670 research outputs found

    A Soft Computing Based Approach for Multi-Accent Classification in IVR Systems

    Get PDF
    A speaker's accent is the most important factor affecting the performance of Natural Language Call Routing (NLCR) systems because accents vary widely, even within the same country or community. This variation also occurs when non-native speakers start to learn a second language, the substitution of native language phonology being a common process. Such substitution leads to fuzziness between the phoneme boundaries and phoneme classes, which reduces out-of-class variations, and increases the similarities between the different sets of phonemes. Thus, this fuzziness is the main cause of reduced NLCR system performance. The main requirement for commercial enterprises using an NLCR system is to have a robust NLCR system that provides call understanding and routing to appropriate destinations. The chief motivation for this present work is to develop an NLCR system that eliminates multilayered menus and employs a sophisticated speaker accent-based automated voice response system around the clock. Currently, NLCRs are not fully equipped with accent classification capability. Our main objective is to develop both speaker-independent and speaker-dependent accent classification systems that understand a caller's query, classify the caller's accent, and route the call to the acoustic model that has been thoroughly trained on a database of speech utterances recorded by such speakers. In the field of accent classification, the dominant approaches are the Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM). Of the two, GMM is the most widely implemented for accent classification. However, GMM performance depends on the initial partitions and number of Gaussian mixtures, both of which can reduce performance if poorly chosen. To overcome these shortcomings, we propose a speaker-independent accent classification system based on a distance metric learning approach and evolution strategy. This approach depends on side information from dissimilar pairs of accent groups to transfer data points to a new feature space where the Euclidean distances between similar and dissimilar points are at their minimum and maximum, respectively. Finally, a Non-dominated Sorting Evolution Strategy (NSES)-based k-means clustering algorithm is employed on the training data set processed by the distance metric learning approach. The main objectives of the NSES-based k-means approach are to find the cluster centroids as well as the optimal number of clusters for a GMM classifier. In the case of a speaker-dependent application, a new method is proposed based on the fuzzy canonical correlation analysis to find appropriate Gaussian mixtures for a GMM-based accent classification system. In our proposed method, we implement a fuzzy clustering approach to minimize the within-group sum-of-square-error and canonical correlation analysis to maximize the correlation between the speech feature vectors and cluster centroids. We conducted a number of experiments using the TIMIT database, the speech accent archive, and the foreign accent English databases for evaluating the performance of speaker-independent and speaker-dependent applications. Assessment of the applications and analysis shows that our proposed methodologies outperform the HMM, GMM, vector quantization GMM, and radial basis neural networks

    Towards A Robust Arabic Speech Recognition System Based On Reservoir Computing

    Get PDF
    In this thesis we investigate the potential of developing a speech recognition system based on a recently introduced artificial neural network (ANN) technique, namely Reservoir Computing (RC). This technique has, in theory, a higher capability for modelling dynamic behaviour compared to feed-forward ANNs due to the recurrent connections between the nodes in the reservoir layer, which serves as a memory. We conduct this study on the Arabic language, (one of the most spoken languages in the world and the official language in 26 countries), because there is a serious gap in the literature on speech recognition systems for Arabic, making the potential impact high. The investigation covers a variety of tasks, including the implementation of the first reservoir-based Arabic speech recognition system. In addition, a thorough evaluation of the developed system is conducted including several comparisons to other state- of-the-art models found in the literature, and baseline models. The impact of feature extraction methods are studied in this work, and a new biologically inspired feature extraction technique, namely the Auditory Nerve feature, is applied to the speech recognition domain. Comparing different feature extraction methods requires access to the original recorded sound, which is not possible in the only publicly accessible Arabic corpus. We have developed the largest public Arabic corpus for isolated words, which contains roughly 10,000 samples. Our investigation has led us to develop two novel approaches based on reservoir computing, ESNSVMs (Echo State Networks with Support Vector Machines) and ESNEKMs (Echo State Networks with Extreme Kernel Machines). These aim to improve the performance of the conventional RC approach by proposing different readout architectures. These two approaches have been compared to the conventional RC approach and other state-of-the- art systems. Finally, these developed approaches have been evaluated on the presence of different types and levels of noise to examine their resilience to noise, which is crucial for real world applications

    Phonetic Segmentation using a Wavelet-based Speech Cepstral Features and Sparse Representation Classifier, Journal of Telecommunications and Information Technology, 2021, nr 4

    Get PDF
    Speech segmentation is the process of dividing speech signal into distinct acoustic blocks that could be words, syllables or phonemes. Phonetic segmentation is about finding the exact boundaries for the different phonemes that composes a specific speech signal. This problem is crucial for many applications, i.e. automatic speech recognition (ASR). In this paper we propose a new model-based text independent phonetic segmentation method based on wavelet packet speech parametrization features and using the sparse representation classifier (SRC). Experiments were performed on two datasets, the first is an English one derived from TIMIT corpus, while the second is an Arabic one derived from the Arabic speech corpus. Results showed that the proposed wavelet packet de composition features outperform the MFCC features in speech segmentation task, in terms of both F1-score and R-measure on both datasets. Results also indicate that the SRC gives higher hit rate than the famous k-Nearest Neighbors (k-NN) classifier on TIMIT datase

    Arabic Text Mining

    Full text link
    The rapid growth of the internet has increased the number of online texts. This led to the rapid growth of the number of online texts in the Arabic language. The enormous amount of text must be organized into classes to make the analysis process and text retrieval easier. Text classification is, therefore, a key component of text mining. There are numerous systems and approaches for categorizing literature in English, European (French, German, Spanish), and Asian (Chinese, Japanese). In contrast, there are relatively few studies on categorizing Arabic literature due to the difficulty of the Arabic language. In this work, a brief explanation of key ideas relevant to Arabic text mining are introduced then a new classification system for the Arabic language is presented using light stemming and Classifier Na\"ive Bayesian (CNB). Texts from two classes: politics and sports, are included in our corpus. Some texts are added to the system, and the system correctly classified them, demonstrating the effectiveness of the system
    corecore