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ABSTRACT 

 
Full Name : Ahmed Hamdi Abo absa 

Thesis Title : Self-Learning Techniques for Arabic Speech Segmentation and 
Recognition 

Major Field : Electrical Engineering 

Date of Degree : February 2018 

 
Speech is the most natural form of human communication. Major achievements 

have been made in developing systems that automatically recognize human speech and 

respond (or take action) accordingly. An important preprocessing step in speech 

recognition systems, which plays a key role not only in recognition but also in a variety 

of other speech applications, is segmentation. Such a preprocessing step is important in 

identifying high level semantics of speech sounds including syllables, consonants, 

vowels, phones, dialects, …etc. We show in particular, that such a step is crucial in 

properly analyzing Quranic (Muslim Holy Book) recitation. There are basically two 

general approaches used for speech segmentation, namely implicit and explicit 

approaches. Explicit segmentation uses a bottom up process and is based on the concept 

of fixed size speech frames. Such a framework has been heavily used in automatic speech 

recognition (ASR) systems based on the conventional Hidden Markov Model (HMM). 

The varying frame size or sample by sample approaches are mainly used in implicit 

segmentation approaches which are based on the detection of spectral distortions. The 

main objective of this thesis is to develop a comprehensive hybrid speech analysis system 

which includes robust segmentation and accurate classification for Arabic with particular 

focus on Quran. We develop a new framework that takes a recitation of the holy Quran as 
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input then creates speech segments by using a number of related special features. In 

addition to the traditional features, we introduce a new entropy based feature and show its 

relevance to the segmentation task. We then develop an approach for combining speech 

frames into what we call speech units using an optimization step. After obtaining the 

speech segment units, we develop our own framework for categorizing Quran speech 

segment units into a dictionary of around 22 super-classes with each covering around 30 

sub-classes. For classification, we implement a number of basic classifiers including 

KNN, MLP, and SVM. We then test the performance of an ensemble-based classifier 

with very promising results. More importantly, and given the large number of classes, a 

Deep Neural Network (DNN) architecture was used for robust classification. We used the 

Autoencoder DNN model for recognizing the segment unit class with excellent results. 

We show that the DNN is better suited for more complex features where the inclusion of 

additional parameters and layers can better capture feature discrimination across a large 

number of classes.  In summary, the dissertation provides a suite of new approaches for 

automatic Quran recitation systems including: robust segmentation, an optimum set of 

segment units, and finally a classification stage using DNN. 
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 ملخص الرسالة

  
 

  أحمد حمدي أبو عبسة :الاسم الكامل
  

  العربي والتعرف عليها الكلامتقنيات التعلم الذاتي في تقطيع  :عنوان الرسالة
  

  الهندسة الكهربائية التخصص:
  

  م ٢٨/٠٢/٢٠١٨ :تاريخ الدرجة العلمية
  

أو كيف يستطيع النظام  هذا المجال هوفي المهمة  لتطبيقاتمن ا ولكلام من أهم وسائل التواصل بين البشر.يعتبر ا
على  إن من أحد الطرق المهمة في التعرف. وت واتخاذ القرار المناسبمن خلال الكلام التعرف على مفهوم الصالآلة 

تقنية تقطيع الصوت إلى مقاطع. هذه المقاطع من الممكن أن تكون كلمات أو مقاطع لفظية أو مقاطع استخدام الكلام 
الناحية العملية فإن هذه المقاطع لها أهمية كبيرة في التعرف على قراءة  دراسات السابقة منل المن خلاو. صوتية
  القرآن.

في التقطيع التصريحي تعتمد على . يصريحت: التقطيع الضمني والتقطيع الولعمل التقطيع في الصوت يوجد نوعين
ن أغلب الدراسات في هذا النوع تعتمد حيث أ الزمنعلى مقاطع صوتية ثابتة قبل التقطيع ويقوم معرفة اللغة مسبقا 

على نظام ماركوف الخفي. بينما في التقطيع الضمني يعتمد بشكل رئيسي على التغير في إشارة الصوت دون الاعتماد 
. إن الهدف الرئيسي من هذه الرسالة هو تطوير نظام التقطيع الآلي والتعرف على هذه المقاطع على زمن ثابت للمقطع

في هذه الرسالة قمنا بتطوير نظام جديد بحيث يتم إدخال الآية القرآنية ومن ثم يتم تقطيع لفظية في القرآن الكريم. ال
متخصصة بالقرآن الكريم.   ملامح وميزاتوذلك عن طريق استخدام  الآية إلى مقاطع لفظية خاصة بالقرآن الكريم

في الصوت والتي تعتبر أول مرة يتم فيها استخدام هذه  ائيةلعشوامقياس بالإضافة إلى ذلك قمنا باستخدام خاصية 
كما قمنا بعمل دمج بين الخصائص الأولية والحصول على المتغيرات الأمثلية عن طريق الخاصية في القرآن الكريم. 

  استخدام خوارزمية الجينات الوراثية والتي من خلالها تم الحصول على نسبة ممتازة جدا في النتائج. 

منا في الرسالة بعمل طريقتين للتعرف على المقاطع الصوتية: الطريقة الآولى باستخدام خاصية الشجرة كما ق
بناء على صنف رئيسي  ٢٢تقنية الشبكة العصبية العميقة. في طريقة الشجرة قمنا باختيار والطريقة الثانية استخدام 

ي هذا النوع باستخدام ثلاث مصنفات (مصنف صنف فرعي. كما قمنا ف ٣٠والتي تغطي ما يقارب قواعد التجويد 
الجار الأقرب) وقمنا بعمل دمج بين هذه - شعاع الدعم الآلي ومصنف ك ومصنف المستقبلات(الخلايا)متعدد 

في الطريقة الثانية قمنا باستخدام خوارزمية الشبكة العصبية العميقة بينما المصنفات وحصلنا على نتيجة جيد جدا. 
  الأصناف في المقاطع اللفظية القرآنية وتم الحصول على نتيجة ممتازة جدا. وذلك بسبب كبر عدد

تقنيات جديدة في الصوت القرآني من حيث التقطيع والحصول على المقاطع الأمثلية إجمالا في هذه الرسالة قمنا بعمل 
  ومن ثم التعرف على هذه المقاطع اللفظية.
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1 CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Speech is the most natural form of human communication. More particularly, 

there has been a major interested in developing advanced algorithms and systems for 

recognizing human speech and responding accordingly. Embedding systems with such 

capabilities in machines, has intrigued researchers for many decades. Many successes 

have been achieved but much more is needed for the future. This is especially true with 

the advances made in the context aware communication systems.  

One particular application of interest is speech recognition. Automatic Speech 

Recognition (ASR) is defined as the process of converting audio waves (speech acoustic 

signals) to corresponding words or other linguistic units based on specific algorithms [1]. 

Automatic speech recognition appears in many applications and IT-solutions for 

industrial and civil areas such as: hands free operations, mobile voice application, human 

computer interaction, automatic translation, hearing aids for handicap, automatic 

dictation and simplified man-machine communication (via-voice systems). In speech 

recognition, it is easy to recognize isolated words, but the challenge is to recognize 

continuous speech. The performance of speech recognition systems can be affected by 

several conditions including: vocabulary size, speaker dependency, and noisy 
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environments, any others. The recognition performance increases when using small 

vocabulary and speaker-dependent conditions, while using large vocabulary and speaker-

independent scenarios, the performance can significantly decrease. 

One of the most fundamental preprocessing tasks before recognition is 

segmentation. While, we generally use fixed frame length in speech processing to 

preserve stationarity, the reality is that human voice comes out as a concatenation of 

speech units rather than frames. For this reason, it is important to develop robust 

algorithms to segment speech signals into fundamental units rather than frames. 

Speech Segmentation is defined as the process of determining the boundaries 

between words, syllables, and phonemes of a certain language. Speech segmentation can 

be considered as a sub-problem for several speech processing applications as it is widely 

used in speech synthesis, speech recognition, speech compression…etc. Hence, an 

effective method of speech segmentation is essential especially when dealing with 

continuous speech. 

Automatic speech segmentation is very important nowadays as it offers several 

advantages over manual segmentation. The manual segmentation is a traditional method 

usually performed by an expert phonetician based on careful listening and visual 

judgments to determine the boundaries of each phoneme or segment unit. Hence, manual 

segmentation is time consuming, tedious, and the results are very subjective because 

every expert phonetician have his/her own method of determining segmentation 

boundaries. Moreover, it is quite unpractical to carry manual segmentation with large 

datasets. 
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In general, there are two approaches used for automatic speech segmentation 

although some researchers may name them differently. Some researchers use the terms 

blind segmentation and aided segmentation [2], while others use the term implicit and 

explicit segmentations [3]. The implicit segmentation is based on splitting incoming 

utterances into segments without any linguistic information, while the explicit 

segmentation splits the utterance as in a transcription. However, the authors in [4], 

showed that implicit segmentation is a fundamental task in human speech development 

and language acquisition, and is considered more accurate as it specifically determines 

the start and the end of linguistic units.  

The Arabic language has been used for more than 4000 years. It is the language of 

the Holy Quran, which is the main reference for all Muslims. It is worth noting that the 

Arabic letters are distinguished by their beautiful patterns. It is also one of the main 

languages written from right towards left. The Arabic letters are cursively written with 

most of these constructed from connecting portions of successive carved fragments with 

various curvatures [5].  

The standard Arabic language has basically 35 phonemes; 6 vowels and 29 

consonants. Standard Arabic language phonemes can be classified into two categories, 

vowels and consonants. The syllables in Arabic are based on the contrastive components 

that are contained in its structure. The successive contrastive elements within syllable 

boundaries are made up of segmental phonemes of the language. Each syllable has a 

main part which stands out with prominence. This part is referred to, here, as the 

“nucleus” of the syllable. The remaining components are referred to as ‘marginal factors’. 

The vowel always forms the syllable nucleus (e.g.  َ◌), while the consonants represent the 
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marginal phonemes in the syllable structure (e.g. ب) [5]. The number of syllables in an 

utterance is identical to the number of vowels[6]. 

The diversity in both spoken and written Arabic language brings with its major 

challenges. These challenges are especially reflected when reading Quran. The concept of 

combining syllables, stressing others, stopping somewhere else, is such a powerful one in 

highlighting the beauty and impact of the Quran. But with this beauty, brings with it 

major challenges. 

 

1.2 Overview of speech recognition 

Speech recognition can be basically classified into two modes. The first is isolated 

word recognition; in which the words are surrounded by clear silence i.e. well known 

boundaries. The second is continuous speech recognition. The second mode is more 

difficult than isolated word recognition as the word boundaries are difficult to detect. A 

word may be uttered differently from one speaker to another due to the differences in 

dialects, gender and age; words may also be uttered in different ways by the same speaker 

as a result of emotion and illness. Temporal variability, due to differences in speaking 

rates, is easier to handle than acoustic variability introduced as a result of different 

pronunciations, accents, volumes, etc. [7]. In addition to speaker variability, all speech 

recognition systems are also affected by changes in the environment. The environment 

can introduce corruption to the speech signal due to background noise, microphone 

characteristics, and transmission channels…etc [8]. 
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Speech recognition systems can be further classified as being either a speaker 

dependent or a speaker independent systems. A speaker dependent recognition system 

can extract uttered information from a specific speaker, or range of speakers, whose 

acoustic features have been previously obtained from a training speech database. This 

type of system is called a ‘Closed-set’ speech recognition system as the training dataset 

contains uttered information for all speakers. An ‘Open-set’ speaker independent speech 

recognition system is one where there is no uttered information for the recognized 

speaker contained within the training dataset. 

Speech recognition can be achieved at a variety of levels of speech (Phone/ 

Phoneme/ grapheme, syllable, word, phrase, etc.). A phoneme is generally considered as 

“the smallest meaningful contrastive unit in the phonology of a language” [9]. Phonemes 

are defined by “minimal pairs” which produce a change of meaning if any of the 

phonemes is changed. Thus, phonemes are specific to a particular language. A phoneme 

can also be singular or can consist of a set of phones. While a phone is a single unit of 

speech sound, allophones are all possible spoken sounds that are used to pronounce a 

single phoneme. The human brain is presumed to perceive a given set of allophones as a 

particular phoneme [2]. If a phoneme is defined as the smallest unit of sound which can 

differentiate meaning, then a grapheme can be defined as the smallest unit in the writing 

system of any language that can differentiate meaning [10]. A grapheme can be a symbol 

or a letter. Sound–letter correspondence refers to the relationship between sound (or 

phoneme) and letter (or grapheme). A phonetic transcription system, like the 

International Phonetic Alphabet (IPA), transcribes the pronunciation of a language in a 

standard form. While a phonemic transcription system usually disregards all allophonic 
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differences and represents these using the same grapheme; it is also known as a 

representation of phonemic structure. However, graphemic systems use one-to-one letter 

to sound (phoneme to grapheme) rules for each word to generate a pronunciation 

dictionary [10].  

Phonemes play a major role in most current continuous speech recognition 

systems. They are generally categorized into two main groups: consonants and vowels. A 

definition of vowels and consonants is stated in [11] as: “Vowels are produced without 

obstructing air flow through the vocal tract, while consonants involve significant 

obstruction, creating a noisier sound with weaker amplitude.” In the Arabic language, 

consonants are further categorized into four classes. These are: voiced and unvoiced stops 

(e.g. ق، ب respectively), voiced and unvoiced fricatives (e.g. ف، ذ respectively), nasal 

(e.g. م) and the trill (e.g. ر) and lateral (e.g. ل) classes. The fifth class covers long and 

short vowels [12]. 

Speech segmentation is a real challenge for continuous speech recognition 

systems. For limited vocabulary isolated word recognition, the problem can be easily 

solved by determining the correct boundaries of the isolated words and rejecting the 

artefacts of speech such as noise and intra-word stops. With regard to large vocabulary 

continuous speech boundary detection, on other hand, the problem becomes much more 

difficult because of the intra-word silences and other artefacts. These problems are 

tackled by applying robust speech boundary detection algorithms. 

Speech activity detection algorithms can be applied on pre-emphasized speech 

signals to detect silence/speech boundaries. The most common methods used for end 
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point detection are the Energy and the Zero Crossing Rate (ZCR) features [13]. 

Typically, an adaptive threshold is applied, based on the characteristics of the energy, in 

order to differentiate between the background noise and the speech segments. However, 

such algorithms are very sensitive to the amplitude of the speech signal, such that the 

energy of the signal affects the classification results. This is especially a problem in noisy 

environments. Recently, a new end point detection algorithm has been proposed that uses 

Entropy contrast [14]. This algorithm uses the entropy feature rather than the energy of 

the signal. The calculation of the entropy is applied in the time domain. The authors show 

that the entropy is less sensitive to changes in amplitude of the speech signal. 

Despite the use of the above techniques, current speech segmentation techniques 

do still introduce errors into the segmentation process. An alternative is to perform the 

recognition process without prior segmentation. This method includes the ‘silence’ as a 

phoneme, and the network is trained to recognize "silence" in the same manner as other 

patterns. 

The phonemic representation of a given word is used in most speech recognizers 

to identify it. Thus, the availability of speech data that is time-aligned and labelled at 

phonemic level is a fundamental requirement for building speech recognition systems. 

Time-aligned phonemic labels can either be manually produced by expert human labelers 

or automatically produced using mathematical models. Though manually-aligned data is 

considered more accurate than automatically-aligned data [15], it is very time consuming 

to use it with large speech corpora. The most common method for automatic speech 

alignment is then so-called “forced-alignment.” The most common method for forced 
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alignment is based on building a phonetic recognizer using a Hidden Markov Model 

(HMM) [16][17][18]. 

Irrespective of whether the signal is segmented or not, all speech recognition 

systems use a feature extraction stage as an initial processing stage. The most common 

feature extraction techniques for speech are Mel Frequency Cepstral Coefficients 

(MFCC) [19], Fast Fourier Transform (FFT) [3] and Perceptual Linear Prediction 

coefficients (PLP) [20]. Typically, most ASR systems represent speech signals with the 

robust Mel Frequency Cepstral Coefficients (MFCCs). 

   

1.3 Research Motivation 

There are two general problems in Automatic Speech Recognition (ASR); there 

are acoustic modeling, and time modeling problems. The acoustic modeling problem 

deals with signal representation while time modeling deals with speech temporal 

representation. The major challenge is to find the optimal set of features that best 

represent the spectral characteristics of speech, and track these with time. Some of the 

common spectral analysis techniques include FFT, LPC, PLP and MFCC using frame 

based analysis. 

The problem in speech recognition can be reformulated as finding the best match 

between the estimated features and the different classes considered for the given 

application. There are, in general, three approaches in speech recognition; these are: 

Acoustic phonetic approaches, statistical pattern recognition approaches, and artificial 
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intelligence approaches [21]. Co-articulation adds another level of difficulty for the case 

of continuous speech where adjacent acoustic segments influence each other; which does 

not happen in isolated speech [22]. 

The process of finding the start and the end points in continuous speech segmentation is 

also a very challenging one. This task is not simple as the case of isolated word 

recognition. Manual speech segmentation is very tedious, time consuming and error 

prone. Furthermore, even if an expert phonetician performs the segmentation, the 

decisions are subjective and not reproducible.  

Human adult can automatically, effortlessly and unconsciously, segment speech in real 

time. However, the task of automatic speech segmentation by machines is inherently an 

extremely difficult and non-trivial one [22][23]. Finding gaps or breaks or even silent 

segments is not as easy as the case of printed text. The co-articulation effect mentioned 

earlier in continuous speech makes the segmentation task even harder as speech 

discontinuities can’t be easily identified [24]. Furthermore, there are no fixed cues or 

clear properties for the segmentation points. The only cue which is not fixed to any 

specific acoustic property is the abrupt change unit speech signal indicating the start of a 

new acoustic segment such as a phoneme, syllable or word. However, these kinds of 

abrupt changes can also occur because of noise and anywhere within the speech when 

there are spectral distortions. 

Continuous speech often needs to be segmented into basic or fundamental phonetic units 

for recognition and synthesis. The syllable classifications of the form: Consonant-Vowel 

(CV) and Vowel-Consonant (VC) segmentation has traditionally been used, but is 
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unfortunately too simplistic [25]. If we look at the specific application of Quran reading 

in Arabic, for example, we have also an added level of complexity due to merging of 

consonants / vowels, as an example, in Arabic language when we say (من يعلم), in reading 

the Quran it will be like (ميَّعمل). 

Compared to other western and eastern language, the Arabic language has attracted lesser 

attention among researchers worldwide. Most of the reported studies conducted on 

Arabic language focused on basic vowels representation. A limited number of research 

studies have been carried out on more elaborate modeling and syllable classification such 

as consonants, pause, nasal…etc. [26]. Some of the most cited works focusing on Arabic 

language will be discussed in the next chapter. 

 

1.4 Research Objectives 

The main objective of this thesis is to develop a new framework for Arabic Speech 

Segmentation and Recognition with special application to Quran recitation. In particular, 

the main objectives are:  

 Develop algorithms for speech segmentation from the Holy Quran recitation to 

enable enhanced automated speech classification. 

 Develop a new framework for representing short speech units that can enhance 

speech recognition tasks. The focus will be on statistical techniques combined 

with an information theoretic feature selection approach.  
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 Investigate the optimum set of Quran speech units that cover comprehensively the 

different recitation rules used in the Holy Quran.  

 Develop a Quran speech database which includes a segmented and labeled verse-

by-verse Quran recitation by different reciters. 

 

1.5 Thesis Organization 

This thesis is organized as follows: 

 Chapter 2 provides a general overview of current methods for automatic speech 

segmentation and recognition systems. The different types of segmentations are 

first presented. Previous Arabic speech segmentation and recognition techniques 

are then presented. The review of classification techniques used in our work are 

also presented. This is followed by a discussion on ensemble based methods for 

combining classifiers. Finally, we briefly outlier a deep learning neural network 

based approach for the recognition of the Arabic speech. 

 Chapter 3 The developed Quran database used in this dissertation is described in 

details. Then, we briefly describe the speech segmentation and feature extraction 

techniques that we developed. A fusion technique of individual segmentation 

engines is introduced and investigated for speech segmentation. Also, an 

optimization algorithm is applied for finding the refined boundaries of segment 

units.  

 Chapter 4 provides a description of the two new techniques used to enhance the 

Quran classification. The first technique is the hierarchical tree recognition based 
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on Tajweed recognition. The second technique is an Ensemble-based classifier 

combining several individual classifiers. 

 Chapter 5 briefly describes the Deep Learning Neural Networks (DNNS) based 

model for Quran speech classificaion. The experiments and the results of using 

the Autoencoder algorithm for isolated speech segment unit recognition are 

discussed. A deep neural network approach for creating Quran acoustic models is 

finally presented. 

 Chapter 6 provides a conclusion of the work undertaken as well as a discussion on 

future research directions on continuous Quran speech classification. 

 

1.6 Thesis Contributions 

The major contributions of this thesis are: 

 A comprehensive Quran database that is manually timed and syllabically labelled. 

This labeled database uses the KACST database for 10 professional reciters.  

 New features are introduced for representing Quran speech recitation with good 

classification results. 

 A new fusion technique of individual classifiers is introduced and used for optimal 

Quran speech segmentation. 

 A hierarchical tree recognition approach is developed to solve the problem of 

speech classification with a large number of classes.  

 An ensemble-based technique is introduced for the first time for enhancing Quran 

classification systems.  
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 We discuss a new approach for finding the optimal number of segment units 

useful for Quran recitation. 

 Deep Learning Neural Networks (DNNs) acoustic models are discussed and used 

for Quran classification with superb results. 
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2 CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction  

The basic concept of segmentation is to divide something or some object into 

discrete entities [27]. Speech segmentation can be used to divide continuous or connected 

speech into smaller discrete units that have different acoustic properties from their 

neighboring segments [2]. The discrete segments can be words, syllables or phoneme 

where segmentation may take place depending upon the purpose of the segmentation. 

Therefore, word segmentation is the process of dividing a continuous or connected 

speech into meaningful words. 

Truly accurate segmentation can only be achieved manually [28]. However, manual 

segmentation is time consuming, expensive and may introduce human subjectivity in 

carrying out the segmentation [3] [29] [28]. Therefore, there is a need to develop good 

automatic segmentation. Numerous attempts were made in finding good algorithms for 

speech segmentation with satisfactory robust from the recognition point of view [30]. 

There are basically two general approaches for speech segmentation: implicit and 

explicit approaches [31] [4], also known as blind and aid approaches [2]. These 

approaches were implemented using different methods and processes. Some methods 

used bottom up process while others used top down processes. The processes themselves 

can be further categorized in term of using window processing frame which can be 
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classified as fixed framed as used in explicit segmentation or non- fixed framed or sample 

by sample as used in implicit segmentation based on the detection of spectral distortions. 

The developed methods are also different in terms of their focus in the post processing 

stage. Some segmentation methods, developed for text to speech (TTS) applications, 

require segmentation up to granular acoustic levels while others at word level 

segmentation mostly focus on automatic speech recognition (ASR). Based on the 

application of the segmentation process, the evaluation methods are also different. 

However, the general evaluation criteria are mainly match or hit, insertion and omission 

in comparison to some reference segmentation points. Segmentation works that include 

recognition use word error rate and recognition accuracy in algorithm evaluation. 

 

2.2 Human Speech Segmentation and Recognition  

Human can understand conversational speech easily. In conversational speech, words 

utterances are spoken continuously and as a native speaker, a person generally can 

segment words in conversational speech easily without haste. However, when listening to 

speech in unfamiliar language, people experience difficulties hearing and detecting where 

one word ends and another begins. Most people assume that the speaker of that language 

speaks more rapidly than they do [32]. The situation is quite similar to speech 

understanding by infants. In the early months that of life, infants cannot segment words. 

However, it is only after seven to ten months, infants start to learn differentiating between 

words familiar to them [33], [32]. These facts show that word segmentation is usually 
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carried by humans for familiar words. Nevertheless, it is still not clear as to how exactly 

humans perceive these words [2]. 

Generally, the human process of speech understanding starts by discretely segmenting 

the words and collectively perceiving the meaning of the sentence. It is still debatable as 

to whether humans actually recognize words in a sentence vias bottom up or a top down 

approach or perception. The bottom up perception is when the word is recognized from 

understanding the combination of smaller acoustics information like phonemes and 

syllables; which means segmentation starts with smaller to bigger acoustic models from 

phonemes to word. On the other hand, top down perception detects and recognizes word 

first, then the smaller acoustic information follows, which means that the segmentation of 

the word comes first, then the perception of smaller acoustic models from word to 

phonemes follows.  

Based on the bottom-up perception, when a word is uttered, lower level acoustic 

models like phonemes or syllables are perceived by humans who then make sense of the 

combination of the acoustic models as the words in their memory. If the combination of 

the acoustic models leads to an unknown word, i.e. the word does not exist in the 

memory, then the person will not be able to recognize it. It will be like the situation 

where a person listens to a language not familiar to him. In contrast to the bottom-up 

perception, the top down approach stipulates that low level acoustic model is too fragile 

and small to be perceived as a meaningful unit. Therefore, it implies that humans only 

recognize word as a meaningful acoustic signal. It is only from the word, smaller acoustic 

models like phonemes and syllables that can be broken and perceived. Similarly, if the 

word is not in the person memory then the person may not be able to segment it or 
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understand it. Both approaches still follow the fact that humans can segment or recognize 

only words familiar to them.  

As a brief conclusion, there are some important points to learn for human 

segmentation and perception. Speech segmentation and perception is possible only with 

familiar words whether perceived as top down or bottom up approaches. The top-down 

approach stipulates that phonemes are too small to be perceived as meaningful acoustic 

unit by humans before word perception. It is believed that humans perceive words first 

then smaller acoustic units within these words. While the bottom-up process starts 

perception via smaller acoustic models before the perception of words. Both processes 

still state that humans segment only words they are familiar with [32]. 

 

2.3 Review of Segmentation Methods  

2.3.1 Introduction  

Automatic speech segmentation is not an easy task as spoken speech is generally 

continuous and does not contain any reliable acoustic model for the blank spaces between 

words as in printed text [34]. The co-articulation effect in speech signals makes 

segmentation task even harder as it does not clearly mark any discontinuity in the speech 

signal [24] [35]. Due to co-articulation effect, the phoneme boundaries start to appear 

well within the previous phonemes [36]. In other words, the boundary of the following 

phoneme is within the frame of previous phoneme. To make the problem worse, there is 

no fixed cue or fixed properties indicating segmentation points. The only cue that is not 
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fixed to any specific acoustic properties is the abrupt changes of speech signal indicating 

new acoustic information such as a phoneme, a syllable or a word. Unfortunately, abrupt 

changes also occur due to noise, which may come from multiple sources. 

Earlier work in speech processing treats segmentation as the task of start and end 

point detection as in isolated speech. The approach uses specific properties of the words 

in detecting the segmentation points. The authors in [22] were among the early 

researchers attempting to achieve segmentation and recognition of read mode connected 

digit utterances in room quality environment using the cues based on the specific digit 

properties. They used energy signal contour as digit properties with zero crossing rate 

(ZCR), Linear Predictive Coding (LPC) coefficients and error to detect voice and 

unvoiced signal in speech utterance indicating the segmentation points. They evaluated 

their performance based on the recognition rate of digits assuming that digits can be 

recognized hence the segmentation point is correct. Although they were able to obtain 

87% digit recognition rate, in comparison to isolated digit recognition, these was 6% 

degradation in recognition accuracy. They concluded that degradations were due to co-

articulation effects that exist in connected digits but not in isolated digits. The approach 

used  [21] was a direct attempt finding the segmentation points the authors tried to find in 

an implicit way. Since then, many attempts have been discussed for the task of speech 

segmentation but most of the approaches avoid dealing with the segmentation problem 

directly or implicitly; instead they prefer to statically model the transitions between 

phonetic units or explicitly perform segmentation [37]. 

Automatic speech segmentation approaches can be divided into two major categories: 

implicit and explicit segmentations. Explicit segmentation algorithms are linguistically 
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constrained to a known phonetic sequence, while implicit segmentation requires no prior 

knowledge of the corresponding phoneme sequence [31]. Both approaches have their 

advantages and disadvantages in achieving segmentation. We will discuss previous 

studies carried under both strategies.  

 

2.3.2 Explicit Segmentation 

In explicit segmentation, fixed size frames are used. The technique uses force 

alignment based on a given transcription sequence, leading to nearly no insertion as the 

number of segmentation marks equals that of the reference marks in the transcription 

[38]. This also leads to fewer omissions depending upon the given "time tolerance" with 

respect to the reference segmentation points. However, the explicit fixed size frames 

segmentation approaches require training of the acoustic information prior to 

segmentation. Furthermore, the boundaries between phoneme frames require delicate 

selection processes leading to poor match when small time tolerances and used. The co-

articulation effects occur at phoneme level making segmentation at the phoneme 

boundaries an impossible task [35].  

The explicit segmentation follows the human bottom up perception where word 

perception is understood via combinations of recognized phonemes and thus 

segmentation starts with phonemes. The most popular method in explicit segmentation is 

based on the Hidden Markov Model (HMM) [39][40][28][29][38][17]. 
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The HMM uses fixed size windows of duration 10 ms to 50 ms. Speech is considered 

to be static within short periods of few milliseconds. Fixed size overlapped windows are 

used in automatic speech recognition. Heuristically speaking, when frames are used in 

segmentation, there will be a possible gap between the phoneme boundaries and the 

segmentation points. Since phonemes are small and slight, boundary selection in 

determining the segmentation points is a difficult task.   

Realizing the limitation of the HMM method with forced alignment, most improved 

methods use fusion with segmentation refinement algorithms. In [17], the author used 

Fuzzy logic and Neural Networks for boundary refinement with the HMM. He compared 

the two refining methods and concluded that Neural Networks give better boundary 

refinement compared to Fuzzy logic. The evaluation of the work was based on the 

percentage of correct improvement in comparison to manual segmentation for a given 

time tolerance, and the segmentation performance was better when increasing the time 

tolerance. The experimental data used consistent of 80 sentences from Castilian Spanish 

uttered by one speaker. 

In [40], the authors compared the segmentation performance of HMMs with different 

parameter refinement algorithms. They compared the Viterbi and Forward Backward 

algorithms and concluded that the Forward Backward algorithm with context dependent 

performs better than the Viterbi algorithm. The data used come from a large vocabulary 

continuous speech recognition (LVCSR) Dutch corpus. The evaluation method was based 

on segmentation deviation from the true segmentation points. The smallest deviation was 

0.7% using "read aloud" and clean corpus while the deviation result using corpus with 

dialectical pronunciation increased to 7.5% at 100 ms tolerance.  
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In [39], the authors refined the HMM detected boundaries using a statistical model to 

match speech corpora. They used an English dataset and achieving a 93% hit rate. 

In [38], the author compared the standard HMM and refined HMM using a Gaussian 

Mixture Model (GMM) at each segmented frame boundary. The results of the refined 

HMM outperformed the standard HMM. The performance used was based on the 

accuracy of the segmentation which was formulated from standard parameter 

performance matches, insertions and omissions. The accuracy of the refined HMM was 

85% at 20 ms. 

In [41], the authors improved the standard HMM based segmentation using a 

nonlinear dynamical method based on time-dependent recurrent trend (TDRT) for 

phoneme boundary adjustment. The work was tested using 38 utterances consisting of 

380 sentences excerpted from the TIMIT database, achieving a 95.7% phoneme hit rate at 

a 30ms time tolerance. 

Although most researchers tried to improve segmentation by enhancing boundary 

selection at phoneme level, the HMM still exhibits some disadvantages, discussed earlier, 

are summarized here: 

 The reference patterns have to be generated before the method can be used [3]. 

 The reference patterns used to describe each frame do not always fit well the 

utterances, and do not account for all variabilities occurring in natural speech [3].  

 HMMs based technique focus more on correct identification of the sequence of 

the phonemes, and not on accurately placing the phone boundaries [39]. 
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 The HMM based segmentation model uses the Viterbi algorithm over the 

complete sequence of the input vector which is unsuitable for real time ASR 

application [42]. 

 The co-articulation effects present at the phoneme level, make the segmentation at 

the phoneme boundaries just like the HMM segmentation, challenge task [35]. 

 HMM based segmentation requires extensive training data [36], and has a high 

computational load. 

 

2.3.3 Implicit Segmentation 

Under the implicit segmentation framework, segmentation is achieved without prior 

knowledge of the acoustic information on the phonetic transcription. Implicit 

segmentation basically uses the general properties of a signal for detecting significant 

spectral changes. According to [4], implicit segmentation is a fundamental task in human 

speech development and language acquisition, and it is considered to be more accurate 

and performs well as it specifically determines the start and end of the linguistic unit 

using no phonetic information [3]. Implicit segmentation is desirable as its 

implementation gives fewer misdetections or omissions [43]. A concept which disregards 

insertion points from a non-fixed windowed approach was discussed in by Brandt’s 

algorithm which gives better segmentation results compared to the refined HMM [38]. 

However, since the approaches are linguistically unconstrained, they are expected to 

introduce numerous insertions. 
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Like the HMM based explicit approaches, some implicit methods were also applied 

with fixed size frames [3] [44] [45] [46] while others use variable size frames [47] [38]. 

As such, some implicit methods may also exhibit similar limitations to the ones in 

explicit methods.  

In [3], The author introduced a hybrid method between implicit and explicit 

segmentations. The segmentation points were detected via spectral distortion between 

framed segments using the log amplitudes of the LPC then combined using an explicit 

approach that matches the reference spectral pattern. The author evaluated the 

performance via hit comparison to the reference phoneme. Using 90 randomly chosen 

words from the German, English and Dutch languages, which consist of 789 phonemes, 

the segmentation resulted in 96% hit rate at 30 ms. 

In [42], the authors worked on a segmentation algorithm for robust speech detection. 

They used a statistical approach on the smoothed Short Time Fourier Transform (STFT) 

with non-parametric estimation of the background noise. Their experiments used speech 

in noisy environment and they applied word recognition based on segmentation points in 

the noiseless environment. The performance of the segmentation algorithm gave a WER 

of as low as 24%. 

  In [44], the focus was on syllable for segmentation. The authors used a minimum 

phase group delay approach derived from the short-term energy function. They tested the 

algorithm using the Switchboard and OGI-MLTS corpuses. The result reported was 85% 

match at 40ms time tolerance. 
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In [36], the authors proposed a segmentation method using the average level crossing 

rate (ALCR) to detect changes in the signal in the temporal domain. The proposed 

method gave 85% segment match on 100 sentences extracted from TIMIT (Texas 

Instruments Massachusetts Institute of Technology) speech corpus. 

In [46], the authors proposed a segmentation method based on log energy and the 

ZCR as cues for the Malay utterances with different noise level. The authors claimed that 

nearly 90% of the words can be segmented currently. The evaluation was based on visual 

detection and playback. 

In [48], the authors proposed an algorithm for automatic segmentation for the Indian 

language voiced speech by finding the entropy of the speech data which is placed for 

better performance. The results using the entropy based method reflected good 

performance than the energy-based techniques. 

Some researchers also used different statistical approaches for automatic speech 

segmentation. For example, in [47], the authors introduced statistical methods that were 

based on sample by sample processing, unlike the previously mentioned methods which 

used frame based overlapping blocks. The authors used statistical approaches namely, the 

Brandt Generalized Likelihood Ratio (GLR), Divergence algorithm and Pulse Method. 

The author concluded the results with a detailed explanation on the usage of the methods 

on phonemic state and claimed that the statistical method able to detect phoneme with 

greater accuracy at voice and unvoiced part. The experiments used a French speech 

database, and out of 1534 phonemes only 12 omissions occurred. 
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In [38], the authors used the Brandt GLR methods to compare segmentation 

performance with the refined HMM, and concluded that ideal Brandt GLR method, 

which did not count insertions achieved better performance than the refined HMM 

method by more than 10% in accuracy. on experiments carried on music classification, it 

was found that the divergence algorithm performed better than the Brandt GLR algorithm 

[23]. 

Segmentation by implicit approaches like the divergence algorithm and the Brandt 

GLR method rely on the detection of signal spectral distortions which may occur at 

voiced and unvoiced transitions. This can lead to false segmentation points detection or 

insertion points. The only means to control these false segmentation points is via using 

the thresholds based methods on or/and parameters. Nevertheless, according to [49], 

these statistical methods are sensitive to the threshold value, and tuning the threshold and 

the parameters to reduce insertions can unfortunately lead to an increase in omissions. 

  

2.3.4 Arabic Speech Segmentation 

Given the peculiarities and richness of the Arabic language, we have also seen a 

number of systems developed specially for Arabic speech segmentation. In [50], the 

authors proposed an implicit algorithm for Arabic speech consonant and vowel (C/V) 

segmentation. The proposed algorithm does not need special linguistic information; it is 

totally dependent upon a basic wavelet transformation, and spectral analysis to detect 

transients that happen in C/V. They applied the algorithm on 20 Arabic words recorded 

six times. They achieved 88.3% accuracy or C/V segmentation. In [51], the authors 
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developed a phoneme segmentation algorithm using the Fast Fourier Transform (FFT) 

based spectrogram. They achieved an overall segmentation accuracy of 95.39%. In  [52], 

the authors developed a basic speech segmentation for recognition. They used a number 

of different cues with the best results achieved using the power spectral density (PSD) 

and the zero crossing rate (ZCR). They achieved 89% accuracy for eight different 

speakers. 

In [53], the authors discussed an algorithm for vowel identification that uses formant 

frequencies. The investigation was carried based on Holy Quran Tajweed rules. The 

system showed up to 90% average accuracy on continuous speech files of 1000 vowels. 

Some researchers also applied statistical techniques (borrowed for other languages) on 

Arabic language. For example, in [54], the authors applied the principles of eigenvalues 

and eigenvectors for the first time in segmentation. A success rate of 80% was achieved 

for a small database of 50 spoken words. Also in [5], the authors evaluated the maxima 

and minima points of the energy curve and some other statistical measures. The average 

segmentation accuracy achieved across several speakers was 85.4%. 

In [55], the author used a supervised Arabic speech segmentation based on the 

phoneme level. The author used the Short Time Fourier Transform to predict the 

phoneme boundaries based the locations of main energy changes in frequency over time. 

The segmentation accuracy achieved was 81%. 

In summary, as mentioned earlier, there are two categories in automatic speech 

segmentation: Explicit and Implicit segmentations. The main difference between these is 

the knowledge of the transcription of the language before the automatic segmentation. 
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Also, we note that explicit segmentation mainly depends upon the classification 

algorithms used to refine the segmentation parts, but the implicit segmentation depends 

on the feature extraction algorithms to detect the changes in speech. The techniques were 

used before in explicit and implicit segmentations are summarized in Figure 2.1. The 

shadow boxes in Figure 2.1, represent the techniques that were used before in Arabic 

language. 

In the next chapters, we will propose new techniques for automatic Arabic speech 

segmentation and classification, especially for Quran recitation.   
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 Figure 2.1. Summary of automatic speech segmentation techniques 
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3 CHAPTER 3 

HYBRID AUTOMATIC SPEECH SEGMENTATION 

USING MULTIPLE FEATURES AND A GENETIC 

ALGORITHM 

3.1 Introduction  

Automatic Speech Recognition (ASR) is defined as the process of converting 

audio waves (speech acoustic signals) into the corresponding words or other linguistic 

units based on certain algorithms [1]. Automatic speech recognition is cornerstone to 

many applications and IT-solutions for industrial and civil purposes including: hands free 

operation, mobile voice applications, human computer interaction, automatic translation, 

hearing aids for the handicaps, automatic dictation, and simplified man-machine 

communication (via-voice systems), to mention a few. In speech recognition for human 

machine interaction, it is easy to recognize isolated words, but the challenge is to 

recognize continuous speech. The performance of speech recognition systems in human 

machine interaction is highly affected by several features such as vocabulary size, 

speaker dependency, and different type of noise [2] [3].  

One of the most fundamental preprocessing tasks before recognition is 

segmentation. While, we generally use fixed frame length in speech processing to 
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preserve stationarity, the reality is that human voice comes out as a concatenation of 

speech units rather than frames. For this reason, it is important to develop robust 

algorithms to segment speech signals into fundamental units rather than frames. 

In simple terms, speech segmentation can be defined as the process of 

determining the boundaries between words, syllables, and phonemes, of speech. Speech 

segmentation can be considered as a fundamental sub-problem for numerous speech 

processing systems including synthesis, recognition, …etc. Hence, robust methods for 

speech segmentation are crucial in speech processing. 

Naturally, automatic speech segmentation offers several advantages over manual 

segmentation. Manual segmentation is time consuming, tedious, and the results are very 

subjective as every expert phonetician has his/her own method for performing the 

segmentation task. Moreover, it is quite unpractical to do manual segmentations with 

large datasets especially for real time applications.  

In general, there are two approaches used for automatic speech segmentation: 

implicit and explicit segmentation [3]. Implicit segmentation splits incoming utterances 

into segments without any linguistic information while explicit segmentation splits the 

utterance as in a transcription scenario. Both approaches need to consider the nature of 

the language itself in using certain technique. Here, our focus is the Arabic language. 

 The Arabic language has been used for more than 4000 years. It is one of the 

main languages written from right towards left. The standard Arabic language has 

basically 35 phonemes; 6 vowels and 29 consonants as shown in Table 3.1. Standard 

Arabic language phonemes can be classified into two main categories, vowels like ( َ◌,  ُ◌, 
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 ِ◌) and consonants like (د ,ج ,ب, …etc.). The syllables in Arabic are based on the 

contrastive components that are contained in its structure. The successive contrastive 

elements within a syllable boundary are made up of segmental phonemes of the language. 

Each syllable has a main part that stands out with prominence. This part is referred to, 

here, as the “nucleus” of the syllable. The remaining components are referred to as 

‘marginal factors’. The vowel always forms the syllable nucleus while the consonant 

represents the marginal phonemes in the syllable structure. The number of syllables in a 

given utterance is identical to the number of vowels [6] as an example, the versa ( كلا

 has six syllables: CVC CV CV CVC CV CVC, which is the same number of ,(سيعلمون

vowels in the versa. There are 5 different type of syllables in Arabic language: CV like ( َم, 

 and CVCC like (نوُن ,مِيمْ  ,قاَفْ ) CVVC like ,(حِي ,قوُ ,تاَ) CVV like ,(قمُْ ,برِْ  ,قدَْ ) CVC like ,(سِ ,بُ 

 .(خُسْر ,تبّ  ,عَصْرْ )

The diversity in both spoken and written Arabic language brings with it major 

challenges. These challenges are especially reflected when reading Quran. While accurate 

reading is fundamentally based on accurate Arabic pronunciation, it is in nature much 

richer in semantics and in the way it sounds. The concept of combining syllables, 

stressing others, stopping somewhere else, is such a powerful one in highlighting the 

beauty and the impact of Quran. Much more combinations of vowels and consonants 

exist while some other are not allowed, as an example, (من يعمل) will be as (ميَّعل), also 

عنا) will be as (اركب معنا)   To handle these challenges, we propose an automatic .(اركمَّ

speech segmentation algorithm focusing specifically on Quran recitation. The details are 

represented in the next section. 
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Table 3.1 Arabic consonants [125] 

 
Arabic Script 

International 

phonetic script 

 
Arabic Script 

International 

phonetic script 

 Y ي .B 15 ب .1

 Z ز .T 16 ت  .2

 J ج .Th 17 ث .3

 R ر .D 18 د .4

 Gh غ .Dh 19 ذ .5

 Ha ح .S 20 س .6

 3 ع .Sh 21 ش .7

 Kh خ .F 22 ف .8

 Q ق .K 23 ك .9

 ، ء .L 24 ل .10

 Sv ص .M 25 م .11

 Tv ط .N 26 ن .12

 Dv ض .H 27 ه .13

 Dhv ظ .W 28 و .14

 

3.2 The Proposed Automatic Speech Segmentation Algorithm 

In this work, we aim at developing an implicit automatic speech segmentation 

algorithm especially dedicated for Quran recitation. One major challenge is that we didn't 
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have a dataset that has a full phoneme description for Quran, and also there are several 

phonemes for Quran not found in the Arabic language. For example, when we say (منْ لهَم) 

(disconnected words), in Quran these two words are read as (ملَّهم) (one connected word). 

This concept is called (إدغام) and specific for Quran recitation but not found when reading 

standard Arabic. This is one of many instances where standard segmentation techniques 

used for other languages or Arabic don't apply for Quran recitation.  

To track such linguistic richness, we propose a robust blind speech segmentation 

technique in this work. The proposed system is organized around the following steps (see 

Figure. 3.1): Preprocessing, Feature extraction, Speech Segments Detection, Post 

Processing of detected segments, and Optimization using a Genetic Algorithm (GA). 

Each of these steps will now be discussed in detail. 

 

Figure 3.1   Flow chart for the proposed automatic speech segmentation algorithm 

 

3.2.1 Pre-processing 

 Since we are proposing an approach for automatic speech segmentation, mainly 

focusing on Quran recitation, we have initially opted to use in our experiment the 

comprehensive public KACST database[126]. The database was developed with full 

phoneme description of the Arabic language. In this database, the acquired speech is 

sampled at a frequency of 44.1 kHz. Sampled speech is then preprocessed to yield frames 
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of acoustic observations from which features are extracted. In order to the flatten speech 

spectrum, a pre-emphasis filter of the form 1 0.95 ) was used before windowing 

and further analysis. The filter was then followed by windowing using a hamming 

window to divide the speech signal into a sequence of frames, each frame with a length 

of 1100 samples (25 ms) , so that each frame can be analyzed separately while preserving 

stationarity. The speech signal before and after pre-emphasis filter is shown in Fig. 3.2. 

 

 

 

Figure 3.2:  a) Speech signal before and after pre-emphasis filter b) Spectrum of hamming window 
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3.2.2 Feature Extraction for Speech Segmentation 

The main block of automatic segmentation systems is feature extraction; we need 

to extract robust features from speech data, which directly reflect the nature of speech 

and have strong discriminatory power to identify consonant and vowels. To reduce the 

complexity, we used three individual features: Energy, ZCR, and Entropy. The short term 

energy feature is a very important variable in automatic speech segmentation. It can 

distinguish between consonant and vowel syllables in speech. The short term zero 

crossing rate feature is another variable used to distinguish between voiced and unvoiced 

syllables. Here, we introduce a new feature for Arabic speech. More specifically, we use 

the entropy feature which mainly characterizes the degree of complexity in speech, and 

other physiological signals. In what follows, we will briefly describe these features and 

their importance with respect to automatic segmentation.  

 

a) The Short-Time Signal Energy Feature 

The short-term energy is one of the most important features used in automatic 

speech segmentation. It is an excellent characteristic for discriminating between 

consonant and vowel syllables, as it has a high value for vowel syllables, and a low value 

for consonant syllables, as shown with the red color in Figure 3.3. The shot-term energy 

is determined by dividing the signal into frames using windowing, then for each frame, 

the squares of the sample values are averaged over the frame [127]. The short-time 

energy value for a given speech frame of length N is defined as: 
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∑        (3.1) 

 

Where 	is the discrete-time audio signal, n is time index of the short-time 

energy, and  is a window function of length N. It practical setups, the Hamming 

window is generally used, which discontinuous (slam to zero) at endpoints and side lobes 

are closer to equal ripple. The energy profile for the utterance (كلا سيعلمون) is shown in red 

in Figure 3.3. From Figure 3.3, we observe some segment units have high energy values 

like the segment unit (لا) and some of them have low energy values like segment unit 

 .(مون)

 

 

Figure 3.3   Short time energy profile of a given speech signal 
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b) The Short-Time Average Zero-Crossing Rate Feature  

The short-term zero crossing rate is also an important feature in automatic speech 

segmentation. This feature calculates the number of zeros crossing in a given frame. It is 

an excellent characteristic for discriminating between voiced and unvoiced syllables, as it 

has a low value for voiced syllables, and a high value for unvoiced syllables as 

represented with the red color in Figure 3.4. The shot-term zero crossing rate is 

determined by dividing the signal into frames using windowing, then, for each frame, the 

number of zeros crossing is calculated [128]. The short-time average zero-crossing rate is 

defined as: 

 

∑ 1     (3.2) 

 

Where, is given by: 

 

1,												 0
1, 0

       (3.3) 

 

The ZCR profile for the utterance (كلا سيعلمون) is shown in red in Figure 3.4. 
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Figure 3.4   Short time zero crossing rate of the speech signal 

 

c) The Entropy Feature 

The notion of entropy has been used to characterize the degree of complexity or chaos in 

speech as well as in other physiological signals [6].  In order to determine the probability 

distribution within each individual frame, a histogram with N bins is constructed. The 

histogram is then normalized to satisfy the statistical properties of the cdf. Selection of 

the number of bins (N) for the histogram is a trade-off between sensitivity and 

computational load. The entropy for each frame is computed as follows [5]. 

 

∑ log 	         (3.4) 

 

Where  = { , , . . . , } is a quantized frame sample, and  is a probability of a 

quantized frame sample  belonging to the frame interval. The relation between entropy 
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and signal processing is based on the hypothesis that a noise (white noise) is a projection 

of a system in thermodynamic equilibrium into a signal. As a result, the noise is supposed 

to have the highest entropy value while speech sounds (and mainly periodic sounds like 

e.g. vowels) have significantly lower entropy values since such signals are more 

organized and require an extra energy (or effort) to be produced in such an organized 

manner. Recently, speech segmentation using entropy has been included as a robust 

feature for automatic speech recognition [10]. It is useful in distinguishing between 

segment units based on tracking the consonant/vowel sequence in a given segment unit. 

However for clarity of presentation, we assume that we have the entropy profile ξ for the 

complete speech data available, where 

 

ξ H 	H 	H …H           (3.5) 

where we assume m represents the total frames in the incoming speech. The entropy 

values for the utterance (كلا سيعلمون) are shown in red in Figure 3.5. We notice in Figure 

3.5, the entropy in the consonant region has a higher value than in the vowel region. 
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Figure 3.5   Entropy of a typical speech signal 

 

3.2.3 Speech Segments Detection  

After estimating the different features from the speech signal, thresholding is 

applied in order to detect the speech syllable segments. We used common statistical 

measures as thresholds such as median [36], mean [129] and mode. Each of these 

statistical measures has its own strengths and weaknesses. The most traditional measure 

used is the mean. While the mean fits well when representing mono-modal symmetric 

data, however, it is very sensitive to extreme values and outliers. Another measure related 

to the mean especially for mono-modal distributions is the mode. This measure fails 

when the distribution exhibits more than one mode and is not theoretically well behaved. 

Drawing for its power in image enhancement and segmentation, the median is seen as a 

qualitative average, not affected by outliers. The median exhibits a number of other 

advantages even though it is computationally more expensive to compute and its 
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statistically modeling is a challenging task [130],[40]. For the sake of completeness, we 

discuss the performance of all three measures in segmentation (see section 3.4 on 

experimental results). 

  

3.2.4 Post Processing of Detected Segments  

While the results using simple thresholding are reasonable, we noticed that all 

features when used with simple thresholding result in a non-negligible number of false 

boundaries. Most transition errors happen because of noise/silence frames, or across two 

short segment units. To reduce the number of false boundaries, we optimize the length of 

resulting segments. When a given segment is below a certain length, we consider it to be 

part of the previous segment and add it to that segment. The rationale for such a step is 

that humans do not generate very small duration sounds (segments) as speech segments 

have to achieve a certain minimum duration [135].  

For Quran recitation, in particular, we have some words that very long like 

 ,etc. Such words cover at least 4-5 segment units. In general .… (أنلزمكموها) (فأسقيناكموها)

the length of most segment units in the Quran, is between 2 to 8 phonemes in one 

segment unit [136]. Experimentally, the smallest phonemes were found to be stops 

phonemes like (ط ,ق ,ج ,ب ,أ, and د) with phoneme length between 7 ms and 10 ms [136]. 

The longest phonemes in the Arabic language are shown to be the nasal phonemes like (م, 

 with phoneme lengths of up to 24 ms.  In Quran, the longest phonemes are shown to (ن

include up to six successive long vowels (we denote it here as V6), which results in 

segments of 100 ms in length [136].  
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Based on the above criteria, we introduced the following rule: If the segment unit 

is less than a certain minimum number of frames, then this segment unit is merged with 

the previous segment unit, and so on. The detected speech segments using all the 

individual features before and after post processing are shown in Figure 3.6 (a). 

We notice in Figure 3.6, that for the boundary results obtained from the individual 

segmentation engines, some are inserted and some are missed. To solve this problem, we 

will use fusion techniques to enhance the segmentation accuracy. More details will be 

explained in the next section.   
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(c) 

 

(d) 

Figure 3.6:   a) Automatic speech segmentation before post processing, b) after post processing using the energy 
feature, c) Using ZCR feature, d) Using the entropy feature 

 

3.2.5 Robust boundary prediction using fusion techniques 

The block diagram of the proposed regression fusion scheme for combining 

different segmentation engines is presented in Figure 3.7. This is a general fusion scheme 

and is independent of the individual segmentation engines used. 
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Figure 3.7 Block diagram for fusing multiple segmentation engines [31] 
 

Let us define a set of N predicted syllable transition positions, , where 

1 , as being the outcomes of  different segmentation engines. These engines 

produce syllable boundary predictions that are assumed to be independent of each other. 

As an example of fusion, the individual predictions can be combined using a regression 

function, f . , to create a new syllable transition predicted positions where 

, , … . The parameters of the fusion function are adjusted by minimizing an 

error function between the true and the predicted syllable transition positions over the 

training dataset. For the true syllable transition positions, we consider the manually 

annotated labels of the syllable boundaries available in the speech database used for 

training [31]. 

However, using simple regression, was proven to lead many errors in the 

boundary positions. To complement the simplicity of the regression formulation, we 

investigated more advanced approaches. Here, we introduce a new approach for fusion of 

segmentation results using a new optimization framework based Genetic Algorithms. For 
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the sake of completeness, we will briefly outline the basic fusion approaches with 

optimization. Then, we discuss the basic regression based approach, followed by our 

proposed approach.  

For basic fusion, we used the initial segmentation results from energy, zero 

crossing rate, and the entropy features as input to the system. The results are concatenated 

into a 3-dimensional vector, then in a final segmentation step, a rule based on the 

minimum number of frames to form a syllable is implemented. In addition to this 

simplistic approach, a number of more advanced approaches have also been investigated. 

These include linear regression, neural regression, SVM regression,…etc. [31]. In our 

work, we started by a linear regression on the individual segmentation techniques.  

For the linear regression, the segmentation results from the individual features are 

weighted and summed as in the following equation: 

 

min ∑ ∑ ∗      (3.6) 

 

Where M is the number of boundary segmentations, N is the number of segmentation 

engines and w  are estimated using a least squares minimization approach over the 

training data.  is determined as: 

 

∗ min , 1,2, …      (3.7) 
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Where K is the total number of boundaries in each utterance for each automatic 

segmentation engine (  and ∗ are the selected boundaries obtained from the automatic 

segmentation engine and closer to the manual boundaries.  

While implementing and testing the above regression algorithm, we faced two 

main challenges. First, we needed to specify the frame size in advance. Second, the 

minimum number of frames per syllable is also a challenge as it needs to be specified a 

priori. To handle the two challenges above, we develop here a new optimization 

architecture that automatically determines the optimal frame size and the minimum 

number of frames per syllable. The optimization scheme, implemented here, was based 

on a simple Genetic Algorithm.    

 

3.2.6 Segmentation using Genetic Algorithms 

Genetic algorithms form a special class of optimization schemes. The concept is 

based on a set of candidate solutions to a given problem where we start with a set of 

random solutions. Each candidate set is typically an ordered fixed-length array of values 

(called 'alleles') for different attributes ('genes'). The set of alleles for a given gene is a 

group of possible values that the gene can possibly take. So, in building a GA for a 

specific problem, the first task is to decide on how to represent the possible solutions. 

Genetic Algorithms are different from other optimization and search methods; as these 

work with a coding of the parameters, not the parameters themselves. The search in GA 

depends upon a population of points, not a single one. Also, GAs use the objective 
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function itself, not derivatives or other auxiliary knowledge based on 

probabilistic/deterministic characterization.  

In Figure 3.8, we briefly outline the main steps of a basic Genetic algorithm [48]. 

These are listed below:  

1. Initialization: A set of candidate solutions is randomly generated, then the 

algorithm goes through iterations till convergence. 

2. Evaluation: Using some predefined problem-specific measure of fitness, a value is 

allocated to each measure of the solution set. This measure is called the candidate's 

fitness function.  

3. Selection: Select pairs of candidate solutions from the current generation to be 

used for breeding. This may be achieved in either a random or a stochastic manner.  

4. Breeding: Produce new individuals by using genetic operators on the individuals 

chosen in the selection step. There are two main kinds of operators: 

Recombination and Mutation [48]. Here, we used mutation.  

5. Population update. The set is altered, typically by choosing to remove some or all 

of the individuals in the existing generation, and replacing these with the 

individuals produced in the breeding step (step 4). The new population thus 

produced becomes the current generation, and we start the iterative process again.  

 

For our specific application, the initial population is generated using a uniform 

probability density function (PDF) with a size twice that of the number of segments 
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obtained from the fusion step [137]. To focus on the application of interest, we only 

discuss here the cost function and leave out the details of the algorithm. The objective 

function we minimize here is the mean squared error between the real and predicted 

boundary segmentations based on the F-measure value as: 

min 	 ,
. / 	

∑      (3.7) 

 

Where  is the number of segment units, and  is predicted boundary segmentations 

from the fusion methods. The details of the F-measure function are described in the next 

section. 
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Figure 3.8 Block diagram of Genetic Algorithms 

 

3.3    Performance Evaluation using the F-measure 

For typical pattern classification problems, a number of measures have been 

introduced to quantify the overall performance of the developed algorithms. For 

classification tasks, the terms true positives, true negatives, false positives, and false 
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negatives are used to summarize the performance of the classifier being evaluated. The 

terms positive and negative refer to the classifier's prediction, and the 

terms true and false refer to whether the prediction matches the observation. If we define 

P as the positive instances (the test detects whatever it was designed to look for, e.g.: 

allergy test detects the presence of an allergic reaction), and N as the negative instances 

(that is a test result is negative for a healthcare). The precision and the recall measures are 

formulated as:  

 

         (3.8) 

 

         (3.9) 

 

Where  is the number of the true positive (correct boundaries),  is the number of the 

false positive (wrong boundaries) and  is the number of false negative (missing 

boundaries). In our case, precision is describes the likelihood of how often algorithm 

identifies a correct boundary whenever a boundary is detected. Where recall represents 

the rate of correctly detected boundaries. These measures are used to compare the 

detected and real change points in the corpus under investigation. The most important 

measures used, are FD and FR which are calculated below: 
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       (3.10) 

 

	 	 	

	 	 	 	 	
      (3.11) 

 

where, FD (False detections) is number of points which are not real change points in the 

reference corpus; but, are detected by the system as change points. These points are 

called False Alarm (FA). Total number of detections is the total number of points 

detected by the system as change points. The missed detection is number of points which 

are real change points in the reference corpus but, are not detected by the system as 

change points. These points are called Missed Detection (MD). Total number of true 

change points is total number of points correctly detected by the system as change points. 

To determine the overall quality of the automatic segmentation method, the F measure is 

used to consider the impact of both FD and FR as: 

 

∗ ∗
        (3.12) 

 

In the next section, we discuss our experimental results based on the proposed work as 

discussed above. 
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3.4     Experimental Results 

To test the performance of the proposed segmentation algorithms, we needed a 

database that is manually segmented covering Quran recitation. Since an appropriate 

speech corpus of the Quranic sounds was not available online, we used the Quran 

database from the Research Center at King Abdulaziz City for Science and Technology 

(KACST), Saudi Arabia. This database covers speech data from expert reciters 

memorizing the Quran and includes manual phoneme segmentation based on the phonetic 

of the Arabic language. The sampling frequency of the recorded data is 44.1 kHz, and the 

total number of sound files was 5935 with an average of about 594 files per reciter, and 

50 minutes of duration per reciter.  

In our work, we updated the two reciters from this database by introducing 

manual syllable segmentation according the Arabic language rules. In Arabic language, 

there are five types of syllable structures: CV, CVV, CVC, CVVC and CVCC. We 

resegmented the data according to these syllable structures manually and used these in 

our experiments. We used the resulting manual syllable segmentations as a reference 

base, to evaluate our proposed methods for automatic speech segmentation. All of our 

experiments were based on frames and the segmentation accuracy is measured in terms of 

the percentage of predicted boundaries within a tolerance (∆  of zero frame, 	one frame 

and  two frames from the manually annotated boundary labels. Zero frame tolerance 

means no difference between manual and predicted automatic segmentation, while one 

frame means  one frame error tolerance difference between manual and predicted 
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automatic segmentation. The two frames means  two frames error tolerance difference 

between manual and predicted automatic segmentation.  

First, we started with a standard experimental setup. We used 80% of the data for 

training, and the remaining 20% for testing. The frame width was 25 ms, and the 

minimum number of frames for any segment unit was 4 with the ∆ being equal to 2 

frames. We used the median as a threshold over the six following segmentation methods: 

Energy, Entropy, ZCR, Basic fusion, Majority voting and Linear regression. For basic 

fusion, we combined all the results from all the individual automatic segmentation 

engines, then we sorted the combination results as boundaries for each utterance. The 

results are shown in Table 3.2, where Precision (PRC), Recall (RCL), and F-measure are 

estimated as discussed in section 4 above. 

 

 Table 3.2 Precision, Recall, and F-measure, with different segmentation methods 

Segmentation Technique PRC RCL F-measure 

Energy 75.0 66.7 70.6 

Entropy 72.7 88.9 80.0 

ZCR 100 44.4 61.5 

Basic Fusion 81.8 100 90.0 

Majority Voting 63.6 77.78 70.0 

Linear regression 66.7 66.7 66.7 
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We note from the table that the entropy measure provides the best segmentation 

results compared to other individual measures, however the entropy is good for 

distinguishing between segment units based on the tracking of the consonant/vowel 

sequences in a given segment unit. Moreover, we see that simple fusion, which is rule-

based (basic fusion) provides good results without the need to using linear regression. 

From the above, we noted two main challenges: the frame width, and the 

minimum number of frames per segment unit. To consider these challenges, we discuss 

here two scenarios: a compromise between frame width and number of frames to form a 

syllable for each segmentation technique, and an enhancement of the segmentation results 

using optimization techniques. 

Under the first scenario, we compared the results of each segmentation algorithm 

against manual segmentation. We tested different values of frame size with a minimum 

number of frames of 2 to create a segment unit. The F-measure results are presented in 

Table 3.3. It is clear that the performance changes with the frame size, however, such a 

change is not monotonic. For instance, with the entropy feature, the F-measure increases 

with the frame size then decreases again after a certain width. As such, defining a certain 

frame width is not expected to provide optimal segmentation results. Hence, as we will 

see below, a sequel optimization step is needed to obtain the best possible segmentation 

results.  
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Table 3.3 F-measure for different frame sizes with a fixed minimum number of frames/segment unit 

 

Segmentation 

Technique 

Frame width 

size 
15 ms 25 ms 35 ms 45 ms 55 ms 

Energy feature 57.1 66.7 66.7 70.0 80.0 

Entropy feature 38.1 42.4 38.5 80.0 66.7 

ZCR feature 42.1 37.5 40.0 53.3 66.7 

Basic Fusion 40.0 53.3 58.3 81.8 80.0 

Linear Regression 66.7 55.6 66.7 77.8 76.3 

  

In contrast to the scenario above, we fixed the frame size, and considered 

different values for the minimum number of frames/segment unit. The results are shown 

in Table 3.4. Once again, it is clear that, the performance changes with the minimum 

number of frames, in non-monotonic fashion. Both results in Tables 3.3 and 3.4, show the 

need to develop optimization techniques with respect to the minimum number of 

frames/segment unit and the optimal frame width. 
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Table 3.4: F-measure for different values of minimum frames/segment unit with a fixed frame width 

 

Segmentation 

Technique 

Min. Number of 

Frames 
2 3 4 5 

Energy 66.7 66.7 70.0 77.8 

Entropy 43.8 38.5 42.1 37.5 

ZCR 42.1 40.0 40.0 40.0 

Basic Fusion 48.5 58.3 66.7 58.8 

Linear Regression 88.9 66.7 55.6 44.4 

 

To tackle the challenges mentioned above, we propose to use an optimization 

technique to predict both the frame size and the minimum number of frames/segment 

unit. Here, we use a genetic algorithm to find the best prediction boundaries over the six 

segmentation methods. Genetic Algorithms have a different specification than other 

optimization and search methods; as these work with a coding of the parameter set, not 

the parameters themselves. Moreover, GAs use the objective function, not its derivatives 

or other auxiliary knowledge based probabilistic/deterministic characterization. In our 

work, the genetic algorithms solve a problem by, roughly, generating, changing, and 

evaluating candidate solutions to the problem of interest. A candidate solution to a 

problem is called a chromosome, and a chromosome is usually a bit string or some other 

encoding or representation of a solution. Initially, a random population of such 
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chromosomes is generated. Changing chromosomes is done by mutation and/or crossover 

operators, while chromosomes (candidate solutions) are evaluated by way of a domain 

dependent fitness function, which first decodes the chromosome, then evaluates its 

optimality, as a solution to the particular problem being addressed.  

The model parameters of GAs such as population size, reinsertion rate, migration 

rate, are chosen empirically. The objective function is the mean squared error between 

the real boundaries and the predicted boundaries for the six methods discussed above.  

In our work, the number of observations (utterances) was 1128 (for two reciters), 

and the setup optimization parameters were as follows: frame size is between 25 ms and 

50 ms, and the minimum number of frames/segment unit is between 2 and 10. The GA is 

applied to obtain the segment unit boundaries. Under this scenario, we consider three 

cases: 

 

Case 1: Optimizing the individual segmentations (Energy, Entropy and ZCR), where the 

optimization parameters are: frame size and the minimum number of frames/segment 

unit. The F-measure results after applying the optimization technique are shown in 

Tables 3.5. For each individual segmentation algorithm, we used different statistical 

threshold measures (median, mean, and mode) to find the best among these measures. 

Our results show that the median threshold measure leads to the best results which 

concurs with previous work [129]. 
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Table 3.5: F-measure values after using GA for Energy, ZCR and Entropy features with different threshold 
types 

Individual 

segmentation 

engine 

Threshold 

method 

Frame width Min Syllable 

length 

F-measure 

value 

Energy 

Median 2034.2     3.7 77.8  

Mean 1860.3 4.5 77.8  

Mode 1881.8 4.1 57.1 

ZCR 

Median 1675.5 2.2 71.4 

Mean 1779.3 2.3 70.6 

Mode 1329.2 5.3 50.0 

Entropy 

Median 2015.9 2.8 84.2 

Mean 2164.1 3.9 80.0 

Mode 2108.1 3.1 82.1 

 

Case 2: Optimizing the rule-based basic fusion segmentation. Here, the parameters are: 

frame size, minimum number of frames/segment unit for each individual segmentation, 

and the minimum number of frames/segment units after applying the rule-based basic 

fusion. The optimization is performed over five parameters. The F-measure results are 

shown in Table 3.6, where we considered three possible values for the Δ frame. We note 

that, when we optimize the rule-based basic fusion, the result come closer to 100% with 

an enhancement of at least 16% compared to the individual segmentation methods.  
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Table 3.6: F-measure values for Basic Fusion technique with differnt Δ error tolerance 

Δ frame Frame 
width 

Min 
Syllable 
length in 
Energy 

Min 
Syllable 
length in 
ZC 

Min 
Syllable 
length in 
Entropy 

Min 
Syllable 
length 
according 
to rule-
based 

F-measure 
value 

0 2179.3 8.1 7.9 5.8 2.7 50.0 

1 1740.3 9.0 6.8 8.9 8.6 66.7 

2 2164.7 4.4 2.2 5.2 2.2 99.4 

 

Case 3: Optimizing the linear regression fusion method. In this case, the parameters are: 

frame size, minimum number of frames/segment unit for each individual segmentation, 

and the linear regression coefficient parameters corresponding to the individual 

segmentation methods. We started by considering all the individual segmentation 

methods (Energy, ZCR and Entropy), with the F-measure results, after applying 

optimization, displayed in Table 3.7. We can see that with the optimal values, we get an 

accuracy of 89%. We then performed an experiment in which we only considered two 

individual segmentation methods, namely Energy and Entropy. In this case, we were 

able to achieve an almost perfect segmentation of 98.7% as shown in Table 3.7. The 

experiments show that the pair (Energy and Entropy) is compatible with linear 

regression combination and leads to excellent segmentation. Note that when all three 

individual segmentations are fused and because of diversity in the three approaches, the 

combination did not achieve perfect accuracy [47]. 
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Table 3.7: F-measure values for linear regresion fusion technique with different error range 

 Frame 
width 

Min 
Syllable 
length 
in 
Energy 

Min 
Syllable 
length 
in ZC 

Min 
Syllable 
length 
in 
Entropy

A1 A2 A3 F-
measure 
value 

Energy, 
ZCR 
and 

Entropy 

1957.1 3.9 3.9 3.9 1.0094 0.8665 1.0266 88.9 

Energy 
and 

Entropy 

207.11 3.6 - 3.6 0.9685 - 0.9981 98.7 

 

   To summarize our results, we display in Figure 3.9, the performance in terms of 

precision, recall, and F-measure for all of the scenarios discussed in our experiments. 

Few notes can be outlined from the figure. We see that among the individual 

segmentation techniques, Entropy provides the best results. As we outlined before, to the 

best of our knowledge, this is the first time that entropy is being used for Arabic speech 

segmentation. While the linear regression approach provides consistent results, the 

accuracy is not outstanding compared to the individual segmentation techniques. More 

importantly, we see that the proposed segmentation technique provides the best results 

consistently and with all performance measures. 
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Figure 3.9 PRC, RCL and F-measure of our experimental results 

 

3.4     Conclusion 

 In this chapter, we introduced a new hybrid speech segmentation algorithm using 

a GA optimization scheme over multiple features. The algorithm uses numerous 

independent individual segmentation methods, to produce multiple predictions of 

boundary positions. These predictions are used as input to the proposed fusion method. 

To optimize the overall system, we consider two main challenges: frame size, and 

minimum number of frames / segment unit. To handle these challenges, we use a GA to 

optimize these two parameters together with the combination coefficients, to obtain the 

final optimal predicted boundaries. The experimental results show significant 

improvements in segmentation accuracy of the proposed method, when compared to the 

best performing baseline segmentation technique. The results show an improvement 

accuracy of 16% over the best performing single feature, and 10% improvement over the 

GALinear regressionEntropyZCREnergy

F‐measure RCL PRC
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linear regression based approach. Overall, an almost perfect accuracy is obtained with 

respect to manual segmentation. These results were obtained over the KACST database, 

but superior results are also expected over other similar databases. The findings for this 

work are now being used for further classification and quality of recitation/reading tasks, 

as related to Quran recitation and Arabic language.  

 After detecting all the segment units based on our proposed algorithm, in the next 

chapter, we will discuss how these segment units can be identified using machine 

learning techniques. 
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4 CHAPTER 4 

ENHANCEMENT SPEECH SEGMENTATION USING 

ENSEMBLE-BASE CLASSIFIERS AND A 

HIERARCHICAL TREE STRUCTURE 

4.1 Introduction  

 Machine learning is a field within the greater area artificial intelligence which 

focuses on learning algorithms and decision making based on some acquired data. With 

respect to how machine learning approaches work, three main directions are taken [138]: 

a) Supervised learning where the algorithms learn how to make decisions based on 

available input-output pairs, b) Unsupervised learning where the algorithms try to find 

hidden structures within the input data, and c) Reinforcement learning where the 

algorithms actively interact with the environment and learn based on the concept of 

rewards and punishments. 

When considering the types of applications, machine learning algorithms can also 

be categorized under several types [138]:  

1. Classification, where the algorithm learns to assign class labels (from a certain 

set) to inputs, therefore deciding which input is a part of which class; equivalent 

to a supervised approach to classification. 
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2. Regression, where the output is discrete, and the regression algorithm produces 

possibly continuous outputs such as in the case of data fitting. 

3. Clustering, where the algorithm divides data into clusters, but in an unsupervised 

fashion as classes are apriori unknown. 

4. Dimensionality reduction where the input data is mapped into a lower 

dimensional space. 

 

In this chapter, we will present our approach to studying the problem of speech 

segmentation and recognition using machine learning technique. Segment unit 

recognition is defined as the process of assigning a given input signal to one of the 

several prescribed segment unit classes. The training of an individual classifier that 

performs recognition for all the classes in one time, is unpractical especially when the 

number of classes is large and the similarity among these different classes is high [139]. 

In this chapter, we developed a hierarchical approach to overcome the limitations of 

individual classifiers. Under hierarchical approaches, the large number of classes is 

grouped into fewer subgroups with a separate network being trained for each subgroup 

[140]. The proposed hierarchical recognition system forms a tree like structure, in which 

many paths can be traversed from the root node down to the terminal nodes (leaves). It is 

based on the principle of "Divide and Conquer", where a large problem is recursively 

divided into smaller and easier problems, whose solutions can be combined to yield a 

solution to the overall complex problem [141]. In contrast to conventional non-

hierarchical (flat) baseline recognition algorithms, where each data sample is tested 

against all possible classes, in a hierarchical tree structure, a sample is tested against only 
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certain subsets of classes, thus eliminating unnecessary computations. Hierarchical Tree 

Classification Algorithms (HTCs) have the flexibility of choosing different feature 

subsets and using different decision rules at the different stages of recognition, in 

addition to the ability of trading-off between recognition accuracy and time-space 

efficiency. However, in large HTC systems, the effect of classification errors can 

propagate from one level to another (accumulation), which can be considered a 

significant drawback of HTC systems pointing out to the fact that one cannot 

simultaneously optimize both accuracy and efficiency of a system. Moreover, difficulties 

might be encountered in designing an optimal HTC structure. The performance of an 

HTC system is strongly dependent upon how well the tree is designed [142]. 

The main purpose of most real-world pattern recognition systems, is to 

discriminate between test instances belonging to different classes. The diverse 

classification algorithms have their own advantages and disadvantages depending upon 

the application of interest. Here, we propose to fuse evidence from several classifiers to 

enhance recognition accuracy. Researchers discussed several reasons for using ensemble 

systems including Statistical Reasons, Large Volumes of Data, Too Little Data, Divide 

and Conquer, and Data Fusion [143]. 

This chapter is organized as follows: The system architecture is first described in Section 

4.1. Feature extraction and feature vector dimension reduction using PCA/LDA for the 

input data are described in sections 4.2 and 4.3. The hierarchical classification is 

discussed in section 4.4. Then, the individual and the ensemble based technique are 

described in sections 4.5 and 4.6. The experimental results are discussed in section 4.7. 

A conclusion is finally drawn in section 4.8.  
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4.2    The system Architecture 

In this chapter, our main focus is on developing a Quran speech classification system 

using individual and ensemble-based classifier techniques. For our experiments, we used 

KACST database which was described in chapter 3. The HTR approach is discussed in 

section 4.4. 

The proposed system architecture is organized around the following steps (Figure 

4.1): Segment units as input, Feature extraction, PCA technique, Hierarchical 

classification, Three individual classifications: MLP [144], KNN [145] and SVM [146], 

then Ensemble based classification fusion to determine the predicted class. The input 

data is the segment units which where extracted based on our proposed algorithm 

described in chapter 3. These segments were extracted using an optimization technique 

to extract the boundaries. The work focuses on Quran recitation but is also applicable to 

other types of speech data. The total number of segment units obtained was around 4300 

segment units. In the following sections, we will briefly discuss the different stages of 

the proposed algorithm. 
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4.3   Feature Extraction 

Before classification, we need to extract robust features from the speech data. Energy 

is the most important feature for identifying segment units, as vowels have more energy 

than consonants. Here, energy can distinguish between the main structure of the syllables. 

Pitch is commonly estimated using the autocorrelation method. Formants are the other 

important features. The popular linear predictive coding (LPC) method is commonly used 

to extract these formants. The Mel Frequency Cepstral Coefficients (MFCCs) are also 

very important in speech processing as they represent the short-term power spectrum in  

human-like Mel scale frequencies [147]. All of the above features have been used for 

representing segment units. In what follows, we will briefly describe these features and 

their importance with respect to identifying the segment unit type. It is worth noting that 

Ensemble 
Techniques 

Figure 4.1:    Flow Chart for the Proposed Arabic Speech Recognition System 
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Individual Classifiers 
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this final list of features was obtained after numerous experiments with a larger pool of 

potential features. 

  

4.3.1 The Energy Feature 

The energy is one of the most important features used in speech processing. It is 

an excellent characteristic for discriminating between consonant and vowel syllables, as it 

has a high value for vowel syllables, and a low value for consonant syllables. The energy 

of a speech signal is calculated using Equation 4.1 [148]: 

 

∑           (4.1) 

 

where  represents the total energy for utterance  and  represents sample n in 

segment unit ,  is the total number of speech samples in the same segment unit. The 

resulting segment unit energy is usually normalized over the number of samples  to 

obtain an average energy per sample.  

 

4.3.2 Pitch Feature 

Pitch is commonly used to describe the perceived rise and fall in voice tone and is 

represented in the form of the fundamental frequency. It represents the vibration 

frequency of the vocal folds while speaking [149].  

Numerous techniques can be used to estimate the pitch from a given speech signal. Here, 
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the autocorrelation method is used. The method uses a short-term analysis technique to 

maintain the characteristics for each frame. For each frame, we start by estimating the 

autocorrelation feature using Equation 4.2. 

 

∑          (4.2) 

 

where  is the frame length,  is the signal frame,  is the shift or lag parameter, 

and  represents the estimated autocorrelation function. 

To address the variations in the pitch frequency values across the frames, we decided to 

extract 2 features related to it. These are: Variance and Max values across segment units. 

 

4.3.3 Formant Frequencies 

Formant frequencies are defined as resonance frequencies of the vocal tract and 

characterize timbre in vowels [150]. The formants are also very useful features for speech 

recognition and have been used substantially in diverse speech processing applications.  

The peaks of the frequency response from the linear prediction filter are defined as the 

formant frequencies. These are estimated by computing the roots of the linear prediction 

coding (LPC) polynomial [151]. Linear prediction coding, as its name indicates, is used 

in representing a current sample as a linear combination of past samples [149]. 

 

∑          (4.3) 
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where n  is the predicted sample at time ,  is the number of past samples, and  

are the LP coefficients. The prediction error is written as: 

 

         (4.4) 

 

It is easy to notice that the formant frequencies are estimated from the LP model by 

finding the poles of the all the pole AR or LP filter [151].  

The first formant is an important feature for identifying the type of segment unit. To 

address the variations of the first formant across frames, we opted to extract 3 features 

related to it. These features are: Mean, Variance and Maximum of the first formant. 

 

4.3.4 The Mel-Frequency Cepstrum Features 

The Mel-Frequency Cepstrum Coefficients (MFCCs) are used to represent the 

short time power spectrum of a sound. The MFCCs imitate the reaction of the human ear 

to sounds using Mel scales instead of linearly spaced frequency bands [149]. The 

expression for converting linear frequencies into the Mel scale is given by: 

 

1125 1          (4.5) 

 

where  is the frequency given in Hz.  

The process of extracting the MFCCs from a speech signal is shown in Figure 4.2. First, 

the Fourier Transform of the windowed frame is computed. The results are squared to 
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Speech 
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Warping 

MFCCs DCT Logarithm Filter 
Bank 

obtain the frame power spectrum. The Discrete Fourier Transform (DFT) is calculated 

using Equation 4.6. 

 

∑        (4.6) 

 

where i represent the speech signal,  is an -sample window, and  is the length of 

the DFT. The power spectrum is given by Equation 4.7. 

 

| |           (4.7) 

 

Following the above, the Mel filter bank is applied to the power spectrum. The log of the 

resulting sequence is computed followed by the Discrete Cosine Transform (DCT) to 

obtain the final MFCC coefficients as shown in Figure 4.2. 

 

 

 

 

Figure 4.2:  MFCC parameter estimation 

 

In this work, we estimated the mean and the variance of the first ten MFCCs. 

These coefficients cover frequencies below 1000 Hz which represent most of the energy 

in the signal. However, the first MFCC coefficient mainly measures the overall the 



72 
 

loudness. While in most speech processing applications, the first coefficient is ignored, 

here, we did consider it as loudness is affected by type of the segment unit. 

 

4.3.5 The Discrete Wavelet Transform 

In recent times, we have witnessed a lot of research directed towards the use of 

spectral-based features for diverse applications in speech processing. Among the different 

approaches, the Discrete Wavelet Transform (DWT), was shown to provide a good time 

and frequency resolutions, and can be used to extract robust features from speech. It can 

also be used to suppress noise from speech signals, and can provide to good 

representation for both stationary and non-stationary signals. The wavelet transform 

decomposes signals into successive levels from low to high frequencies, in what is known 

as a multiresolution decomposition. Such decomposition allows a detailed description of 

signals at both low and high frequencies. This is important for speech recognition, as low 

frequencies describe some important acoustic phenomena, which are essential to 

determine the segment unit type. Based on our own observations, and state-of-the-art, as 

well as our aim to keep computational complexity low, we decided to use the wavelet 

transform to extract a feature vector consisting of signal energies across different levels 

[152]. Instead of using the traditional dyadic decomposition; we have used here the 

wavelet packet decomposition with 7 levels as shown in Figure 4.4, where  Ω ,  (the root 

node of the tree) represents the original signal space. The original signal is first projected 

over 2 subspaces, namely, , , for the first half frequencies, and subspace , , for the 

second half frequencies, and so on. This subspace decomposition continuous with each of 
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the components from the previous stage and so on. Here, we have used a simple 

Daubechies Mother Wavelet [153]. For example, the Daubechies wavelets as shown in 

Figure 4.3, are orthogonal and have compact support, but they do not have a closed 

analytic form and the lowest-order families do not have continuous derivatives 

everywhere. On the other hand, wavelets like the modulated Gaussian function or 

harmonic waveform are particularly useful for harmonic analysis due to its smoothness. 

This is the case of the Morlet and the Meyer (Figure 4.3 b) wavelets which are able to 

reflect amplitude information [153].  

 

 

Figure 4.3: (a) Daubechies-5 and (b) Meyer wavelets. 

 

The "optimal" choice of the wavelet basis has been shown to depend on the 

application of interest. For our case, the traditional Daubechies wavelets was a good 

option to visualize the time-varying frequency components of speech. In our work, the 

resulting feature vector consists of 255 energy values covering all frequency bands. 

In addition to the traditional Daubechies mother wavelet (dB2), we also tested the 

performance of other types of mother wavelets. Our experiments showed very little 

difference in performance across different wavelets. A simple reason is that the DWT 

feature vectors obtained (using any of the mother wavelets) is further transformed into 
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uncorrelated components using PCA-LDA (see next section). Furthermore, it is worth 

noting that the daubechies family with its non-symmetry and overlapping properties has 

been shown to be among the most  appropriate mother wavelets in speech applications 

[154], [155]. 
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Figure 4.4: The wavelet packet frequency bands decomposition with seven levels 
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4.4   Dimension Reduction using PCA 

The initial results based on the features discussed above, were satisfactory but not 

excellent. In this work, we decided to further enhance this feature extraction stage by 

transforming the above features through projection over an orthogonal basis. For this 

purpose, we used a simple 2-stage transformation based on Principal Component 

Analysis (PCA) and Linear Discriminant Analysis (LDA). 

First, the high dimension feature vector is transformed into a reduced-dimension 

feature vector consisting of uncorrelated components using PCA. PCA is implemented 

using eigenvalue decomposition the estimated covariance (or correlation) matrix. This is 

usually done after mean centering the data matrix for each attribute. For an original zero-

mean dataset X, the estimated covariance matrix is given by: 

 

         (4.8) 

 

Where X is an m  n matrix, m is the number of features, i.e. the dimension, and n is the 

number of observations.  is a square symmetric m m matrix. The diagonal terms of  

are estimates of the variances of different variables, and the off-diagonal terms represent 

the covariance between the variables. Now, let's start with the following PCA 

transformation: 

 

          (4.9) 
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Y is a representation of X over the new basis matrix P. P is a matrix that transforms X 

into the new coordinate system with sorted variances from large to small. The estimated 

covariance matrix of Y is given by:  

 

	 	 	 	 	 	 	 	 	 	

						 	 	 	 	 	 	 	 	 	

						 	 	 	 	 	 	 	 	 	

						 	 	 	 	 	 	 	 	 	

					 	 	 	 	 	 	 	 	 	 (4.10)	

                       

The estimated covariance matrix  can be decomposed using eigenvalue decomposition 

as:  

 

           (4.11) 

 

Where D is a diagonal matrix with entries being the eigenvalues ranked in descending 

order, and U is the matrix of the corresponding eigenvectors (as columns). 

Since  is symmetric, the eigenvalues are real and = , hence we can write: 

 

           (4.12) 

 

Returning back to , assume we choose , then: 
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						                             (4.13) 

 

We can see that when the transformation matrix is chosen as , the resulting 

transformed features (elements of Y) become uncorrelated since the results covariance 

matrix is diagonal. Since the eigenvalues and corresponding eigenvectors are ranked by 

order of importance, we can limit our transformation to only d elements hence P becomes 

an d x n matrix. 

In our work, we only kept the top two components after the transformation from 

the linear mapping, which we found to be enough for distinguishing between consonants 

and vowels in speech signals.  

While simple and powerful, PCA can’t account for class information as it assumes 

that every observation in the training set is a class by itself. To solve this problem, we 

followed PCA by a simple LDA (Linear Discriminant Analysis) projection. The LDA 

transformation is obtained by solving a generalized e-value e-vector decomposition 

problem. Listed below are the general steps for performing LDA performance: 

1. Compute the d-dimensional mean vectors (for the PCA projection) for the different 

classes from the dataset, where  are the mean vectors for different classes 

(i=1, 2,…, K). Here d=2. 
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2. Compute the scatter matrices: LDA computes a transformation that the vector 

maximizes the between-class scatter while minimizing the within-class scatter. 

The projection matrix is obtained by maximizing the ratio Sb / Sw , where , Sw is 

the within-class scatter matrix and Sb is the between-class scatter matrix.  

a) Compute the Within-class scatter matrix  

  

∑              (4.14) 

 

Where  is the scatter matrix for every class and is computed by: 

 

∑ ∈       (4.15) 

 

Where  is the mean vector for class i and is computed by: 

 

∑ ∈         (4.16) 

 

b) Compute the Between-Class scatter matrix Sb 

 

∑       (4.17) 

 

Where m is the overall mean, and mi and ni are the sample mean and size of the 

respective classes in the training dataset. 

 

3. Compute the generalized eigenvectors (e1, e2, ..., ed) and corresponding 

eigenvalues (λ1, λ2, ..., λd) of . The eigenvectors are basically the direction 

of a distortion in the linear transformation, and the eigenvalues are the scaling 

factors for the eigenvectors that describe the magnitude of the distortion.  

 

4. Use the eigenvectors as rows of the transformed matrix W (d x m). 
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5. Use this d × m  matrix to transform the samples onto the new subspace: Y = W × 

X (where X is a m × n-dimensional matrix, and Y are the transformed d × n-

dimensional samples in the new subspace) [4]. 

 

From the above PCA-LDA projection, we obtain a 2-dimensional feature vector 

of uncorrelated and class dependent components. For our experiments, the two stage 

PCA-LDA projection resulted in optimal 2-dimensional feature vectors able to achieve 

excellent consonant-vowel recognition accuracy. The scatter plot for the consonant and 

vowels from the data after applying the PCA-LDA transformation is shown in Figure 4.5.   
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Sentence 1 Sentence 2 Sentence 3 

Sentence 4 Sentence 5 Sentence 6 

Sentence 7 Sentence 8 Sentence 9 

Figure 4.5 Scatter plot of first and second of PCA-LDA projections. 

 

In this new space, we see that consonant projections are well separated from vowel 

projections, with a clear boundary between these. In Figure 4.6, we used the top feature 

from the projection to plot the histograms for consonants and vowels, and their 
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corresponding simulated probability distribution functions (pdfs) as Gaussian 

distributions. We see that the two classes are well separated hence the resulting features 

can be used to achieve excellent accuracy in speech classification between consonants 

and vowels.   
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Sentence 1 Sentence 2 Sentence 3 

Sentence 4 Sentence 5 Sentence 6 

Sentence 7 Sentence 8 Sentence 9 

Figure 4.6 Histograms and simulated pdfs for the top feature from PCA-LDA projections 
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4.5   Hierarchical tree classification 

In designing Hierarchical Tree Classification algorithms (HTC), it is important to 

search for the appropriate tree structure and the feature subsets to be used at each node. 

The simplest approach is to divide the problem into sub-problems that have no common 

elements, also called a “hard split” [156]. Our proposed HTC system is shown in Figure 

4.7. The proposed HTC here, has partly been based on the prior knowledge of segment 

unit classes based on Tajweed rules [157]. This was motivated by the observation that 

these classes are easy to be distinguished acoustically. At the root of the tree, CVs and 

CVCs classes are to be discriminated by recognizing the last three frames for each 

segment units. Then, both are further split into subsets of classes. CVs are split into four 

leaves (terminal nodes) that represent: bold and nasal, bold and not nasal, nasal, not bold 

and nasal, and not bold not nasal. Then each terminal, also splits into two leaves that 

represent short vowel (V), and long vowel (VV). CVCs are also divided into bold and 

nasal (e.g. من قال), bold and not nasal (e.g. قال), not bold and nasal (e.g. أنتم), and not bold 

not nasal (e.g. سأل). Then, each terminal, split into four leaves that represent short vowel 

(V) (e.g.  َ◌), long vowel (VV) (e.g. ا◌َ), double long vowel (V4) (e.g. سائل), and triple long 

vowel (V6) (e.g. سيعلمُ ون). We notice in Figure 4.7 that V4 and V6 classes are not included 

in CVs branch. The class V4 is satisfied, when the vowel is followed by letter (ء). Where 

V6 is satisfied when the vowel is followed by a consonant when the reader stops reading 

the ayah. However, branching can be continued until each branch in the tree is assigned 

only one segment unit. 
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Figure 4.7: The proposed segment unit classification tree 

 

4.6   Individual Classifiers 

As the focus of the work is on the classifier combination techniques, we selected 

here 3 basic classifiers commonly used in the literature (KNN, MLP and SVM). These 

are briefly described below: 

 

4.6.1 K-Nearest Neighbor (KNN) 

The K-Nearest-Neighbor classifier is one of the oldest classical classification 

techniques. When a new feature vector needs to be classified, its k-nearest-neighbor 

vectors are found together with their class labels. The assigned class of the new vector is 

decided by considering the majority of its neighbors as shown in Figure 4.8. 
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Figure 4.8: An example for assigning a new vector to one of the classes using the KNN classifier 

 

The KNN refers back to the raw training data in the classification for each new sample.  

Therefore, one can say that the entire training set is the classifier. The basic idea is that 

the similar tuples most likely belong to the same class.  Based on some pre-selected 

distance metric, we find the k most similar or nearest training samples of the sample to be 

classified and assign the plurality class of those k samples to the new sample.  The value 

for k is pre-selected. Using relatively larger k may include some samples not so similar 

samples and, on the other hand, using very smaller k may exclude some potential 

candidate samples. In both cases, the classification accuracy decreases. The optimal value 

of k depends on the size and nature of the data. The typical value for k is 3, 5 or 7 [73].  

The main steps for the classification process are: 

1. Determine a suitable distance metric. 

2. Find the k nearest neighbors using the selected distance metric. 

3. Find the plurality class of the k-nearest neighbors (voting on the class labels of the 

NNs). 



87 
 

4. Assign the sample to the class with highest number of votes. 

 

When a new sample arrives, KNN finds the k neighbors nearest to the new sample from 

the training space based on some suitable similarity or closeness metric. A common 

similarity function is based on the Euclidian distance between two data tuples. For two 

tuples, X = (x1, x2, x3, …, xn) and Y = (y1, y2, y3, …, yn) (excluding the class labels), the 

Euclidian similarity function is: 

 

, ∑                                 (4.18) 

 

A generalization of the Euclidean function is the Minkowski similarity function given by:  

 

, ∑ | |          (4.19) 

 

The Euclidean distance is obtained by setting q to 2, and each weight, wi, to 1.  The 

Manhattan distance is defined as: 

 

 , ∑ | |            (4.20) 

 

Which is obtained by setting q to 1 and using equal weights.  Setting q to , results in the 

max function: 
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, max ,… | |         (4.21) 

 

After finding the k nearest tuples based on the selected distance metric, the plurality class 

label of those k tuples can be assigned to the new sample as its class. If there is more than 

one class label in the plurality, one of them can be chosen arbitrarily [71]. 

The KNN does not build a residual classifier, but instead, searches again for the k-nearest 

neighbor set for each new sample.  This approach is simple and can be very accurate.   

The KNN is a good choice when simplicity and accuracy are the predominant issues.   

The KNN can be superior when a residual, trained and tested classifier has a short 

lifespan, such as in the case with data streams, where new data arrives rapidly and the 

training set is ever changing [71].   

The major drawback of this classifier is that all the training data should be stored 

beforehand for classifying new patterns. In addition, the classification performance is 

significantly affected by the choice of k. If k is too small, the classification performance 

is directly affected by the outliners in the training set. So, for large datasets, KNN 

classification is not the preferred method, but commonly used in benchmarking studies 

and cross-validation.  
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4.6.2 The Multi-Layer Perceptron (MLP) Network 

The study of neural networks (NN) attracted much attention over the last two 

decades. During this time, various types of neural network structures were suggested. The 

basic NN structure is a single layer feed forward network. This basic processing unit is 

called perceptron. It is trained using a simple delta rule. It can form simple decision 

boundaries for a given classification problem. The perceptron properties and relation with 

the simple statistical classifiers were explored in [60]. 

Later, the multi-layer perceptron network (MLP) was introduced. Learning 

mechanisms are similar to traditional NN but more complex than the simple perceptron 

network. It was proven that a three layer MLP network can produce arbitrary complex 

decision regions over a given feature space. The details of the analysis are available in 

textbooks and references such as [59].  

Before exploring the training algorithms for MLPs, we discuss the topology and 

characteristics of the MLPs. An MLP is a directed graph of nodes that have simple and 

similar behavior. Traditionally, a node in such a graph is called neuron. Each neuron is a 

processing unit which has some inputs, some outputs and a transfer function (frequently 

called as activation function). Simple linear neuron adds up the input signals and transfers 

the result to its output.  However, the output function has other forms for stabilizing the 

network and leading to a smooth learning phase. The most commonly used output 

functions are threshold (Equation 4.22) and sigmoid (Equation 4.23) functions.  
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An MLP can be constructed by arranging neurons as layers and connecting the 

outputs of each layer as input to the next layer. In the simple MLP, each consecutive 

layer is fully connected, but other nonsymmetrical connections are also possible. 

We mentioned that an MLP with three layers could learn arbitrary mappings 

between input and output. Actually, this is mostly related to the number of adjustable 

parameters of the network. For MLP, the adjustable parameters are the number of hidden 

layer neurons. This choice implicitly raises or lowers the number of network weights that 

are adjusted in the training stage. The basic topology for a three-layer MLP is given in 

Figure 4.9. 

 

 

 

Figure 4.9: Typical standard of Multilayer perceptron network. 
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Assume that there are d inputs, c outputs (or classes), and M hidden units. Then, 

wk
ji denotes the weight of the link connecting ith unit of layer (k-1) to the jth unit of layer 

k. The unit indices start from one and the zero weight is reserved for bias values. So, the 

output of the jth unit in the first hidden layer for a given input vector x, and activation 

function g(.) will be as follows: 

 

 







 



d
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11  (4.24) 

 

There are two training algorithms for MLPs. The first one is called the gradient 

descent (GD) training algorithm. The second one is called Conjugate Gradient Descent 

(CGD) algorithm that is, in fact, a well-known optimization algorithm. However, several 

other optimization algorithms can be used in training multi-layer perceptron networks, 

such as Newton’s method, the Quasi-Newton method involving other techniques for 

speeding-up the process [74]. 

 

4.6.3 The Support Vector Machines (SVM) Algorithm 

Support Vector Machines (SVMs) are classifiers drew particular interest in recent 

years. Although, the theoretical basis for SVMs were known decades ago, Their full use 

was not explored until the 90's [76]. The review provided here is mostly inspired from the 

tutorial in [77]. SVMs are supervised classification and regression engines, although 

there are some recent suggestions about their semi supervised variants [76]. Much of the 



92 
 

work on SVM classifiers relates to the binary classification problem, with multiclass 

classifier constructed by combining several binary classifiers. 

Given a model (classifier), capacity can be defined informally as the extent of data 

that the model could successfully learn. Capacity is related to the number of free 

parameters of the given model. In pattern recognition, one of the major challenges is what 

we call the bias-variance tradeoff. In other words, a classifier is successful if it could 

generalize the instance of data it has seen during the training stage, rather than 

memorizing it. Therefore, the number of free parameters for a model plays the most 

important role in the overall performance. For example, in the case of neural networks, 

the free parameters are usually fixed after several experiments on the given dataset. 

The SVM can be seen as a classification machine that addresses diverse 

classification problem more than other classifiers. The basic idea behind SVMs stems 

from the concept of risk-minimization. Let T be the set of input-output pairs, and l the 

number of elements in the set T: 
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 The classification (or regression) machine, f(.),becomes: 
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SVMs can be used to classify data under two possible scenarios: The linearly 

separable projection and the nonlinear projection. In our work, we used the linearly 

separable scenario. 

Linearly Separable Datasets 

SVM is traditionally used to project non-linearly separable data into higher-

dimensional space using kernel techniques. In higher dimensions, the data points become 

linearly separable. SVM based classifiers, are learn as universal classifiers that are 

statistically robust learning methods based on structural risk minimization. SVM based 

classifiers seek to find optimal separating hyper-planes, in order to maximize the margin 

between classes of data in the projection space. 

Assume that we have m training samples, and each sample consists of an (xi, yi) 

pair where xi is Nx1 containing attributes of the ith sample, and yi ∈ 1, 1  is the class 

label for the sample. The objective of the SVM is to find the optimal separating hyper-

plane . 0, between the two classes of data. Where  is the normal vector to the 

hyperplane. The parameter 
‖ ‖

 determines the offset of the hyperplane from the original 

along the normal vector  as shown in Figure 4.10. 

If the training data is linearly separable, we can select two parallel hyperplanes that 

separate the two classes of data, so that the distance between them is as large as possible. 

The region bounded by these two hyperplanes is called the "margin", and the maximum-

margin hyperplane is the hyperplane that lies halfway between them. With proper dataset 

rescaling, these hyperplanes can be described by the following equations: 
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. 1 (anything on or above this boundary is of one class, with label 1) 

And 

. 0 (anything on or above this boundary is of one class, with label -1) 

The distance between these two hyperplanes is 
‖ ‖

, so to maximize the distance 

between the planes we want to minimize ‖w‖. The distance is computed using 

the distance from a point to a plane equation. We also have to prevent data points from 

falling into the margin, we add the following constraint: for each i either 

. 1, if 1 

Or 

. 1, if 1 

These constraints state that each data point must lie on the correct side of the 

margin. This can be rewritten as: 

 

arg 	 || ||         (4.28) 

 

subject to 

. 1, for all 1  

 

Where m is number of samples. The corresponding classifier is . .  
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The constraints aim to put the samples with positive labels at one side of the margin 

. 	 1, and the ones with negative labels at the other side . 	 1.  

 

Figure 4.10: SVM widen the margin between the two classes of data that are needed to be classified. 

 

The classification approached outlined above have their own advantages and 

disadvantages. In our work, we will use ensemble classifiers as a combination tool 

between the individual classifiers to enhance the results. The details of ensemble 

classifiers will be explain in the next section.  . 
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4.7 Ensemble Classifiers 

Classifier combinations in pattern recognition attracted much attention in the last 

decade due to several reasons. First, combining classifiers give rise to extra dependability 

and proven to decrease the variance of the different classifiers. This is shown to be true 

even if the combination performs equal or slightly less than the best classifier in the 

combination [81]. 

Another reason is different classifiers split the feature space differently and each 

classifier probably performs better on different regions of feature space. In addition, some 

initialization dependent classifiers, such as neural networks, converge to different sub 

optimum solutions [81]. By combining the classifiers, the learning attempts of different 

networks are utilized efficiently. 

Classically, a combiner combines the outputs of the given classifiers to make the final 

decision. Therefore, the combination scheme depends on the selected architecture of the 

overall system. Parallel, cascade, or hierarchical combinations of classifiers are possible.  

In parallel combination architecture, each classifier is fed with the given feature and 

the outputs are combined. In the cascaded architecture, classifiers are applied in sequence 

while the possible number of classes is decreased. The hierarchical approach is similar to 

the decision tree classifiers. Instead of the decision nodes acting on features, classifiers 

nodes are placed to form a classifier tree. These three basic architectures can also be 

combined to form more complex classification systems. 
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Simple analysis shows that the discrimination ability of the combination increases as 

the individual classifiers pose low correlation. Therefore, one should utilize the 

techniques for guaranteeing this independence to certain level. The simplest way to 

ensure the classifier independence is to use different training sets for each of the classifier 

in the combination. If sample is abundant, independent classifiers are easily produced. In 

general, this is not the case for the expert systems where manual labeling should be done 

by the expert. 

An important issue in combining classifiers is that the outputs of the classifiers should 

be compatible in order for the combination to make sense. Furthermore, the behavior of 

the individual classifiers should be carefully studied. The combination techniques are 

divided into three categories as mentioned in [87]. In confidence level, the classifier 

makes the membership probably estimation for each class. In rank level, a classifier 

assigns ranks to the classes. In abstract level, the classifier only outputs a class label. 

Thus, the information level decreases from confidence level to abstract level.  

For example, MLP networks with sigmoid output units belong to the confidence level 

combination, since the output nodes of MLP are known to represent the approximation of 

class probabilities for the given input pattern. KNN belongs to the abstract level since it 

only outputs a single label. 

The common combination rules by the individual classifier output information level 

are presented in Figure 4.11. In this Figure, there are three main levels; Abstract level, 

confidence level and rank level. The abstract classifiers can be combined with majority 

voting method. The confidence level classifier can be combined by any combination 
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method since they convey the richest information. The outputs can simply be converted 

to ranks by sorting the class probabilities in descending order and ranking, or, the 

maximum output can just be picked to perform majority voting in abstract level. 

Combination of the rank based classifiers is the least studied one among the three types. 

Recently, such a rank based method is suggested in [88], to formulate a discrete 

optimization problem as a maximization in search for the best total probability of correct 

decision. 

Borda Count

Rank
Level

Mean Median

Max Stacking

Product Generalized
Commettiee

Confidence
Level

Majority Voting

Abstract
Level

Classifier Combination
by

Information Level

 

Figure 4.11:  Classifier combination methods used by information level. 

 

In the following discussion, we assume that only the class labels are available from 

the classifier outputs. Let us define the decision of the tth classifier as dt,j ∈  {0, 1}, t = 

1,…,T and j = 1,…,C , where T is the number of classifiers and C is the number of 

classes. If tth classifier chooses class ωj, then dt,j = 1, and 0, otherwise. 
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The ensemble decision for the plurality voting can be described as follows: choose 

class ωJ , if: 

 

∑ , max ∑ ,        (4.30) 

 

There are three assumptions for the majority voting: 1. Number of classifiers should 

be odd number; 2. The classifier outputs are independent; 3. The probability of each 

classifier choosing the correct class is p. Hence, Pens, the probability of ensemble success 

is: 

 

∑ 1       (4.31) 

 

Assume that the outputs of the classifiers are given in confidence level. Then each 

classifier gives a probability estimate for each of the possible classes. The Mean or Sum 

Rule adds up the given output vectors to form a decision. If the outputs of the sum rule it 

to be used in another classifier combination stage, then it should be normalized. If the 

decision should be made, the class with maximum value will be selected. In addition, by 

imposing a certain threshold of the maximum output value, rejection measure can be 

employed for the problem if required. 
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In the Product Rule, the outputs are multiplied element by element to form the 

combined output vector and the result is normalized. This rule is very sensitive to the 

most pessimistic classifiers: a low support (close to 0) for a class from any of the 

classifiers can effectively remove any chance of that class being selected. However, if 

individual posterior probabilities are estimated correctly at the classifier outputs, then this 

rule provides the best estimate of the overall posterior probability of the class selected by 

the ensemble. 

 

∏ ,        (4.32) 

 

For the Median Rule of combination, each output probability estimate is grouped and 

sorted among them. The median of each group is taken to form the output vector. If there 

is even number of classifiers, the mean value of the values, belonging to the nearest 

integer indices is computed. The Borda Count method is originally suggested for the 

election systems. Since classifier combination can be thought as some form of election, it 

can be applied for combining classifier outputs. In this method, each classifier output 

vector is arranged in ascending order and a rank score equal to the index of the class is 

given to the corresponding class. Then, class scores are added up to find the output vector 

from which the class having maximum value is taken as winner. The output vector can be 

normalized to be fed into another stage of classifiers. 

Another type of combination technique is to combine the output of the classifiers by 

linear weighting. The weights should be chosen such that the output error of the 



101 
 

combination with respect to some known dataset is minimized. The application of such a 

combination is certainly expected to perform better than the mean rule since it is a 

generalized version of the mean rule.  

In our work, we have selected combination algorithms to cover different type of 

combinations. In particularly, we selected the following combinations: Algebraic 

combiners (Minimum/ Maximum/ Median/ Product Rule), and Majority voting. The main 

advantage of using these ensemble classifiers is decreasing the variance of the different 

classifiers. In the next section, we will use the HTC and the ensemble classifiers in our 

work. 

 

4.8   Experimental Results 

  In this section, we discuss our results following the experimental settings 

described above using the segment units that were extracted as explained in chapter 3. 

The total number of segment units is around 4300. These segment units contain CVs and 

CVCs, and the total number of classes is 24 classes as shown in Figure 4.12.  
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Figure 4.12: The proposed segment unit classification tree 

 

In our work, we performed segment unit classification experiments for each stage 

separately using the following the following 281 features [161]: 

 The energy (1 feature). 

 Variance and max the pitch (2 features). 

 Mean, variance, and max the first formant (3 features) 

 Mean and variance the first ten coefficients of MFCC (20 features). 

 Mean the seven-layer energy coefficients of Wavelet (255 features). 

 

For our first set of experiments, we started by a binary classification between the main 

CVs and CVCs categories. We segmented the speech units into frames of 1200 samples. 

The consecutive frames were then overlapped with 300 samples. Then, each frame was 

windowed using a Hamming Window. We used the LDA-PCA transformation to project 
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the features into 50 uncorrelated features for each frame. These 50 uncorrelated features 

had a cumulative explained variance of more than 90% of the full variance of the data 

[162].  Hence, the input data is a 4300 x 50 matrix, and this feature matrix is passed to 

our HTC, as described in section 4.4. This tree represents the classification of the 

segment units, according to the prior knowledge about these segments based on the 

Tajweed rules.  

In our experimental setup, we used 80% of the data for training, and the remaining 20% 

for testing. We used the individual and the ensemble-based classifiers as classification 

tools to distinguish between the classes. For individual classification, we used 3 types: 

MLP, KNN and SVM. Whereas for ensemble-based classifiers, we used Majority, 

Maximum rule, Summation rule, Minimum rule, Average rule, and Product rule. 

First, we analyzed the results for the first stage (CVs and CVCs). The main difference 

between these is in the last part of the segment unit as either a consonant or a vowel. So 

in this stage, the last three frames are selected to identify these frames as consonant or 

vowel, where the minimum number of frames for the consonant or the vowel was 

chosen to be three. The results were then repeated over 10 runs randomly shuffled. 

Across all the runs, we have around 8600 (860x10) test segment units covering all the 

class types. The average accuracies for this stage are shown in Table 4.1. We notice in 

this table that the average accuracy is around 99.3%. 
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Predicted  

Table 4.1 The confusion matrix for the first stage in our HTR system (CV vs. CVC) 

 CVs CVCs Accuracy 

CVs 5478 21 99.62% 

CVCs 32 3069 98.97% 

Average Accuracy   99.3% 

 

Second, we passed the results from the first stage to the second stage in our proposed 

HTC algorithm. In this stage, we have four main classes as follows: bold and nasals, bold 

and not nasal, not bold and nasal, and not bold and not nasal. The results are shown in 

Tables 4.2 and 4.3.  

 

Table 4.2 Confusion matrix for second stage recognition in CVs 

 not bold 

and not 

nasal 

not bold 

and not 

nasal 

not bold 

and not 

nasal 

not bold 

and not 

nasal 

 

Recognition 

Accuracy 

 

not bold and not 

nasal 
4131 46 73 91 95.18 % 

not bold and nasal 91 146 18 27 52.09 % 

bold and not nasal 255 27 356 36 52.34 % 

bold and nasals 55 18 27 100 51.58 % 

Average Accuracy     86.09 % 

True 
Class 
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Predicted  

 

Table 4.3 Confusion matrix for second stage recognition in CVCs 

 not bold 

and not 

nasal 

not bold 

and not 

nasal 

not bold 

and not 

nasal 

not bold 

and not 

nasal 

 

Recognition 

Accuracy 

 

not bold and not nasal 2597 26 9 17 97.75 % 

not bold and nasal 26 60 9 17 53.33 % 

bold and not nasal 68 34 111 9 48.96 % 

bold and nasals 34 17 26 43 36.73 % 

Average Accuracy     90.03 % 

 

The results show clearly the importance of identifying the consonants and vowels 

before identifying the type of CVs or CVCs classes. The proposed algorithm achieved 

87% in overall recognition under CVs and 90% in overall recognition under CVCs 

compared to the case of segment unit recognition without considering the HTC (49%) as 

was shown in Table 4.2. The proposed framework using HTC showed an improvement of 

about 34% in recognition accuracy. While the segment unit recognition accuracy was 

barely 49% when all classes were mixed, such accuracy reached around 90% (89.13%) 

with the inclusion of HTC framework. 

  In the third stage, we used the segment unit length as a feature to distinguish 

between V and VV for CVs classes, and V, VV, V4, and V6 for CVCs classes. The 

True 
Class 
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overall average accuracies of the individual classification methods with and without 

HTC are presented in Figure 4.12. We observe, from Figure 4.12, the accuracy using 

HTC is much better compared to the results without HTC.  

 

 

Figure 4.12: The Overall Average Accuracy of Individual Classifiers with and without HTR 

 

To improve the performance of the individual classifiers, we implemented 6 types 

of ensemble-base classifiers: Majority voting rule, Maximum rule, Summation rule, 

Minimum rule, Average rule, and Product rule[163]. The average accuracies using these 

methods are presented in Tables 4.4.  
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Table 4.4 Average accuracy of Ensemble Classifiers with and without HTR 

 Ensemble Techniques  
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Average Accuracy 

without HTR 
47.75 47.69 48.01 48.11 48.02 48.03 47.82 

Average Accuracy 

with HTR 
85.69 85.36 85.74 85.74 85.74 85.67 85.50 

 

Based on the above results, the average accuracies of the individual classifiers are 

very comparable. But in almost cases, the best performance is obtained with the SVM 

algorithm, which is shown to be effective more in managing high dimensional data. The 

results show that, we can achieve a slight improvement by using ensemble-based 

classifiers with a negligible additional computational cost.  However, we must take into 

consideration the fact that the performance of each of the methods is depending upon the 

base algorithms used, hence both methods and combination approaches must be 

considered in conjunction.  

To summarize our results, we conducted a statistical analysis of the proposed 

approach considering both CVs and CVCs stages. In particular, we used our results from 

the confusion matrices to derive the accuracy, precision, recall, and finally F-measure. 

The F-measure has been used as an excellent index for measuring test accuracy. Instead 
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of consedering only accuracy, the F-measure considers both precision and recall. It 

reaches its best value at 1 and worst at 0. 

The values for accuracy, precesion, recall and F-measure are displayed in Tables 

4.5 and 4.6. For the case of CVs, we reach a maximum F-measure of 0.97 for the two 

classes: the not bold and nasal class and the bold and nasal class. As expected, the nasals 

case is usually easier for identifying because it has longer periodic time than the other 

types of classes. Overall, we see that the proposed HTC methodlogy achieves a very good 

recognition accuracy comparing without using HTC methodology. 

 

Table 4.5 Accuracy, precision, recall and F-measure using the second stage under CVs 

 Accuracy Precision Recall Fmeasure 

not bold and not 

nasal 
95.18 78.36 65.42 0.71 

not bold and nasal 52.09 97.42 98.23 0.97 

bold and not nasal 52.34 93.55 97.56 0.95 

bold and nasals 51.58 98.13 97.06 0.97 
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Table 4.6 Accuracy, precision, recall and F-measure using the second stage under CVCs 

 Accuracy Precision Recall Fmeasure 

not bold and not 

nasal 
97.75 84.28 70.53 0.77 

not bold and nasal 53.33 98.31 97.29 0.98 

bold and not nasal 48.96 96.03 98.50 0.97 

bold and nasals 36.73 97.55 98.56 0.98 

 

4.9   Conclusion 

In this chapter, we have explored the benefits of using HTC and fusion approaches of 

evidence from multiple classifiers to achieve improved recognition accuracy for Quran 

speech. At the beginning, we proposed a HTC based on Tajweed rules. The first level in 

HTC classifies the segment units into two classes: CVs and CVCs. In the second level, 

we have 4 classes: not bold not nasal, not bold and nasal, bold and not nasal and finally 

bold and nasal.  The total number of nodes in HTC is 24 which considered as super 

classes. After using a HTC, the accuracy performance enhanced around 34% over when 

all the segment units are mixed. In the second stage, we used ensemble-based classifiers 

to enhance the classification accuracy of Quran recitation. We started with three 

individual classifiers: KNN, MLP, and SVM. A simple SVM was able to provide good 

performance in terms of recognition accuracy. In ensemble-based classifiers, we used 6 

methods: Algebraic combiners (Minimum/ Maximum/ Median/ Product Rule), and 
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Majority voting. The experiments showed that combining classifiers results improved 

slightly the accuracy than individual classifiers. More importantly, the experiments 

showed that the difference in performance between diverse ensemble-based classifiers is 

not substantial. The work on HTC and ensemble-based classifiers can be extended to 

other applications such as emotion recognition, visual recognition, language 

recognition…etc. 	
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5 CHAPTER 5 

SPEECH SEGMENT UNIT CLASSIFICATION USING 

DEEP NEURAL NETWORKS 

5.1 Introduction  

 In chapter 4, we used a hierarchical tree recognition system as a supervised 

approach for identifying speech units. The main aim for using HTR was to enhance the 

recognition performance, especially when we have a large number of classes. In our 

case, we have considered 700 classes.  

In this chapter, we discuss another method for recognizing speech units without the 

need a tree structure for when dealing with large number of classes. This method is based 

the recently developed networks called Deep Leaning Neural Networks (DNNs). In our 

work, we will use an unsupervised learning, where the algorithm divides data into 

clusters, then uses the deep learning neural network in the classification phase.  

Deep Neural Networks (DNNs) are believed to achieve high performance on 

complicated real applications such as vision and speech by better representing their 

complex functions. Deep learning is a category of machine learning techniques, where 

hierarchical architectures are used to process natural signals (e.g. speech signals) using 

several non-linear information stages. Eventually, such signals often contain features that 

are inherently their characteristics. 
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The acoustic modelling of speech considered is seen as a key component for most 

state-of-the-art speech recognition systems. Researchers, in this area, have recently used 

Deep Neural Networks (DNNs) with high degree of success for acoustic modelling of 

the English language [94], [96], [98], [111]. This success prompted us to investigate the 

efficiency of such networks for representing acoustic models for Arabic speech. The aim 

of this chapter, is therefore, to explore deep learning techniques for segment unit 

classification and acoustic modelling of Quran recitation. In order to achieve this aim, 

we have explored different network architectures based on the Deep Neural network 

introduced in [102].  

For a given a dataset, finding the optimum number of classes is a very important 

issue. One method that can be used for finding different classes is clustering. Clustering 

is used to find structure in unlabeled data. It is the most common form of unsupervised 

learning. Clustering methods can discover groups of objects where the average distances 

between the members of each cluster are smaller than to the members in other clusters. 

This chapter is organized as follows: Deep NNs models for Quran acoustic 

modelling are presented in Section 5.1. In section 5.2, the DNN concepts with their 

related technical details and the software methodologies are discussed. This is followed 

by experimental results using our segment units to train Deep Neural Networks (DNNs) 

with the Back-propagation supervised learning algorithm. A conclusion is finally drawn 

in Section 5.3.  
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5.2 The system Architecture 

In this chapter, our focus is on developing a Quran speech classification system 

using deep learning neural networks as a classification technique. For our experiments, 

the data input is our segment units were extracted as discussed in chapter 3 using 

KACST database.  

The proposed system is organized around the following steps (Figure 5.1): Segment 

units, Feature extraction, Clustering and selecting the optimum number of classes, Deep 

learning neural network for classification. The first and the second stage were explained 

before in chapter 4. We will start our discussion with the third stage. 

 

 

 

5.3 K-means Clustering 

K-means is a very popular approach used for clustering. Here, our main is to 

determine the main spectral groupings present in Quran recitation. The K-means 

algorithm takes as input parameter, k, then partitions a set of n objects into k clusters. 

Cluster similarity is measured with regards to the mean value of the objects in a cluster, 

which can be viewed as the cluster’s centroid or center of gravity. Since the K-means 

Figure. 5.1:    Flow Chart for the Proposed Quran Speech Recognition System 
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approach is iterative, it is computationally intensive and hence applied only to pattern 

subareas rather than to full scenes and can be seen as an unsupervised approach. The 

algorithm is described mathematically as follows: 

Given a set of N-observations (X1, X2, …, Xn), where each observation is a d-

dimensional real vector, the K-Means clustering algorithm aims at partitioning the N-

observations into K sets S, where (K ≤ N) and S = {S1, S2, …, Sk} so as to minimize 

Within-Cluster Sum of Squares (WCSS), formally written as [164]: 

 

min ∑ ∑ ∈         (5.1) 

 

Where  is the centroid of cluster i. The K-Means clustering algorithm is commonly 

used in different applications for unsupervised learning to split data into segments or 

clusters. Such segments or clusters can further be used in classification. The basic steps 

of K-Means clustering are described below [164]: 

1. Starts by a certain number value of K. 

2. Initialize the  to be the means of the clusters. 

3. Assign each example in the data set to the closest group (represented by ). 

4. Recalculate , based on the observations that are currently assigned to it. 

5. Repeat steps 2-3 until convergance. 
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5.4 Determining the optimal number of clusters 

A fundamental problem in cluster analysis is to determine the optimum number 

of clusters, which is usually taken as known apriori in most clustering algorithms. A 

clustering technique would most possibly recover the underlying cluster structure given a 

good estimate of the true number of clusters. The correct choice of the number of 

clusters is often ambiguous, with interpretations depending upon the shape and scale of 

the distribution of points in the data and the desired clustering resolution of the user. In 

addition, increasing number of clusters without penalty will always reduce the amount of 

the overall error in the resulting clustering, to the extreme case of zero error if each data 

point is considered its own cluster. Automatically then, the optimal choice number of 

clusters, should strike a balance between maximum compression of the data using a 

single cluster, and maximum accuracy by assigning each data point to its own cluster 

[166].  

A number of strategies have been proposed for estimating the optimal number of 

clusters. Here, we present the Silhouette and Elbow techniques commonly used in 

determining the optimal number of clusters.  

 

5.4.1 The Silhouette Index 

For a given cluster, Cj (j = 1,…, K), this method assigns to each sample Xi in Cj a 

quality measure, s(i) (i = 1,…, m), known as the silhouette width. The Silhouette width is 

a confidence indicator on the membership of the ith sample Xi in cluster Cj. The 
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Silhouette width for the ith sample Xi in cluster Cj is defined as [165] [166]. 

 

	 ,
 , i=1,2,….m       (5.2) 

 

where a(i) is the average distance between the ith sample Xi and all of the samples 

included in Cj , and b(i) is the minimum average distance between the ith sample Xi , and 

all of the samples in the data. From this formula it shows that s(i) has a value between -1 

and 1. 

Thus, for a given cluster, Cj, it is possible to calculate a cluster silhouette, Sj, 

which characterizes the heterogeneity and isolation properties of such a cluster. It is 

calculated as the sum of all silhouette widths in Cj. The formula of  Sj is determined as: 

 

S ∑ ∈             (5.3) 

 

Moreover, for any partition, a Global Silhouette (GSU) value or silhouette index, 

can be used as an effective validity index for a partition U. 

 

∑          (5.4) 

 

where Sj is silhouette index value for cluster Cj. In this case, the minimum silhouette 
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index value is taken as the value corresponding to the optimal partition. In our work, we 

used the silhouette method to find the optimum number of clusters. The results are 

shown in Figure 5.2, which clearly show that the optimum number is around 700 clusters 

for our dataset.  

 

 

Figure 5.2: Results for optimal number of clustering using the silhouette method 
 

5.4.2 The Elbow Method 

The elbow method looks at the percentage of variance explained as a function of 

the number of clusters. One should choose a number of clusters so that adding another 

cluster doesn't give a much better partition of the data. More precisely, if one plots the 

percentage of variance explained by the clusters against the varying number of clusters, 

the first clusters will add much information (explain a lot of variance), but at some point, 

the marginal gain drops, giving an angle in the graph. The number of clusters is chosen 

based on the "elbow criterion". The percentage of variance explained is the ratio of the 

Number of clusters

silhouette 
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between-group variance to the total variance. In our work, we have around 4300 segment 

units as the input data, and we use the elbow criteria to find the optimum number of 

clusters. The percentage of variance explained for our data is shown in Figure 5.3. The 

optimum number of clusters based on the silhouette index method was around 700 

clusters. This number results in a percentage of variance explained of around 93.3%.  

Based on both (silhouette index and Elbow), in our experiments, we will consider the 

optimum number of clusters is 700 clusters according to our dataset. 

 

 

Figure 5.3: The percentage of variance explained for our data 
 

5.5 Deep learning for speech analysis 

Until recently, most machine learning techniques have exploited shallow-structured 

architectures which contain a single layer of nonlinear feature transformation. Examples 
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of these architectures are Support Vector Machines (SVMs), Kernel regression, Logistic 

regression, and Multi-Layer Perceptron (MLP) neural networks with a single hidden 

layer. The main properties of shallow learning models is that they have a simple 

architecture and are only effective in solving simple problems. However, these shallow 

architectures have limited representational and modeling powers which can lead to 

difficulties when dealing with perception related problems such as human speech. 

In recent times, Deep Neural Networks (DNNs) have been shown to achieve high 

performance on complicated real applications such as vision and speech by using 

excellent representations of complex functions or tasks. Deep learning is a category of 

machine learning techniques, where hierarchical architectures are used to process natural 

signals (e.g. speech signals) using several non-linear information stages. Feed-forward 

neural networks (FNNs) (e.g., Multi-Layer Perceptron (MLPs)) with many hidden layers 

are considered a good example of such deep models. Usually MLPs use the 

Backpropagation (BP) algorithm for learning the network weights. However, such 

learning algorithms do not work well for learning when several hidden layers are used 

[90][91]. DNNs are feed-forward Neural Networks that have, on the other hand, many 

layers of non-linear hidden units between their inputs and their outputs.  

There are two key properties of deep learning techniques. A DNN is trained as a 

generative model, and then an additional top layer is used to perform the discriminative 

tasks. An unsupervised pre-training phase which train the multilayer generative neural 

network in one layer at a time, making these effective in extracting structures that 

represent input features in large unlabeled training data. Most of the work that uses deep 

learning, can be categorized based on how the architectures are intended to be used: 
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1) Generative deep architecture: this architecture aims at distinguishing the high-order 

correlation properties of the visible or observed data for pattern synthesis or 

analysis purposes. In this architecture, DNNs are similar to other dimensionality 

reduction methods such as Principle Component Analysis (PCA). Generally, the 

use of generative models plays a significant role in feature coding and recognition 

applications [97]–[99]. 

 

2) Discriminative deep architecture: this type of architecture is, often used to 

characterize the posterior distributions of classes, conditioned upon the observed 

data, to provide discriminative power for pattern classification.  

 

For large vocabulary speech recognition, deep neural networks must be trained with a 

large number of parameters. Therefore, overfitting is a potentially serious problem. The 

term overfitting refers to the gap between training error and test error; i.e. the neural net 

has learned the training examples very well, but has ‘lost’ its ability to generalize the 

learning to a new situation. There are several techniques used to prevent overfitting like 

cross-validation, early stopping, regularization, pruning…etc [167]. These techniques can 

be used to indicate when more training leads to worse generalizations. More recently, 

dropout has been discussed as regularization technique for addressing overfitting  [100]. 

This technique randomly drops units from the neural net during training to prevent units 

from co-adapting too much. The authors in  [100], showed that dropout can improve the 
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performance of the deep neural networks on supervised learning tasks in speech 

recognition and benchmark datasets. The authors in [101], also used a stacking training 

method that trains multiple simultaneous predictors to simulate the overfitting problem in 

early layers of the network. 

Deep learning has been successfully exploited for feature learning and pattern 

classification in diverse applications [90], [102], [103]. A recent work in learning 

algorithms for deep neural networks has shown excellent performance results in 

classification tasks [104], [105], in regression [106], in dimensionality reduction [102], 

[106], in modeling motion [107], in object segmentation [108], in information retrieval 

[106], in robotics [108], in natural language processing [97], [109], and most notably in 

the area of Large Vocabulary Automatic Speech Recognition (LVASR) [96], [97]. 

In our work, we need a DNN classifier task as a process in which, given a certain 

classes, to pick from a set of features those which better fit each of these classes. When 

that set consists of too many features the task might not be so easy and it could be better 

to have a smaller set. Applying this concept to DNN, we want to find a low dimensional 

representation of a high dimensional data and that is what autoencoders can do. This 

process of dimensionality reduction is performed by such autoencoder which consists of a 

multilayer neural network with a small central layer and whose aim is to reconstruct its 

high-dimensional input vectors. More details about autoencoder will be in the next 

section. 
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5.5.1 Autoencoder 

Autoencoders is an artificial neural network for reconstructing the input signal. 

An autoencoder is a three layer multi-layer perceptron (MLP) consisting of an input 

layer, a code layer and a reconstruction layer, as illustrated in Figure 5.4. The goal of an 

autoencoder is to learn a good code representation that preserves as much information as 

possible about an input to allow the input to then be reconstructed from the code. An 

autoencoder is trained on a dataset by minimizing a function of the reconstruction error 

such as the mean squared error.  

 

Figure 5.4: Autoencoder structure 

 

If there is one linear hidden layer and the mean squared error criterion is used to 

train the network, then the k hidden units learn to project the input in the span of the first 

k principal components of the data. If the hidden layer is non-linear, the autoencoder 

behaves differently from Principal Component Analysis (PCA), with the ability to 

capture multi-modal aspects of the input distribution. The hope is that the code z is a 
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distributed representation that captures the main factors of variation in the data: because z 

is viewed as a lossy representation of x, it cannot be a good representation (with small 

loss) for all x. So learning drives it to be one that is a good representation in particular for 

training examples, and hopefully for others as well (and that is the sense in which an 

autoencoder generalizes), but not for arbitrary inputs. It can typically be used for 

dimensionality reduction by learning a compressed (m < n) representation of the data. 

An autoencoder is special kind of neural network with two components: an 

encoder and a decoder. The encoder takes the input x, and maps it to a hidden 

representation y, which is given by 

 

          (5.5) 

 

The latent or hidden representation y is mapped back to the original input, using a 

decoder which is given as: 

 

          (5.6) 

 

The latent or hidden representation y is mapped back to the original input, using a 

decoder which is given as: 

          (5.7) 
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where y is the encoded value, yˆ is a possibly corrupted version of the encoded 

value, bh, bv are the bias values of encoder and decoder respectively, W is the weight 

matrix of the encoder, while W' represents its transpose. This network tries to minimise 

the reconstruction error given as: 

, ‖ ‖                         (5.8) 

 

∑ 1 log	 1         (5.9) 

 

The first equation 5.8 is for continuous input, while the second equation 5.9 is 

used for classes and binary vectors. It is basically the cross-entropy error already defined 

above. Although we have expressed the equations with σ function, the activation function 

could be any other prominent activation functions. If the hidden layer of the auto-encoder 

has a lower dimensionality than the input, the model will perform non-linear 

dimensionality reduction. If it is of equal or greater dimensionality, special care must be 

put to avoid that the model learns a trivial mapping (identity function). For this reason, 

the input or the hidden representations may be corrupted during training. 

 

5.5.1.1 Manifold training with autoencoder 

A reason as to why autoencoders do so well is that they exploit the idea that data 

is generally concentrated around a manifold, or several subsets of manifolds. The general 

principle behind all autoencoders is a trade-off between two ideas: first, to learn a 

representation y of a training example x such that x can be approximately recovered from 
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y through a decoder. x should be drawn from the training data, because it means that the 

autoencoder need not successfully reconstruct the inputs that are not probable under the 

data generating distribution. The other complementary idea is to satisfy the generalization 

or regularization penalty, the presence of this term will encourage solutions which are 

less sensitive to small perturbations in the data 

Variational autoencoder is trained in a supervised fashion like a neural network 

using the backpropagation algorithm. The whole network is shown in Figure 5.5. 

 

 

Figure 5.5: Variational autoencoder [122] 

 

The idea of the network is to maximize the probability that the sample shown to 

the network will be generated as output. This approach is well known in statistics and is 

called MLE (maximum likelihood estimation). By using MLE, error function of the 

network is found. Error is also referred to as cost, and accordingly, error function is the 

cost function. 
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First, log-likelihood of the random variable which represents the data sample x 

(from the training set) being the output of the network is specified in Equation 2.42 

(logarithm is applied because it makes the calculation easier). The goal of training the 

neural network is to maximize that likelihood. 

 

log	                                         (5.10) 

 

Distribution which approximates pɸ(z|x) is denoted as q(z|x). Parameters of distribution q 

are now considered independent from the parameters of distribution pɸ(x|z). Equation 

5.10, can be multiplied by the integral over the entire space of q(z| x), therefore: 

 

/ log	           (5.11) 

 

Then, a series of simple transformations are done: 

 

/ log	
,

/
          (5.12) 

 

/ log	
,

/
          (5.13) 
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          (5.14) 

 

/ log	
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         (5.15) 

 

/ log	
,
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	 / log	

/

/
       (5.16) 

 

	 / || /          (5.17) 

 

The first term LV is called lower variation bound of the likelihood. The second term DKL 

is the Kullback-Leibler divergence which measures the similarity of behavior between 

two distributions. Here it measures how well does q(z|x) approximate p(z|x). To 

maximize the likelihood, it is necessary to maximize the lower variation bound. 

Therefore, lower variation bound is further analyzed. 

 

/ log	
,

/
         (5.18) 
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/ log	
/

/
         (5.19) 

 

/ log	
/

/ log	 /       (5.20) 

 

/ / log	 /       (5.21) 

 

The left term in Equation 5.21 is the Kullback-Leibler divergence which measures the 

similarity between q(z|x) and p(z). Distribution p(z) can be freely chosen but is usually a 

normal distribution with zero mean and unit variance. This context this term acts as a 

regularization term. Second term is the reconstruction quality of the Autoencoder. It 

measures how well the approximation of p(x|z) produces data sample from the given 

latent state. Maximization of both of those terms is the goal of training the network. 

First term DKL(q(z|x)|p(z)) can be calculated using Equation 5.21, since q(z|x) is 

a normal distribution with parameters μz, σz (vectors) produced by the encoder [122]. 

Variable J is the size of the latent space, thus the dimension of mentioned vectors. 

 

/ 0.5∑ 1 log     (5.22)
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In order to calculate the second term sampling of latent variable is needed. After 

sampling the latent variable many times, the average of log probability over all the 

samples should be calculated to estimate the expectation. But usually, only a single 

sample is sufficient for training to work well. Therefore, only the log probability remains 

to be calculated using the sample taken from the latent space. The calculation can be done 

in the following way by using the expression for the probability distribution of a normal 

distribution p(x|z) [122]: 

 

log	 / ∑ 0.5 log      (5.23) 

 

Parameters μx, σx (vectors) are produced by the decoder and D is the dimension of the 

data. 

Both expressions on the right hand side in Equations 5.22 and 5.23 need to be 

maximized in order maximize the likelihood of the data sample. Thus, the cost function 

is the sum of those two expressions multiplied by minus one: 

 

0.5∑ 1 log ∑ 0.5 log 	            (5.24) 
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Equation 5.18 is a cost function for a single data sample. Usually, for a single 

step of training, cost function is calculated for a batch of instances from the available 

training set. Total cost is then calculated as the average cost among the batch. 

In our work, we used softmax method as activation function for classification 

the output. The general concept of softmax activation function is in the following 

subsection. 

 

5.5.2 Softmax activation function 

The softmax function is used as part of a machine learning network, as a basis 

function to classify the outputs. The main idea of the softmax is computing its derivative 

using the multivariate chain rule. Where cross-entropy is commonly used to take a look at 

a loss function for training a network. 

Cross-entropy has an interesting probabilistic and information-theoretic 

interpretation. For two discrete probability distributions p and q, the cross-entropy 

function is defined as: 

 

, ∑ log	          (5.25) 

 

Where k is over all the possible values of the random variable in the distributions. In our 

case, there are T output classes, so k would go from 1 to T. 
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If we start from the softmax output P, where P is one probability distribution. The 

other probability distribution is the "correct" classification output, usually denoted by Y. 

This is a one-hot encoded vector of size T, where all elements except one are 0.0, and one 

element is 1.0. which 1 means the correct class for the data being classified. The cross-

entropy loss formula can be written as: 

 

, ∑ log	         (5.26) 

 

Where k is over all the output classes.  is the probability of the class as predicted by 

the model.  is the "true" probability of the class as provided by the data. The sole 

index will be y if 1.0. Since for all  we have 0, the cross-entropy 

formula can be simplified to: 

 

, log	           (5.27) 

 

Moreover, since in our case P is a vector, we can express   as the y-th element of P 

as: 

 

log	            (5.28) 
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The Jacobian of xent is a 1xT matrix (a row vector), since the output is a scalar and we 

have T inputs (the vector P has T elements): 

 

	 …	         (5.29) 

 

Now recall that P can be expressed as a function of input weights: 

 

           (5.30) 

 

So we have another function composition: 

 

	 	           (5.31) 

 

																			           (5.32) 

 

We can, once again, use the multivariate chain rule to find the gradient of xent w.r.t. W: 
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																					 .         (5.33) 

 

The dimension of the Jacobian matrix  is TxNT, and The dimension of the 

Jacobian matrix   is 1xT. So the resulting Jacobian  is 1xNT, 

where the whole network has one output (the cross-entropy loss - a scalar value) 

and NT inputs (the weights). 

Here again, there is a straightforward way to find a simple formula for , since 

many elements in the matrix multiplication will be zero. Note that  depends only 

on the y-th element of P. Therefore, only  is non-zero in the Jacobian: 

 

0	0	 … 	0           (5.34) 

 

And . Then, we multiply  by each column of  to get 

each element in the resulting row-vector. The row vector represents the linearized weight 

matrix W. We will index into it with i and j for simplicity (  points to element 

number  in the row vector): 

 

∑ .         (5.35) 
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Since only the y-th element in  is non-zero, we get the following, also 

substituting the derivative of the softmax layer as the following: 

 

.         (5.36) 

 

																					 .          (5.37) 

 

Let’s, , so we get: 

 

.          (5.38) 

 

																									          (5.39) 

 

																									           (5.40) 

 

The formula for   could end up being a fairly involved sum (or sum 

of sums). The technique of multiplying Jacobian matrices is ignorant to all this. For 

multivariate chain rule, we compute the individual Jacobians which is usually easier 
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because non-composed functions. 

 

5.6 Experimental Results 

As explained earlier, our database consists of 4300 observations (or speech 

segment units). Each of these observations is represented with 281 dimensional feature 

vectors. Using the silhouette method as a criterion, we clustered the data into 700 

clusters using the k-means algorithm. The resulting cluster indices are used as class 

labels. In other words, we assume here that we have 700 classes. Given the large number 

of classes, we opted to use the Autoencoder DNN for classification. 

For performance analysis, we used 80% of the data for training and the remaining 

20% for testing. The stochastic gradient decent algorithm was used for the pre-training 

phase with a mini-batch size of 100 training cases using a learning rate of 0.1, a weight 

cost of 0.0002, and a momentum of 0.9. In the fine-tuning stage, we used 4000 epochs 

for the first hidden layer, and 2000 epochs for the second hidden layer. We ran the 

experiments using the Matlab code as used in [168]  to implement the developed 

systems. 

As with common applications of neural networks, there are no specific rules on how 

to select the number of hidden layers and the number of nodes at each layer. Thus, as 

suggested in [169], to optimize the number of nodes in the hidden layers, the number of 

hidden layers should be changed once a time. For simplicity, the network used was 

optimized by fixing the number of hidden layers and changing the number of neurons. 

Figure. 5.6 shows the effect of choosing the number of neurons on the recognition 
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performance while fixing the number of hidden layers. We notice in Figure 5.5 that 

increasing the number of neurons to 4000 in the first hidden layer gives a slightly 

improved performance. However, 5000 nodes in the first hidden layer was not better 

than 4000 nodes, meaning that 4000 nodes are enough to achieve good recognition 

performance. 

 

 
(a) 

 

(b) 

Figure 5.6: Convergence of NN training (a), Zoomed region (b) 
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As a second optimization stage, we also studied the effects of the number of hidden 

layers on the overall performance. Here, the number of neurons in the first stage was 4000 

neurons, and 2000 neurons for the second hidden layer and 1000 neurons for the third 

hidden layer[168]. The number of neurons in each hidden layer were classes based on the 

number of observations and the number of outputs. We performant three experiments: 

One hidden layer with a number of neurons of 4000, two hidden layers with a number of 

neurons of 4000, and 1000 respectively, and three hidden layers with the number of 

neurons of 4000, 2000, and 1000 respectively. The results of these experiments are shown 

in Figure 5.7. 

 

Figure 5.7: Convergence of the NN with different number of hidden layers  

 



138 
 

We notice in Figure 5.7 that, when we increase the number of hidden layers, the 

convergence is faster. These results were obtained confirming previous work discussed in 

[98]. Therefore, the structure of the hidden nodes for our experiments was chosen based 

on these optimized experiments to be three hidden layers with 4000, 2000, and 1000 

neurons respectively. 

The results using the above architectures are summarized in Table 5.1, showing the 

performance of the seven different models that were considered to evaluate the optimum 

number of neurons and number of hidden layers for our application. It is clear from 

Table 5.1 that the three hidden layers NN, provides the best classification performance 

across all structures. Increasing the number of neurons in the hidden layer up to 4000 

hidden nodes improved the classification performance of the network. The significance 

tests also proved that the three hidden layers-4000-2000-1000 structure gives the best 

DNN architecture. 
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Table 5.1 - Performance with different setups of the DNN 

Number of hidden layers Number of neurons The performance when the 

number of iteration is 400 

1 1000 98.7 % 

1 2000 99.1 % 

1 3000 99.5 % 

1 4000 99.7 % 

1 5000 99.6 % 

2 4000-2000 99.75 % 

3 4000-2000-1000 99.9 % 

 

In the classification stage, it is desirable to present the confusion matrix but this is 

difficult when the number of classes is very large. Here, we display the confusion matrix 

as a mesh plot. The mesh function in Matlab represents 3D data as a wireframe with 

color determined by the Z axis. The confusion matrix is displayed in Figure 5.8. It is 

clear that confusion matrix is very close to a diagonal one as the accuracy is close to 

100%. 
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(a) 

 

(b) 

Figure 5.8: a) Mesh plot of the confusion matrix b) Zoom the mesh plot 

 

As the KACST corpus had been labelled to test our work, we could not evaluate the 

developed system compared to other systems reported in the literature. However, the 

results were obtained from Chapter 4, can be compared directly with the DNN model 

results. Table 5.2 shows the comparison between the ensemble-based classifier and 

DNN classifiers. 	
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Table 5.2 - A comparison results between MLP and DNN 

 Ensemble-based Classifier 

with HTR 

DNN 

Accuracy 85.58% 100% 

	

As can be seen for Table 5.2, the performance of the DNN is about 15% better than 

the ensemble-based classifier with HTR. This advantage would be more significant 

when training more complex models with larger number of classes [170]. However, 

when the feature set is less complex, the results from the DNN are the same as the 

individual classifiers, and no significant improvement can be noticed [171], [172]. On 

the other hand, when the feature set becomes more complex, DNNs achieve the best 

results with deeper layers and larger hidden units. This implies that DNN is better suited 

for more complex features where the inclusion of additional parameters and layers can 

better capture the nature of the data [172]. 

  

5.7 Conclusion 

The objective of this chapter was to explore the potential advantages of 

developing an Autoencoder DNN-based system for Quran speech recognition. In order to 

achieve this aim, we used the silhouette method as a technique to find the optimum 

number of clusters and used the k-means algorithm to assign each observation to one of 

the resulting clusters. Several Autoencoder DNN-based Quran speech recognition 
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systems were developed and evaluated using our dataset. It was shown that, the 

performance of the Autoencoder DNN with three hidden layers can be almost perfect. 

These results showed that, when the feature set becomes more complex, the DNNs 

achieve excellent results with deeper layers and larger hidden units. Also, the results 

showed that the DNNs are better suited for more complex features where the inclusion of 

additional parameters and layers can better capture the nature of the data and differences 

between classes. 
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6 CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion  

 In this dissertation, we introduced new models for speech segmentation and 

recognition in relation to Quran recitation. The road map of our work consists of two 

main branches: the first branch is finding the optimal set of segment units based on our 

proposed segmentation technique, and the second branch is to use our segmentation 

results from the first branch to find the optimal number of classes and identify such 

classes from test data. During the course of the work, we achieved the following results: 

 

 We developed a Quran database that is manually timed and syllabically labelled. 

This dataset was constructed based on the KACST database for 10 professional 

reciters. 

 

 We used our proposed automatic segmentation techniques for finding the segment 

units. In our initial setup, we used three individual segmentation engines (Energy, 

ZCR, and Entropy).  
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 We then proposed a new hybrid speech segmentation algorithm using a GA 

optimization scheme over multiple features. The algorithm uses numerous 

independent individual segmentation methods, to produce multiple predictions of 

boundary positions. To optimize the overall system, we considered two main 

parameters: frame size, and minimum number of frames / segment unit. The results 

show an improvement accuracy of 16% over the best performing single feature 

algorithms, and 10% improvement over the traditional linear regression based 

approach.  

 

 We then explored the concept of Hierarchical Tree Recognition (HTR) and that of 

evidence fusion from multiple classifiers to achieve improved recognition accuracy 

for Quran speech recitation. Our work showed that, when we used HTR, the 

accuracy performance improved more than 30%. The experiments also showed that 

combining classifiers results in improved recognition accuracy.  

  

 Finally, we explored the advantages of using an Autoencoder DNN-based system for 

Quran speech recognition. The driving focus behind this was the large number of 

classes considered in our approach. We used the silhouette method as a technique to 

find the optimum number of clusters and k-means algorithm to assign each 

observation to one of the clusters. Several variants of Autoencoder DNN-based 

classifier for speech recognition were developed and evaluated across our dataset. 

We show that, an almost perfect recognition can be achieved using the different 

variants of the Autoencoder DNN. 
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6.2 Future work 

There are several research directions that can be followed to further improve the 

proposed systems for segmentation and recognition of Quran recitation. Some of these 

are outlined below: 

 

 Database Development and Labeling. A fundamental key point in this research is 

using a suitable database for the proposed tasks. Our dataset is just for the last part 

of the Quran. This database needs to be extender to includes all chapters from the 

Holy Quran and cover more expert recitations. Moreover, we need to incorporate 

Quran experts reciters from other regions and language backgrounds. 

 

 Feature extraction selection. More efforts need to be put in finding robust 

features for Quran speech systems. Other features types could be investigated for 

speech recognition task to improve the speech recognition performance. In 

addition, we can use deep learning neural network features such as bottle-neck 

features and Tandem features can be considered with DNNs.  

 

 Hybrid systems. One of the suggestions in the future is to develop hybrid schemes 

combining segmentation techniques with and without linguistic reference. We 

believe that there is scope in the future work to add linguistic knowledge into the 

segmentation models, such as language modelling scores and even syntactic 

bracketing information. This would require running segmentation as an iterative 
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procedure, on the output of an ASR model, before feeding it back in as the input 

to an ASR system 

 

 Several languages and recitations (Qiraat): Beyond the general characterization 

of the segmentation approaches, on recent direction can be to analyze techniques 

need to be modified and adapted to a particular language or reciter, and to a 

particular task (our work is recitation of Quran in Hafs). So, future work should 

attempt to adopt the developed techniques to other languages and recitations.  

 
 Audio Visual processing: In future work, the algorithms can be developed as a 

preprocessing step in automatic visual speech recognition, video conferencing, 

human-computer interaction systems (for identifying human activities involving 

speech), and speaker tracking. Also such algorithms can be extended to video 

content analysis, audio retrieval, and indexing. 

 
 Practical tests with noise: In our system, the database was recorded in a special 

room without noise. We expect that in practical setups noise can be affect, and 

substantially segmentation accuracy. In the future, we intend to adopt our 

techniques for adverse speech conditions where different types of noises may be 

present.  

 

 Children learning: Our system also can be adopted to help children with some 

types of speaking disabilities. The system can be used to check where the mistake 
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in pronunciation are, and can even help such children in correcting these mistakes 

in pronunciation. 

 
 Optimization algorithms. In our work, we used an empirical method for finding 

the number of neurons and also number of hidden layers. Various optimization 

approaches can be used to find the optimal number of hidden layers and the 

optimal number of neurons for each layer.  
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