
computational intelligent solutions. The MLP and ensemble 
of classifiers achieved high sensitivity and specificity. These 
classifiers were 99.04% and 99.17% accurate on unseen data, 
respectively. Therefore, the ensemble of call performance 
classifiers is the preferred computational intelligent method. 
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1. Introduction 

Businesses may have the best products, lowest prices 
and most intelligent employees, but if potential 
customers perceive that the business does not have the 
capacity to complete the project, the companies will 
lose these customers. In the current economic condition, 
businesses are required to be aggressive in increasing 
the profile of their brand, establish a good reputation as 
well as presence in their market sector.  
Although, businesses may spend precious capital into 
these ventures, there are more efficient and inexpensive 
ways to achieve the same results through the use of 
affordable latest technologies such as Interactive Voice 
Response (IVR) systems. A telephone is more than a 
phone. It is a major interaction point to the customer for 
the business. It is the “front door” of the company. The 
manner in which calls from customers are answered and 
the manner in which the calls are processed is an instant 

measure of the business efficiency and customer 
relations attitude.  
By using the correct combination of new call handling 
tools, a small business can also project professionalism 
and competence from the first crucial customer 
interaction. Intelligent phone systems incorporate, 
accommodate and integrate a wide range of key 
business processes that have resulted in significant 
increase in IVR system implementations1. 
An IVR system is an automated telephony system that 
interacts with callers, gathers relevant information and 
routes calls to the appropriate destinations2. The inputs 
to the IVR system can be voice, Dual Tone Multi-
Frequency (DTMF) keypad selection or a combination 
of the two. IVR systems can provide appropriate 
responses in the form of voice, fax, callback, e-mails 
and other media2. An IVR system solution may consist 
of telephony equipment, software applications, 
databases and supporting infrastructure. 
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However, there are many businesses that provide IVR 
systems to customers, which are poorly designed or 
implemented that result in caller frustration when 
utilizing the automated solutions3. An example of a 
cause of caller frustration would be a voice prompt that 
plays a detailed description of the options available. The 
descriptions are long, thus resulting in caller confusion 
as the caller cannot remember all the options presented. 
Another example is an IVR application that does not 
provide the caller sufficient time to respond to a prompt. 
As a result, these customers would probably end the call 
or request for a transfer to a Customer Service Agent 
(CSA). 
The aim of this paper is to develop a call classification 
application, using computational intelligent methods, 
which could assist companies in quantifying caller 
behaviour within their IVR systems. It is anticipated 
that this application would be used in conjunction with 
other customer behaviour analysis techniques such as 
listening to recorded calls. As a result, this application 
should be used to confirm the IVR system performance 
in relation to customer interaction. 
IVR applications are developed in Voice Extensible 
Markup Language (VXML). VXML applications are 
voice-based dialog scripts that consist of form or dialog 
elements. The form or dialog elements are used to group 
input and output sections together. A field element is 
used to obtain and interpret user input information. As a 
result, the form or dialog elements contain field 
elements4. 
The classification system developed consists of 2 
components, the field and the call performance 
classification components. The field classification 
component consists of classifiers that categorize caller 
behaviour at a field within the IVR applications into 
specific interaction classes. A call performance 
classifier utilizes these interaction classes to evaluate 
the performance of the customer call in relation to caller 
behaviour.  
As a result, the call performance classes can assist in 
determining trends of caller behaviour within the self 
service systems. For example, the caller behaviour 
classification application can identify calls that 
transferred or disconnected at the final step of the 
automated process as well as calls where the automated 
speech recognition performed poorly. Thereafter, 
analysts can listen to a sample of these calls and 
determine the reason for this. The caller behaviour 

classification system can also identify the field that 
resulted in the majority of the callers transferring to a 
CSA or caller disconnecting. The field interaction 
classes can elaborate on the reason for the caller 
behaviour experienced. 
In order to develop such an application, the 
classification of data must be accurate. This paper 
compares field classifiers as well as call performance 
classifiers that were developed utilizing Artificial 
Neural Network (ANN), Fuzzy Inference System (FIS), 
Genetic Algorithms (GAs) and Support Vector Machine 
(SVM) techniques. Ensembles of classifiers were also 
considered. 
Multi-Layer Perceptron (MLP) and Radial Basis 
Function (RBF) neural network architectures 
considered, are feed-forward structures whereby each 
unit receives inputs only from lower layer units. In the 
majority of implementations, the network consists of 2 
layers of adaptive weights with full connectivity 
between inputs and hidden units as well as between 
hidden units and outputs5. 
The training of these networks is accomplished through 
backpropagation and a complex nonlinear optimization 
of the network hidden and output weights. At iterations, 
the error of the network is assessed and the derivative of 
this error is calculated with respect to each weight 
within the network. 
The error function generally used in ANN computation 
is the squared difference between the actual and desired 
outputs. Optimization methods are then used to 
minimize the error function by altering the weights, 
initially in the output layer and then the hidden layer. 
Essentially, the error is backpropagated from the output 
of the network, through the output weights and to the 
hidden weights5. Detailed explanations on these ANN 
architectures can be found in Ref. 5. 
GAs are known to be robust optimization procedures 
based on the mechanism of the natural evolution. GAs 
have the capability of locating a global optimum as 
these procedures do not use any derivative information 
and GAs search from multiple points. 
In traditional GAs, binary representation has been used 
for chromosomes6. This results in an even discrete 
depiction of the real optimization problem. Within these 
binary-coded GAs, binary substrings representing each 
parameter with a desired precision are concatenated to 
form a chromosome. Therefore, a large number of 
variables in a real-world problem would result in 
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chromosomes encoded in long strings. Also, there is a 
discrepancy between the binary representation space 
and the actual problem space. For example, 2 points 
close to each other in the real space might be far away 
in the binary represented space. 
In order to resolve these problems, floating-point 
representation of parameters as a chromosome is 
utilized7. In these real-coded GAs, a chromosome is 
coded as a finite-length string of the real numbers 
corresponding to the real-world problem variables. 
Real-coded GAs are robust, accurate as well as efficient 
because they are conceptually closest to the real-world 
problem and moreover, the string length reduces to the 
number of variables. It has been reported that the real-
coded GAs outperformed binary-coded GAs in many 
design problems8. 
This research will determine if this is true in relation to 
the field and call performance classification application. 
Support Vector Machines (SVMs) perform well for 
modeling challenging high-dimensional data. SVMs 
have been used successfully in text mining9, image 
mining10, bioinformatics11 and information fusion12. 
SVM performance has been demonstrated to be superior 
to the performance of decision trees, neural networks 
and Bayesian techniques9, 11, 12. 
A fundamental method in data mining and pattern 
recognition is clustering of data. Fuzzy clustering 
involves the natural grouping of data in a large data set 
and provides a basis for constructing rule-based fuzzy 
model13. Fuzzy c-means, mountain clustering, 
subtractive clustering and entropy-based fuzzy 
clustering are among the fuzzy clustering algorithms 
used. In this paper we are interested in subtractive 
clustering.  
The classification of data into various classes has been 
an important research area for many years. ANNs have 
been applied to pattern classification14. Research has 
also been conducted on fuzzy classification. This 
resulted in many algorithms, such as fuzzy K-nearest 
neighbour15 and fuzzy c-means16, being applied to 
classification problems. Fuzzy systems constructed 
using genetic algorithms have been utilized17. Fuzzy 
neural networks have also been employed in pattern 
classification applications18. 
Support Vector Machines have been applied to multi-
category classification problems19. These classification 
tasks have also been implemented by combining 
multiple simpler specialized classifiers20. 

The sections to follow examine the caller behaviour 
classification system as well as its implementation 
methodology. The paper ends with the comparison of 
the various classifiers developed and the selection of the 
superior networks. 

2. The developed system 

This section examines the caller behaviour classification 
system illustrated in Fig. 1. As the developed system is 
to be used to identify trends of caller behaviour within 
the IVR VXML applications, the field classifiers are 
trained based on data extracted from IVR log event 
files. These files are generated by the IVR platform as 
specific events occur during a call to the system. Events 
such as call begin, form enter, form select, automatic 
speech recognition events, transfer events and call end 
events are written to the logs21. 
Table 1 shows the inputs and outputs of the field 
classification component. These specific inputs have 
been selected to characterize the caller experience at a 
field within a VXML application. The outputs of the 
classifiers summarize the caller field behaviour through 
the use of interaction classes. 
The confidence input illustrates the IVR speech 
recognition probability.  The value is a percentage. The 
larger the percentage, the greater the probability the 
system interpreted the caller successfully. 
 
 

 

Fig. 1.  The caller behaviour classification system 
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Table 1.  The inputs and outputs of the field 
classifier.  

Inputs Outputs 
Output  

interaction class 

Confidence 
Field 
performance 

Good, acceptable, 
investigate, bad 

No matches 
Field transfer 
reason 

Unknown, 
difficulty 

No inputs 
Field hang-up 
reason 

Unknown, 
difficulty 

Max speech 
timeouts 

Field 
difficulty 
attempt 

Attempt 1, attempt 
2, attempt 3 

Barge-ins Field duration High, medium, low 

Hang-up 

Field 
recognition 
level High, medium, low 

Transfer to 
Service Agent 

Experienced 
caller True, false 

DTMF transfer   
Duration   
System error   
Confirmation of 
transaction   

 
A caller may answer a question the VXML application 
prompts with a response the application does not 
accommodate. These events are represented by the no 
match inputs. In general, most VXML applications 
accommodate 3 no match events per field. On a third no 
match event, the call is transferred to a DTMF field. If 
the caller fails to complete the DTMF field successfully 
on attempt 1, the call is transferred to a CSA. The same 
process is used for the third no input and maximum 
speech timeout events. The no match field classifier 
inputs assist in identifying callers that misunderstood 
the VXML prompt as well as unique responses that the 
VXML application can use to improve field recognition 
coverage. 
In response to a prompt, a caller may remain silent. 
These events are represented by the no input 
parameters. VXML applications normally accommodate 
3 no input events on each field. These input parameters 
assist in identifying callers that were confused when 
prompted with the automated application question. As a 
result, the caller remained silent.  
Callers may reply to VXML applications by talking 
beyond the allocated timeout period of the field. These 
events are represented by the maximum speech timeout 
input parameters of the field classifiers22. Maximum 
speech timeout input parameters are important as they 

assist in determining whether the timeout periods are 
adequate for callers to complete their responses. 
Barge-in input parameters illustrate whether or not a 
caller interrupted the application while the automated 
question prompt played.  Caller disconnects, transfer to 
DTMF, transfers to Customer Service Agents (CSAs) 
and system errors are represented by the hang-up, 
DTMF transfer, transfer to service agent and system 
error input parameters, respectively. These inputs can 
also assist in determining the level of difficulty the 
caller experienced in the field. The duration input 
parameter illustrates the time the caller spent 
completing the field. Confirmation of transaction 
represents whether or not the caller verified the 
application recognition as being true.  
The field performance output interaction class of the 
classifier will illustrate whether the caller behaviour is 
good, acceptable, investigate or bad. The field transfer 
reason and field hang-up reason interaction classes 
attempt to identify the motivation for the transfer to 
CSA or caller disconnect, respectively. Field difficulty 
attempt interaction class computes the number of 
difficulty events that occurred during the field 
interaction. The field duration as well as field 
recognition level classes illustrate 3 categories of 
performance; low, medium and high. As a result, these 
output parameters will assist in characterizing the caller 
experience at a VXML field. 
Experienced caller output parameter categorizes 
whether or not the caller is a regular user of the 
application and is therefore comfortable with the 
application call flow. In determining the number of 
experienced callers, the contact center can determine the 
usage of the application. 
The function of the call performance classifier is to 
provide a summarized performance evaluation of the 
complete call based on all fields accessed during the 
call. Fig.1 illustrates the inputs and outputs of the 
component. The call performance output class provides 
a measure of the call performance based on field 
performance interaction classes. Experienced caller 
output parameter assists in determining whether the 
caller is familiar with the IVR application as the caller 
has used the application previously. Self-service level 
illustrates a measure of the extent of the IVR application 
usage before the application ended the call, caller 
disconnects or transfer to CSA event occurs. Speech-
enabled level output parameter illustrates 3 categories of 
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performance; good, acceptable or investigate. This 
provides a measure of the number of fields the caller 
completed successfully using speech recognition. The 
caller disconnect transferred call performance output 
parameter identifies the field a caller disconnect or 
transfer event occurred utilizing the field classifier 
disconnect and transfer interaction classes.   

3. Selection and preprocessing of data 

This section examines the data used in the creation of 
the field and call performance classification 
components. The data utilized in implementing the field 
classification component classifiers has been based on 
data extracted from IVR log event files. A business 
intelligence solution that involved Extract, Transform 
and Load (ETL) processes has been developed to extract 
and compute information such as recognition 
confidence values, duration values and call completion 
information. This information is stored within a 
database and is then manipulated utilizing specific rules 
to generate the data sets. Rules such as if no hang-up, 
transfer to CSA, DTMF transfer, system error, no 
inputs, no matches or maximum speech timeouts occur, 
but the confidence level at the field is greater than 80%, 
the duration to complete the field is less than the 
average field duration and the field confirmation is true, 
the field performance interaction class would be 
computed as ‘good’, were followed. 
The call performance classification component input 
data set values were calculated using the interaction 
classes computed based on the rules mentioned above. 
Similar rules such as when all the field classifiers 
compute the field performance interaction class as good, 
acceptable, investigate or bad the call performance level 
would be good, acceptable, investigate or bad, 
respectively, were used to create the call performance 
classification output data set. 
The call performance output class provides a measure of 
the call performance based on field performance 
interaction classes. The experienced call output class 
used the field classifier experienced caller outputs to 
generate an output value. If 2 or more of the field 
classifiers experienced caller output is set to true, the 
experienced call output class would also be true.   
The self-service level, speech enabled level and caller 
disconnect transferred output parameters utilized the 
field classifier disconnect and transfer interaction 
classes to compute an output value. However, the 

speech enabled level output value calculation is also 
based on DTMF transfer information.  
No match, no input and maximum speech timeout 
information has been presented to the field classifiers, 
using a binary notation. These inputs are presented by 3 
digit binary words. For example, if a no match 1 and a 
no match 2 occur at a field, the binary notation will be 
’011’. A similar binary notation is employed for the no 
input and maximum speech timeout classifier inputs. 
The barge-in, hang-up, transfer to CSA, DTMF transfer, 
system error and confirmation of transaction input 
information were represented by bit binary words. A 
similar binary notation scheme has also been utilized to 
interpret and present the interaction classes to the call 
performance component. This data presentation method 
has also been employed in interpreting the call 
performance classification component output values.   
The confidence and duration input parameters of the 
field classifiers were preconditioned by normalizing the 
data. Normalizing the data entails manipulating the data 
sets such that the values within the sets are between 0 
and 1. The field classification component classifiers 
developed were trained utilizing the normalized data 
sets. Due to the binary word representation utilized to 
present the remaining field classifier inputs and the 
interaction classes computed, normalization of these 
values is not necessary. 
Normalization is accomplished by acquiring the 
minimum and maximum values within the data sets. 
These values are then utilized to compute the 
normalized values. 
The research conducted entailed the creation of ‘Say 
account’, ‘Say amount’, ‘Select beneficiary’ and ‘Say 
confirmation’ field classifiers. Caller behaviour per field 
is unique. For example, at a ‘Say confirmation’ field the 
caller is required to say ‘yes’ or ‘no’. However, the 
caller is requested to say the currency value at the ‘Say 
amount’ field. As a result, the duration to complete the 
VXML application field is much shorter at the 
confirmation field. Therefore, each classifier is trained 
with data relevant to the field. 
In order to ensure that over-fitting and under-fitting 
were avoided, the data has been divided into 3 sets. The 
data is divided into training, validation and test sets. The 
training data set is used to train the algorithms to 
identify the general classification groups within the 
data. The validation data set is used to assess the 
classifier and the test data is used to confirm the 
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classification capability of the developed models. This 
method is employed in the implementation of the field 
and call performance classification components.  

4. Artificial neural networks 

MLP and the RBF ANN architectures were utilized in 
the development of both the field and call performance 
classification components.  
The MLP and RBF ANN architectures are possibly the 
most extensively employed ANNs in pattern 
classification23. Due to the non-linear capabilities of 
these computational intelligent methods, they are said to 
be excellent universal approximators that provide highly 
accurate solutions. As a result, these networks produce 
very practical tools for classification and inversion 
problems5.  
It has been stated that a network with 1 hidden layer, 
provided with sufficient data, can be used to model any 
function24. As a result, the MLP and RBF ANN 
architectures employed consisted of only 1 hidden layer.  
The MLP network hidden layer consists of non-linear 
activation functions. The choice of the activation 
function is mainly dependant on the application of the 
ANN5. However, it has been found that the hyperbolic 
tangent activation function offers a practical advantage 
of giving rise to faster convergence during training23. As 
a result, this function has been utilized within the MLP 
networks.  
The MLP network output layer also consists of 
activation functions. There are 3 major forms of the 
function that should be considered. These are the linear, 
logistic sigmoidal and softmax activation functions23. It 
has been stated that the appropriate selection of the 
output-unit activation function for a classification 
problem is the logistic sigmoidal function23. As a result, 
this function has been employed within the output layer 
of the MLP network.  
The RBF network that has been developed contained a 
Gaussian activation function within its hidden layer and 
a linear activation function within its output layer. 
The MLP and RBF ANN implementation process 
involved the optimization of the network architectures. 
As a result, this entailed the identification of the correct 
number of hidden neurons that would yield the most 
accurate results. 
Binary and real coded GAs were employed to optimize 
the field and call performance ANN classifier 

architectures. Populations of MLP and RBF ANN 
individuals were generated by the GAs.  
GAs are known to be robust optimization procedures 
based on the mechanism of the natural evolution. GAs 
have the capability of locating a global optimum as 
these procedures search from multiple points. In 
traditional GAs, binary representation has been used for 
chromosomes. Floating-point representation, real-coded 
GAs, of parameters as a chromosome has also been 
used6. 
An error function that mapped the number of hidden 
nodes to the accuracy of the developed network is used 
as the evaluation function for the GAs. The fitness of 
the individuals within a population is determined by 
calculating the accuracy of the ANNs when presented 
with validation and test data sets. The minimum value 
of these accuracies determined the fitness of the 
individual. The ANNs were trained using the training 
data set. The outputs of the ANNs were interpreted by 
utilizing a classification threshold value of 0.5. This 
implies that if the classifier outputs a value less than 0.5, 
the output will be regarded as a 0. Similarly, if the 
output value is larger than or equal to 0.5, the output 
will be interpreted as a 1.  
Since this is a classification implementation, the 
accuracy of the networks developed can no longer be 
calculated utilizing the sum of square error of the 
difference between the target and the network output 
values. Instead, a confusion matrix is employed to 
identify the number of true and false classifications that 
are generated by the ANN developed. This is then 
utilized to calculate the true accuracy of the ANN 
classifiers, using the following equation:  

)()( TNFPFNTP
TNTPAccuracy

+×+
×

= ,  (1) 

where 
TP is the true positive (1 classified as a 1), 
TN is the true negative (0 classified as a 0), 
FN is the false negative (1 classified as a 0), 
FP is the false positive (0 classified as a 1). 
 
The GAs produced 25 generations of 10 ANN 
individuals within the population. The GAs were limited 
to produce ANN individuals with the number of hidden 
nodes between 5 and 100. Due to the predictive 
capabilities or generalization capabilities reducing as the 
number of intermediate units increase, ANNs with 
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hidden nodes greater than 100 were not considered. 
More hidden nodes increases the dimensionality of the 
function being fitted, enabling easier training which 
results from higher training capacity. However, this 
detrimentally affects the generalization capabilities of 
the network. A major consideration when developing a 
suitable ANN for a classification application is to make 
a trade-off between convergence and generalization25. 
In order to produce successive generations, selection of 
individuals is important in a GA. The selection function 
determines which of the individuals will survive and 
move on to the next generation. A probabilistic 
selection is performed based upon the fitness of an 
individual such that the superior individuals have a 
higher chance of being selected. There are several 
schemes for the selection process. Roulette wheel 
selection and its extensions, scaling techniques, 
tournament, normal geometric ranking and elitist 
models are examples of selection functions used6. The 
selection approach assigns a probability of selection to 
each individuals based on its fitness value. GA solutions 
that used normalized geometric ranking and tournament 
selection functions were compared in this research.  
Crossover and mutation operators provide basic search 
mechanism of the GA.  Crossover operators transform 2 
individuals into 2 new individuals, while mutation 
operators alter 1 individual to produce a single solution. 
In this research, binary coded GAs utilized binary 
mutation and the real coded GAs used non-uniform 
mutation genetic operators. Arithmetic and simple cross 
over operators have been used within the binary and real 
coded GAs, respectively. For further information on 
these crossover and mutation operators, refer to Ref. 6. 
Binary and real coded GAs that used normalized 
geometric ranking as well as tournament selection 
functions were compared in terms of computational 
efficiency and quality of the GA solution.  
Computational efficiency, in this context, is defined as 
the number of generations the GA utilized to converge 
to the most optimal number of hidden nodes. 
Table 2 illustrates the results of the MLP and RBF ANN 
hidden nodes optimization using GAs. During the field 
‘Say account MLP classifier optimization, it is evident 
that the binary coded GAs and the real coded GAs 
converged to a solution by generation 22 and 9, 
respectively. As a result, in regards to the field ‘Say 
account’ MLP classifier, the real coded GAs 
outperformed the binary coded GAs. However, during 

the field ‘Say amount’ MLP classifier optimization, the 
GAs using tournament selection function outperformed 
the GAs that employed normalized ranking selection 
function. The real coded GA that used normalized 
ranking selection function converged the fastest to an 
optimal number of field ‘Select beneficiary’ and ‘Say 
confirmation’ MLP classifier hidden nodes solution. 
However, the GA that employed binary coded 
tournament selection function also yielded the optimal 
field ‘Say confirmation’ MLP classifier number of 
hidden nodes, utilizing the same number of generations.  
In terms of computational efficiency, the binary coded 
GA and the real coded GA that used normalized 
geometric ranking selection function outperformed all 
the GA solutions considered in optimizing the field ‘Say 
account’ and ‘Say amount’ RBF classifier architectures, 
respectively. However, the real coded GA that 
employed tournament selection function performed the 
best in optimizing the field ‘Select beneficiary’ and ‘Say 
confirmation’ RBF classifier architectures. 
During the call performance classification RBF ANN 
architecture optimization, it has been determined that 
the binary and real coded GAs converged to a solution 
at generation 1. However, the call performance 
classification MLP ANN architecture optimization 
achieved different results. Table 2 illustrates the results 
of these network implementations. 
As a result, in terms of computational efficiency, all GA 
solutions considered in developing the call performance 
classification component to optimize the RBF 
architecture performed equally well. However, when 
optimizing the MLP number of hidden nodes in relation 
to computational efficiency, the binary coded GA that 
employed normalized geometric ranking selection 
outperformed all GA solutions considered. This 
algorithm converged to a solution at generation 1. 
Quality of the GA solution is the confirmation that the 
optimal number of hidden nodes computed by the GA is 
truly the most suitable value. In order to determine the 
quality of the GA solutions, field MLP and RBF as well 
as call performance classifiers were created containing 
the optimal number of hidden nodes calculated by the 
algorithms.  
The real coded GA utilizing tournament selection 
function is best suited in optimizing the field classifier 
architectures as this algorithm computed the optimal 
number of hidden nodes that produced the most accurate 
classifiers. This is true for the field ‘Say account’, ‘Say 
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amount’ and ‘Say confirmation’ MLP classifiers. This is 
also valid for the field ‘Say account’, ‘Select 
beneficiary’ and ‘Say confirmation’ RBF classifiers. 
However, the binary coded GA that used the tournament 
selection function returned the optimal number of 
hidden nodes that resulted in the most accurate field 
‘Select beneficiary’ MLP classifier. This GA also 
computed the same optimal number of ‘Say 
confirmation’ MLP hidden nodes as the real coded GA 
that employed tournament selection function, which 
produced the best field ‘Say confirmation’ classifier. 
Similarly the real coded GA that used normalized 
geometric ranking selection function yielded the same 

number of field ‘Say amount’ MLP hidden nodes as the 
real coded GA that utilized tournament selection 
function. However, the binary coded GA that used 
normalized geometric ranking selection function 
returned the optimal number of hidden nodes that 
produced the most accurate field ‘Say amount’ RBF 
classifier. 
It is evident that, during the call performance RBF ANN 
number of hidden nodes optimization, the binary coded 
and real coded GAs computed different optimal 
solutions. The binary coded GAs yielded 40 number of 
hidden nodes and the real coded GAs calculated 25 
number of hidden nodes as optimal. During this 

Table 2.  The results of the ANN implementation of the field and call performance classifiers. In the table below, the 
Gen column represents the number of generations the GA used to compute the optimal solution. 

MLP RBF 
GA Field Hidden 

nodes
Gen Accuracy 

Validation
Accuracy 

Test 
Hidden 
nodes

Gen Accuracy 
Validation 

Accuracy 
Test 

Field classification component 
‘Say account’ 7 22 0.9833 0.9507 66 13 0.9478 0.9363 
‘Say amount’ 96 21 0.9095 0.9694 94 16 0.9143 0.9603 

‘Select 
beneficiary’ 

9 22 0.9537 0.9654 61 18 0.9401 0.9529 

Binary coded normalized 
geometric ranking selection

‘Say 
confirmation’ 

34 19 0.9556 0.9018 73 25 0.9641 0.9033 

‘Say account’ 13 22 0.9782 0.9431 96 18 0.9492 0.9358 
‘Say amount’ 95 3 0.9092 0.9699 53 5 0.9123 0.9600 

‘Select 
beneficiary’ 

6 7 0.9628 0.9722 83 16 0.9426 0.9534 

Binary coded tournament 
selection 

‘Say 
confirmation’ 

50 6 0.9557 0.9021 77 16 0.9517 0.9025 

‘Say account’ 8 9 0.9844 0.9513 70 24 0.9493 0.9371 
‘Say amount’ 9 18 0.9199 0.9796 31 4 0.9125 0.9595 

‘Select 
beneficiary’ 

40 6 0.9499 0.9635 26 19 0.9391 0.9552 

Real coded normalized 
geometric ranking selection

‘Say 
confirmation’ 

54 6 0.9567 0.9020 88 24 0.9632 0.9041 

‘Say account’ 8 9 0.9844 0.9513 94 15 0.9499 0.9376 
‘Say amount’ 9 1 0.9199 0.9796 68 9 0.9117 0.9588 

‘Select 
beneficiary’ 

44 23 0.9494 0.9670 68 8 0.9443 0.9573 

Real coded tournament 
selection 

‘Say 
confirmation’ 

50 21 0.9557 0.9021 60 12 0.9588 0.9048 

Call performance classification component 
Binary coded normalized 

geometric ranking selection - 75 1 0.9891 0.9896 40 1 0.8281 0.8186 

Binary coded tournament 
selection - 47 16 0.9890 0.9901 40 1 0.8281 0.8186 

Real coded normalized 
geometric ranking selection - 10 21 0.9904 0.9918 25 1 0.8281 0.8186 

Binary coded tournament 
selection - 69 6 0.9888 0.9893 25 1 0.8281 0.8186 
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optimization process, it has been determined that both 
numbers of hidden nodes achieve the same validation 
and test data set accuracies. As a result, in relation to 
quality of the GA solution, all GA solutions perform 
equally when optimizing the call performance RBF 
classifier architectures. 
Table 2 shows the number of hidden nodes that resulted 
in the most accurate call performance MLP ANN 
classifier is 10. This number of hidden nodes creates a 
network that performs accurately on both the validation 
and test data sets. As a result, this classifier has good 
generalization capabilities. 
Therefore, in terms of quality of GA solution, the real 
coded normalized geometric ranking selection GA is 
most suited in optimizing the call performance MLP 
network architecture. However, this algorithm 
converged to this solution at generation 21 of 25. 
In order to improvement the classification accuracy of 
the call performance RBF ANN implementations, 
investigations were conducted to optimize the 
classification threshold of the RBF ANN. These 
experiments resulted in a significant improvement in 
performance on both the validation and test data sets. 
When utilizing a classification threshold of 0.5, the field 
MLP ANN and call performance classifier 
implementations achieved accuracy values larger than 
85%. Similarly, the field RBF ANN classifiers yielded 
accuracy values greater than 85%. As a result, the 
classification threshold of 0.5 is appropriate for the field 
and call performance MLP ANN classifiers as well as 
field RBF ANN classifier. 
 Classification threshold has been optimized by 
minimizing an error function that mapped the 
classification thresholds to the sum of the sensitivity and 
specificity of the developed call performance classifiers. 
In this research, sensitivity is defined as the probability 
that the classifier categorizes a set of inputs to the 
correct specific interaction or call performance classes. 
Specificity is defined as the probability that the 
classifier indicates that a set of inputs does not correctly 
belong to specific interaction or call performance 
classes. The former measure describes the effectiveness 
of the classifier at categorizing output classes correctly, 
while the latter characterizes the performance of the 
classifier at discarding the other output classes.  
This optimization process involved varying the 
classification threshold from 0.1 to 0.7 in iterations of 
0.01 for both validation and test data sets. During this 

process, the optimized hidden nodes of 25 have been 
used. For each of the threshold values the accuracy, 
sensitivity and specificity of the call performance RBF 
ANN are calculated. The accuracy of the classifier is 
calculated using, Eq. (1) above.  The sensitivity and 
specificity of the RBF ANN is calculated using Eq. (2) 
and Eq. (3) below, respectively.   

 
FNTP

TPySensitivit
+

=   (2) 

 
FPTN

TNySpecificit
+

=  (3) 

where 
TP is the true positive (1 classified as a 1), 
TN is the true negative (0 classified as a 0), 
FN is the false negative (1 classified as a 0), 
FP is the false positive (0 classified as a 1). 
 
The optimization criteria employed in this investigation 
required the identification of the threshold value that 
yielded the maximum of the sum of sensitivity and 
specificity. This minimizes the mean of the error rate for 
positive classifications and the error rate for negative 
classifications. This optimization criteria is equivalent 
to determining the point on the Receiver Operating 
Characteristic (ROC) where the tangent has a slope of 
one26. It is also equivalent to maximizing the Youden’s 
index or the true skill statistic.  
Table 3 illustrates the call performance RBF ANN 
implementation threshold values that resulted in the 
largest sum of sensitivity and specificity value for the 
validation as well as test data sets. As illustrated in the 
table, the optimal threshold value of 0.65 is an 
appropriate value for this classification problem. As a 
result, the optimal RBF call performance classifier 
achieved an accuracy of 91% and 90% on validation 
and test data sets, respectively. This demonstrates that 
this classifier has good generalization capabilities. 
However, the call performance MLP ANN with 10 
number of hidden nodes is approximately 9% more 
accurate than the RBF ANN classifier. 
 
 

Table 3.  The RBF ANN threshold optimization 
results. In the table below, sum refers to the 
addition of sensitivity and specificity. 
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Threshold Accuracy Sensitivity Specificity Sum 
Validation 

0.10-0.11 0.6583 0.4408 0.9831 1.4240
0.12-0.18 0.6869 0.4831 0.9765 1.4596

0.19 0.7170 0.5313 0.9678 1.4990
0.20-0.31 0.7530 0.5914 0.9586 1.5500
0.32-0.35 0.7853 0.6535 0.9436 1.5971
0.36-0.57 0.8281 0.7385 0.9285 1.6670
0.58-0.64 0.8394 0.7838 0.8990 1.6827
0.65-0.70 0.9068 0.9784 0.8404 1.8188

Test 
0.10-0.11 0.6507 0.4328 0.9783 1.4111
0.12-0.18 0.6789 0.4741 0.9721 1.4462

0.19 0.7097 0.5223 0.9643 1.4866
0.20-0.31 0.7469 0.5833 0.9563 1.5396
0.32-0.35 0.7795 0.6452 0.9419 1.5870
0.36-0.57 0.8186 0.7238 0.9258 1.6496
0.58-0.64 0.8306 0.7688 0.8973 1.6661
0.65-0.70 0.9019 0.9677 0.8406 1.8083

5. Fuzzy Inference Systems 

Fuzzy Inference Systems (FISs) were also considered in 
the development of both the field and call performance 
classification components.  
FISs are computational intelligent procedures that 
employ fuzzy logic to formulate a mapping from a 
given input to an output27. These mappings provide a 
foundation that is used to make decisions. FISs have 
been successfully applied in fields such as automatic 
control, data classification, decision analysis and expert 
systems. Due to its multidisciplinary nature, these FISs 
are also known as fuzzy-rule-based systems, fuzzy 
expert systems, fuzzy modeling, fuzzy logic controllers 
as well as fuzzy systems27. 
Categorizing of data within FISs is accomplished 
through the use of fuzzy inference rules28. Each rule 
comprises of a premise that is described by a fuzzy 
proposition and a consequence, which can be a fuzzy 
conclusion. Fuzzy inference methods are algorithms that 
compute results based on the fuzzy inference rules and 
presented inputs. Fuzzy inference methods are based on 
fuzzy logic. A FIS comprises of fuzzification, inference 
and defuzzification processes. Fuzzification process is a 
mapping from the presented input to the fuzzy sets 
defined in the corresponding universe. Inference process 
involves a decision making logic, which employs the 
fuzzy inference rules to determine fuzzy outputs 
corresponding to fuzzified inputs. Defuzzification yield 
nonfuzzy outputs27. FISs are also known as universal 
approximators28. 

Clustering of numerical data establishes the basis of 
many classification and system modeling applications. 
The primary intention of clustering is to locate natural 
groupings in a set of presented inputs with the purpose 
of congregated similar inputs in the same class27. Due to 
the utilization of data clustering to compute fuzzy 
inference rules, the resultant rules are specifically 
tailored to the data. As a result, this is an advantage 
when compared to a FIS developed without clustering27. 
The fuzzy c-means and subtractive data clustering 
techniques are the 2 most popular methods used27. 
Fuzzy c-means technique entails each data point 
belonging to a cluster to some degree, which is specified 
by a membership grade27. Fuzzy c-means clustering 
technique has the ability to group data points that 
populate a multidimensional space into a specific 
number of unique clusters. This data clustering method 
requires 2 predefined clusters that indicate the mean 
location of each cluster27. Every data point is assigned a 
membership grade for each cluster. The cluster centers 
and the membership grades for each data point are 
updated iteratively. As a result, this process relocates 
the cluster centers to the correct co-ordinates within the 
data set. The iterative process entails minimizing a 
function that represents the distance from any given data 
point to a cluster center weighted by the membership 
grade of that data point27. 
Subtractive data clustering technique is a modified form 
of the Mountain Method for cluster estimation29. In this 
data clustering method, each data point is considered as 
a potential cluster center and defines a measure of the 
potential of a data point30. The measure of potential for 
a given point is a function of its distances to all other 
data points. As a result, a point with many neighbouring 
points will have a high potential value. Once the 
potential of every data point has been computed, the 
point with the largest potential value is selected as the 
first cluster center. Thereafter, in order to determine the 
next cluster and its center, all the data points in the 
vicinity of the first cluster center that is determined by a 
radius of influence or cluster radius, is removed. This 
process is iterated until all the input data are within a 
cluster radius of a cluster center27. Specifying a small 
cluster radius will usually yield many clusters in the 
data. However, specifying a large cluster radius will 
result in few cluster centers in the data27.  
The quality of the fuzzy c-means method depends 
strongly on the choice of the number of centers and the 



 Caller behaviour classification using computational intelligent methods 
 

11

initial cluster positions30. This method is also known to 
possess the “curse of dimensionality”30. This implies 
that the number of rules increases exponentially as the 
input data increases in size. As a result, due to these 
problems, the FISs utilized in the development of the 
field and call performance classifiers, used subtractive 
clustering to generate the required membership 
functions and set of fuzzy inference rules.  
The development of the field and call performance FIS 
classifiers involved the optimization of the cluster 
radius used within these components. The cluster radius 
has been optimized by minimizing an error function that 
mapped the radius to the accuracy of the developed 
inference systems. This process used the validation data 
sets. 
The optimization process followed entailed the 
construction of various field and call performance 
inference systems with the cluster radius ranging from 
0.01 to 1. During the cluster radius optimization, 
classification threshold of 0.5 has been employed. 
Thereafter, when the optimal cluster radii have been 
identified, the classification threshold is optimized.  
Table 4 illustrates the cluster radii that resulted in the 
most accurate field classifiers. As shown in the table, 
field ‘Say account’ FIS classifier proved to be the most 
accurate, yielding an accuracy of 78.00% on validation 
data set. However, the field ‘Say amount’ FIS classifier 
is the least accurate, producing an accuracy of 63.11% 
on validation data set. 

Table 4.  The Results of FIS cluster radius 
optimization. 

Radius Field 
Accuracy 
Validation 

Accuracy 
Test 

Field classification component 
0.16 ‘Say account’ 0.7800 0.8723 
0.26 ‘Say amount’ 0.6311 0.9566 

0.40 ‘Select 
beneficiary’ 0.7288 0.9339 

0.78 ‘Say 
confirmation’ 0.7074 0.8674 

Call performance classification component 
0.13 - 0.9152 0.9108 
0.14 - 0.9152 0.9108 

 
 
Table 4 also illustrates the results of the call 
performance FIS classifier cluster radius optimization. It 

has been determined that cluster radii of 0.13 and 0.14 
achieved the same validation and test data set 
accuracies. These cluster radii also achieve the best 
accuracies of 92% and 91% on validation and test data 
sets, respectively.  
In order to attempt to improve the accuracy of the FIS 
field and call performance classifiers, the classification 
threshold is optimized. Similar to the ANN threshold 
optimization procedure followed previously, the 
classification threshold is optimized by minimizing an 
error function that mapped the classification thresholds 
to the sum of the sensitivity and specificity of the 
developed FIS classifiers. The process is performed on 
the validation and test data sets.  
This classification threshold optimization process 
entailed varying the classification threshold from 0.1 to 
0.7 in iterations of 0.01. The procedure used the 
optimized field FIS classifier cluster radii illustrated in 
Table 3. However, the process employed to optimize the 
call performance FIS classifier classification threshold 
used a cluster radius of 0.14. For each of the threshold 
values the accuracy, the sensitivity and specificity of the 
FIS is calculated using, Eq. (1), Eq. (2) and Eq. (3) 
above, respectively. 
Table 5 illustrates the threshold values that resulted in 
the largest sum of sensitivity and specificity value for 
the validation and test data sets. It is evident that by 
identifying suitable thresholds values, the validation 
data set accuracy of the field classifiers has improved. 
The field ‘Say amount’ FIS classifier has become the 
most accurate, producing an accuracy of 82.54% on test 
data. The least accurate is the field ‘Select beneficiary’ 
FIS classifier, achieving an accuracy of 77.82% on test 
data. 
It is also evident that the original threshold value of 0.5 
is an appropriate value for the call performance 
classification problem. As a result, the optimal FIS call 
performance classifier achieved an accuracy of 92% and 
91% on validation and test data sets, respectively. Due 
to these results, it can be concluded that this classifier 
has good generalization capabilities. 

6. Support vector machines 

During the development of the field and call 
performance components, SVM classifiers were also 
implemented.  
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SVM is a reputable computational intelligent method 
for resolving classification problems. Support Vector 
Machines (SVMs) have many advantages in solving 
small sample size, nonlinear and high dimensional 
pattern recognition problems31.  SVM utilizes support 
vector (SV) kernel functions to map the data in the input 
space to a higher dimensional feature space where the 
problem can be processed in a linear form31. As a result 
the kernel function is a key technology of SVM. The 
type of kernel function will affect the classifier learning 
and generalization capabilities. Different kernel 
functions will construct different SVM classifiers. 
This research considers the linear, polynomial, Radial 
Basis Function (RBF) and sigmoid kernel functions.  
When the number of training instances is less than the 
number of features within the data, the linear kernel 
function is most appropriate32. However, the RBF kernel 
function has the ability to accommodate non-linear 
relationships between input instances and output 
classes. The sigmoid kernel function behaves similar to 
the RBF kernel functions for certain parameters. The 
RBF kernel function has less hyperparameters than the 
polynomial kernel function32. For detailed information 
on these kernel functions refer to Ref. 32. 
SVM implementation process involved creating field 
and call performance classifiers that employed the 
kernel functions mentioned above. The validation and 
test data set performance metrics of the resulting SVM 
classifiers were then compared to determine the kernel 
function most suitable for this application.  As a result, 
this involved the selection of an appropriate kernel 

function that would result in classifiers with excellent 
generalization capabilities. 
Utilizing the training data set, these SVM classifiers 
were trained. Thereafter, the validation and test data set 
were presented to the models. The accuracy of the 
developed classifiers has been calculated for the 
validation and test data sets using Eq. (1). SVMs that 
resulted in the largest accuracy value, when presented 
with the validation and test data sets, were analyzed. 
Exceptional results were obtained that yielded field and 
call performance classifiers with good generalization 
capabilities. These results are shown in Table 6. It is 
evident that the polynomial kernel function resulted in 
the most accurate field ‘Say account’ SVM classifier. 
The linear and RBF kernel function classifiers were 
only 3% less accurate on unseen ‘Say account’ data. 
Similarly, the sigmoid kernel function ‘Say amount’ 
classifiers were most accurate. The linear kernel 
function provided to be most appropriate for the field 
‘Select beneficiary’ and ‘Say confirmation’ classifiers. 
The kernel functions used created call performance 
classifiers with accuracies larger than 95% on validation 
and test data sets. It is evident that the linear kernel 
function resulted in the most accurate call performance 
classifier. The RBF and sigmoid kernel function call 
performance classifiers were only approximately 1.5% 
and 2% less accurate on the test data set, respectively. 
However, the polynomial kernel function call 
performance classifier is approximately 3% less 
accurate than the linear kernel function classifier. 
 

Table 5.  The FIS threshold optimization results. 

Validation Test 
Radius Threshold Field 

Accuracy Sensitivity Specificity Sum Accuracy Sensitivity Specificity Sum

Field classification component 

0.16 0.16 ‘Say account’ 0.8068 0.7200 0.9943 1.7143 0.8077 0.6615 0.9863 1.6478
0.26 0.15 ‘Say amount’ 0.8265 0.7022 0.9860 1.6882 0.8254 0.6847 0.9951 1.6798
0.40 0.11 ‘Select beneficiary’ 0.7843 0.6217 0.9900 1.6117 0.7782 0.6273 0.9908 1.6181
0.78 0.21 ‘Say confirmation’ 0.7951 0.7138 0.9958 1.7096 0.7947 0.6576 0.9604 1.6180

Call performance classification component 
0.10-0.24 - 0.6846 0.4853 0.9658 1.4511 0.6846 0.4826 0.9710 1.4536
0.25-0.33  0.6849 0.4857 0.9658 1.4515 0.6847 0.4828 0.9710 1.4538
0.34-0.49 - 0.6827 0.4838 0.9633 1.4471 0.6831 0.4814 0.9695 1.4509

0.5 - 0.9152 0.9455 0.8858 1.8313 0.9108 0.9333 0.8888 1.8221
0.51-0.60 - 0.9148 0.9452 0.8853 1.8305 0.9106 0.9331 0.8886 1.8217
0.61-0.66 - 0.9147 0.9452 0.8852 1.8304 0.9106 0.9331 0.8886 1.8217

0.14 

0.67-0.70 - 0.9145 0.9458 0.8842 1.8300 0.9099 0.9333 0.8871 1.8204
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Table 6.  The Results of SVM implementation. 

Kernel 
function Field 

Accuracy 
Validation 

Accuracy 
Test 

Field classification component 
‘Say account’ 0.9688 0.8814 
‘Say amount’ 0.9068 0.9691 

‘Select 
beneficiary’ 0.9447 0.9453 Linear 

‘Say 
confirmation’ 0.9630 0.9029 
‘Say account’ 0.9047 0.9052 
‘Say amount’ 0.8521 0.8473 

‘Select 
beneficiary’ 0.8756 0.8418 Polynomial 

‘Say 
confirmation’ 0.9005 0.8583 
‘Say account’ 0.9627 0.8832 
‘Say amount’ 0.9085 0.9401 

‘Select 
beneficiary’ 0.8950 0.8594 

Radial Basis
Function 

‘Say 
confirmation’ 0.9257 0.8994 
‘Say account’ 0.9519 0.8776 
‘Say amount’ 0.9093 0.9263 

‘Select 
beneficiary’ 0.8939 0.8571 Sigmoid 

‘Say 
confirmation’ 0.9064 0.8703 

Call performance classification component 
Linear - 0.9896 0.9919 

Polynomial - 0.9609 0.9630 
Radial Basis

Function  0.9756 
0.9736 

Sigmoid  0.9713 0.9696 
 
The field and call performance SVM classifiers created 
employed a classification threshold value of 0.5. This 
threshold value resulted in above 90% accurate 
classifications. This has been demonstrated on the 
training, validation and test data sets. As result, this 
threshold value of 0.5 proved to be adequate for the 
SVM implementations.  

7. Comparison of the computational intelligent 
methods considered and the selection of the 
superior classifiers 

The computational intelligent techniques considered 
produced highly accurate field and call performance 
classifiers. The MLP ANN, RBF ANN and the SVM 
methods generated solutions that achieved accuracy 
values larger than 90% on unseen validation as well as 

test data. However, the field FIS classifier yielded 
accuracies less than 85%.  
The MLP field classifiers produced the most accurate 
solutions, outperforming the RBF and SVM field 
classifiers on both validation and test data sets. This is 
true for the ‘Say account’, ‘Say amount’ and ‘Select 
beneficiary’ fields. However, the ‘Say confirmation’ 
field SVM classifier achieved the best results on both 
validation and test data sets.  
The call performance SVM classifiers proved to be the 
most accurate, achieving an accuracy of 99.19% on test 
data. However, the call performance MLP ANN 
approach performed the best on validation data. 
In order to improve the accuracy of the field and call 
performance classifiers, an ensemble of networks has 
been considered. Ensembles of field ‘Say account ’,‘Say 
amount ’,‘Select beneficiary’ and ‘Say confirmation’ 
classifiers, consisting of the most accurate MLP ANN, 
RBF ANN as well as SVM networks, were developed. 
The call performance ensemble of classifiers considered 
consisted of the best MLP ANN, FIS and SVM models. 
Table 7 details the classifiers used within the ensembles. 

Table 7.  Ensemble of classifiers. 

Ensemble Method 
Accuracy 
Validation

Accuracy 
Test 

MLP ANN 
(8 hidden nodes) 

0.9844 0.9513 

RBF ANN 
(94 hidden nodes) 

0.9499 0.9376 
‘Say account’ field

Ensemble of 
classifiers 

SVM (Polynomial) 0.9047 0.9052
MLP ANN 

(9 hidden nodes) 
0.9199 0.9796 

RBF ANN 
(94 hidden nodes) 

0.9143 0.9603
‘Say amount’ field

Ensemble of 
classifiers 

SVM (Sigmoid) 0.9093 0.9263
MLP ANN 

(6 hidden nodes) 
0.9628 0.9722 

RBF ANN 
(68 hidden nodes) 

0.9443 0.9573

‘Select 
beneficiary’ field

Ensemble of 
classifiers SVM (Linear) 0.9447 0.9453

MLP ANN 
(50 hidden nodes)

0.9557 0.9021 

RBF ANN 
(60 hidden nodes) 

0.9588 0.9048
‘Say confirmation’
field Ensemble of 

classifiers 
SVM (Linear) 0.9630 0.9029

MLP ANN 
(10 hidden nodes)

0.9904 0.9918 

FIS 
(0.14 cluster 

radius) 

0.9152 0.9108Call performance 
Ensemble of 

classifiers 

SVM (Linear) 0.9896 0.9919
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It has been stated that classifiers utilized simultaneously 
as committees or ensemble, will provide an average 
error that is lower than any individual classifier5. 
Therefore, a combination of networks as a classifier 
should outperform a single network classifier.   
The outputs of classifiers were fed into a voting system. 
The voting system determined the final output of the 
ensemble. If the majority of the classifiers within the 
ensemble categorized an output into a certain class, the 
voting system would classify the output of the ensemble 
as the class. If all of the models within the ensemble 
classified an output into different classes, the voting 
system would classify the output of the ensemble as 
undecided.  
As shown in Table 8, the ensemble of classifiers proved 

to be an accurate solution. These committees yielded 
large accuracy values on both validation and test data 
sets. In order to confirm the performance of the 
classifiers created, the sensitivity and specificity values 
were also compared. These metrics confirmed that the 
ensemble of field ‘Say amount’ classifiers and the 
ensemble of field ‘Say confirmation’ classifiers 
outperform the MLP ANN, RBF ANN, FIS as well as 
SVM field performance classification solutions. 
However, the MLP ANN classifiers for these fields had 
a larger specificity value for both the validation and test 
data sets. This indicates that the MLP ANN classifiers 
for these fields have a larger negative classification rate 
on both the data sets. Similarly, the ensemble of call 
performance classifiers also outperformed the single 

Table 8. The performance metrics of best classifiers per method considered. 

Validation Test 
 Method 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 
Field ‘Say account’ 

classifier MLP ANN 0.9844 0.9738 0.9951 0.9513 0.9269 0.9763 

 RBF ANN 0.9499 0.9202 0.9806 0.9376 0.9049 0.9715 
 FIS 0.8068 0.7200 0.9943 0.8077 0.6615 0.9863 
 SVM 0.9047 0.8655 0.9457 0.9052 0.8766 0.9347 
 Ensemble 0.9685 0.9559 0.9813 0.9429 0.9191 0.9673 

Field ‘Say amount’ 
classifier 

 
MLP ANN 0.9199 0.8803 0.9613 0.9796 0.9711 0.9883 

 RBF ANN 0.9143 0.8717 0.9590 0.9603 0.9404 0.9805 
 FIS 0.8265 0.7022 0.9860 0.8254 0.6847 0.9951 
 SVM 0.9093 0.8681 0.9524 0.9263 0.8948 0.9589 
 Ensemble 0.9229 0.8891 0.9581 0.9683 0.9575 0.9792 

Field ‘Select 
beneficiary’ 

classifier 
MLP ANN 0.9628 0.9394 0.9868 0.9722 0.9566 0.9880 

 RBF ANN 0.9443 0.9132 0.9765 0.9573 0.9361 0.9789 
 FIS 0.7843 0.6217 0.9900 0.7782 0.6273 0.9908 
 SVM 0.9447 0.9151 0.9754 0.9453 0.9159 0.9756 
 Ensemble 0.9574 0.9384 0.9768 0.9658 0.9519 0.9799 

Field ‘Say 
confirmation’ 

classifier 
MLP ANN 0.9557 0.9206 0.9922 0.9021 0.8454 0.9625 

 RBF ANN 0.9588 0.9428 0.9751 0.9048 0.8559 0.9565 
 FIS 0.7951 0.7138 0.9958 0.7947 0.6576 0.9604 
 SVM 0.9630 0.9498 0.9764 0.9029 0.8523 0.9564 
 Ensemble 0.9649 0.9526 0.9773 0.9068 0.8590 0.9573 

Call performance 
classifier 

 
MLP ANN 0.9904 0.9845 0.9963 0.9918 0.9877 0.9960 

 RBF ANN 0.9068 0.9784 0.8404 0.9019 0.9677 0.8406 
 FIS 0.9152 0.9455 0.8858 0.9108 0.9333 0.8888 
 SVM 0.9896 0.9844 0.9949 0.9919 0.9889 0.9949 
 Ensemble 0.9917 0.9901 0.9933 0.9925 0.9908 0.9941 
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classifier solutions. As a result, the ensemble of 
classifiers is the preferred solution for ‘Say amount’ and 
‘Say confirmation’ field classification. When comparing 
the call performance classifiers developed, the ensemble 
of classifiers has the best generalization capabilities. 
Therefore, the ensemble of classifiers is also the 
preferred solution for call performance classification.  
However, the field ‘Say account’ and ‘Select 
beneficiary’ MLP classifiers outperformed the ensemble 
of classifiers solution. These classifiers produced large 
sensitivity and specificity values. As a result, these MLP 
classifier solutions have high positive as well as 
negative classification rates on both the validation and 
test data sets and are therefore, the preferred 
classification solutions. 

8. Conclusion 

The computational intelligent methods considered in 
this research yielded highly accurate field and call 
performance classifiers. Field ‘Say account’, ‘Say 
amount’, ‘Say confirmation’ and ‘Select beneficiary’ as 
well as call performance classifiers were developed 
using MLP ANN, RBF ANN, FIS, SVM and ensemble 
of classifiers. 
The MLP ANN and RBF ANN implementation process 
entailed determining the optimal number of hidden 
nodes. Binary and real coded GAs that employed 
normalized geometric ranking and tournament selection 
functions were used to compute the optimal number of 
hidden nodes. Computational efficiency and quality of 
solution were used to evaluate the performance of the 
GA solutions. These GA solutions yielded accurate 
MLP and RBF ANN classifiers. However, the field and 
call performance MLP ANN classifiers resulted in more 
accurate solutions. In order to improve the call 
performance RBF ANN accuracies, the classification 
threshold has been optimized. This process did result in 
an improvement in accuracy.  
The SVM development involved the identification of 
the SVM kernel function that yielded the most accurate 
results. The polynomial and sigmoid kernel function 
resulted in the most accurate ‘Say account’ and ‘Say 
amount’ field classifiers, respectively. However, the 
linear kernel function provided to be most appropriate 
for the ‘Select beneficiary’ and ‘Say confirmation’ field 
classifiers. 
The FIS classifiers were developed by initially 
identifying the cluster radius that resulted in the most 

accurate field and call performance classifications. 
Thereafter, the thresholds used to interpret these 
classifications were optimized. The accuracy of the field 
FIS classifiers did improve. However, the 0.5 
classification threshold proved to be the optimal for the 
call FIS performance classifier. 
Ensemble of field classifiers, consisting of the most 
accurate MLP ANN, RBF ANN and SVM classifiers, 
has also been developed. Accuracy, sensitivity and 
specificity performance metrics were computed and 
compared for the computational intelligent solutions. 
The MLP and ensemble of field classifiers achieved 
high sensitivity and specificity. The field MLP 
classifiers are the preferred models for the ‘Say account’ 
and ‘Select beneficiary’ fields as they yield the best 
performance results. These classifiers were 95.13% and 
96.28% accurate on unseen data, respectively. It has 
also been determined that the ensemble of field 
classifiers is the most accurate for the field ‘Say 
amount’ and ‘Say confirmation’ MLP classifiers. These 
classifiers achieved accuracy values of 92.29% and 
90.68%, respectively.  
The most accurate call performance classification 
method is the ensemble of classifiers, yielding an 
accuracy of 99.17%.  
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