92 research outputs found

    Polyclonal Infections Due to Mycobacterium Avium Complex in Patients with AIDS Detected by Pulsed-field Gel Electrophoresis of Sequential Clinical Isolates.

    Get PDF
    Invasive infection with organisms of the Mycobacterium avium complex (MAC) is common among patients with advanced human immunodeficiency virus infection. In previous studies, we analyzed multiple individual colonies of MAC isolated from specimens obtained at the same time and observed that 14 to 20% of patients are simultaneously infected with more than one strain. In this study, we examined sequential isolates from 12 patients with AIDS who had two or more MAC isolates available from clinical specimens collected more than 1 week apart; the intervals between the first and last specimens ranged from 8 to 192 (median, 46) days. For each isolate, restriction digests of genomic DNA were analyzed by pulsed-field gel electrophoresis; DNA was prepared by using a protocol, described here in detail, which had been optimized for conditions of bacterial growth and lysis. The pulsed-field gel electrophoresis analysis identified four patients (33%) infected with two different MAC strains. Both M. avium and M. intracellulare were cultured from blood specimens from two patients. In each of the four patients, the second strain was identified from a culture taken within 14 days of the initial study isolate, and in three of these patients, the first strain was detected again in a subsequent culture. These observations suggest that the presence of two different strains among isolates from sequential cultures may reflect ongoing polyclonal infection. We conclude that polyclonal infection with MAC is common among patients with AIDS. The identification of such infections may be critical in the development of effective treatments

    Clinical and Epidemiological Correlates of Genotypes within the Mycobacterium avium Complex Defined by Restriction and Sequence Analysis of hsp65

    Get PDF
    Species identification of isolates of the Mycobacterium avium complex (MAC) remains a difficult task. Although M. avium and Mycobacterium intracellulare can be identified with expensive, commercially available probes, many MAC isolates remain unresolved, including those representing Mycobacterium lentiflavum as well as other potentially undefined species. PCR restriction analysis (PRA) of the hsp65 gene has been proposed as a rapid and inexpensive approach. We applied PRA to 278 MAC isolates, including 126 from blood of human immunodeficiency virus (HIV)-infected patients, 59 from sputum of HIV-negative patients with chronic obstructive pulmonary disease, 88 from environmental sources, and 5 pulmonary isolates from a different study. A total of 15 different PRA patterns were observed. For 27 representative isolates, a 441-bp fragment of the hsp65 gene was sequenced; based on 54 polymorphic sites, 18 different alleles were defined, including 12 alleles not previously reported. Species and phylogenetic relationships were more accurately defined by sequencing than by PRA or commercial probe. The distribution of PRA types and, by implication, phylogenetic lineages among blood isolates was significantly different from that for pulmonary and environmental isolates, suggesting that particular lineages have appreciably greater virulence and invasive potential

    Polyclonal Mycobacterium Avium Infections in Patients with AIDS: Variations in Antimicrobial Susceptibilities of Different Strains of M. Avium Isolated from the Same Patient.

    Get PDF
    Broth microdilution MICs were determined for pairs of strains isolated from five AIDS patients with polyclonal Mycobacterium avium infection. Four (80%) of the five patients were infected simultaneously with strains having different antimicrobial susceptibility patterns. These findings have implications for the interpretation of susceptibility data in M. avium prophylaxis and treatment trials

    IS1245 genotypic analysis of Mycobacterium avium isolates from patients in Brazil

    Get PDF
    AbstractObjective: Disseminated Mycobacterium avium infection is an emerging opportunistic disease among patients with acquired immunodeficiency syndrome (AIDS) in Brazil. The mode of transmission of M. avium in a developing country setting needs to be better characterized.Methods: Mycobacterium avium strain collections in São Paulo and Rio de Janeiro were analyzed according to the strains' IS1245 DNA gel electrophoretic migration patterns. Medical records of the patients from whom M. avium isolates were available were reviewed, and their demographic characteristics were stratified according to the isolates' IS1245 DNA fingerprint patterns.Results: Of 105 patients, 33 (31 %) with M. avium isolated between 1990 and 1994 had strains having IS1245 patterns identical in patterns seen in isolates from two or more patients (designated as cluster pattern strains). Cluster pattern strains were isolated from 21 (39%) of 54 patients with disseminated infection (defined as infection due to M. avium isolated from a sterile site in an adult patient). Six of the cluster pattern strains were isolated only from sterile sites. In São Paulo, cluster pattern strains were significantly more likely to be isolated from patients with disseminated disease.Conclusions: These preliminary observations suggest that in large cities of Brazil, a high proportion (at least 39%) of disseminated M. avium infections in patients with AIDS results from a recent transmission. Some strains of M. avium may be more likely to cause disseminated disease than others after an infection

    The Changing Pattern of Nontuberculous Mycobacterial Disease

    Get PDF

    Differential Genotyping of Mycobacterium avium Complex and Its Implications in Clinical and Environmental Epidemiology

    Get PDF
    In recent decades, the incidence and prevalence of nontuberculous mycobacteria (NTM) have greatly increased, becoming a major worldwide public health problem. Among numerous NTM species, the Mycobacterium avium complex (MAC) is the most predominant species, causing disease in humans. MAC is recognized as a ubiquitous microorganism, with contaminated water and soil being established sources of infection. However, the reason for the recent increase in MAC-associated disease has not yet been fully elucidated. Furthermore, human MAC infections are associated with a variety of infection sources. To improve the determination of infection sources and epidemiology of MAC, feasible and reliable genotyping methods are required to allow for the characterization of the epidemiology and biology of MAC. In this review, we discuss genotyping methods, such as pulsed-field gel electrophoresis, a variable number of tandem repeats, mycobacterial interspersed repetitive-unit-variable number of tandem repeats, and repetitive element sequence-based PCR that have been applied to elucidate the association between the MAC genotypes and epidemiological dominance, clinical phenotypes, evolutionary process, and control measures of infection. Characterizing the association between infection sources and the epidemiology of MAC will allow for the development of novel preventive strategies for the effective control of MAC infection.ope

    Utilization of a ts-sacB selection system for the generation of a Mycobacterium avium serovar-8 specific glycopeptidolipid allelic exchange mutant

    Get PDF
    BACKGROUND: Mycobacterium avium are ubiquitous environmental organisms and a cause of disseminated infection in patients with end-stage AIDS. The glycopeptidolipids (GPL) of M. avium are proposed to participate in the pathogenesis of this organism, however, establishment of a clear role for GPL in disease production has been limited by the inability to genetically manipulate M. avium. METHODS: To be able to study the role of the GPL in M. avium pathogenesis, a ts-sacB selection system, not previously used in M. avium, was employed as a means to achieve homologous recombination for the rhamnosyltransferase (rtfA) gene of a pathogenic serovar 8 strain of M. avium to prevent addition of serovar-specific sugars to rhamnose of the fatty acyl-peptide backbone of GPL. The genotype of the resultant rtfA mutant was confirmed by polymerase chain reaction and southern hybridization. Disruption in the proximal sugar of the haptenic oligosaccharide resulted in the loss of serovar specific GPL with no change in the pattern of non-serovar specific GPL moieties as shown by thin layer chromatography and gas chromatography/mass spectrometry. Complementation of wild type (wt) rtfA in trans through an integrative plasmid restored serovar-8 specific GPL expression identical to wt serovar 8 parent strain. RESULTS: In this study, we affirm our results that rtfA encodes an enzyme responsible for the transfer of Rha to 6d-Tal and provide evidence of a second allelic exchange mutagenesis system suitable for M. avium. CONCLUSION: We report the second allelic exchange system for M. avium utilizing ts-sacB as double-negative and xylE as positive counter-selection markers, respectively. This system of allelic exchange would be especially useful for M. avium strains that demonstrate significant isoniazid (INH) resistance despite transformation with katG. Through the construction of mutants in GPL or other mycobacterial components, their roles in M. avium pathogenesis, biosynthesis, or drug resistance can be studied in a consistent manner

    Investigation of an outbreak of mycobacteriosis in pigs

    Get PDF
    Background: A high proportion of pigs imported to Serbia from a Lithuanian breeding herd reacted positively against avian and/or bovine tuberculin. The pigs were euthanized and lesions characteristic for mycobacterial infection were detected. An investigation of potential mycobacteriosis in the pigs imported to Serbia and the possible source of infection in the Lithuanian herd were therefore initialised. Results: Formalin fixed, paraffin embedded lymph nodes from tuberculin positive animals were examined by real-time PCR for IS1245 and IS6110. IS1245 was detected in 55% and IS6110 in 11% of the samples. Seven of the ten IS6110 positive samples were positive for IS1245. Eleven lymph nodes from 10 pigs and 15 environmental samples were collected from the Lithuanian breeding herd and cultured for mycobacteria. M. avium subsp. hominissuis was detected in all lymph nodes and from eight samples of peat and sawdust. Isolates with identical and related IS1245- and IS1311 RFLP profiles were detected from swine and peat. Conclusions: This study demonstrated cross reactions between avian and bovine tuberculin in pigs. Real-time PCR indicated infection with M. avium in the Serbian pigs. However, as a small proportion of the lymph nodes were positive for IS6110, infection with bacteria in the M. tuberculosis complex could not be ruled out. Analyses confirmed the presence of M. avium subsp. hominissuis in porcine and environmental samples from the Lithuanian breeding herd. The results indicate peat as a source of M. avium subsp. hominissuis infection in these pigs, and that the pigs imported to Serbia were infected with M. avium subsp. hominissuis

    Pulsed-field gel electrophoresis profile homogeneity of Mycobacterium avium subsp. paratuberculosis isolates from cattle and heterogeneity of those from sheep and goats

    Get PDF
    BACKGROUND: Mycobacterium avium subsp. paratuberculosis (Map) causes paratuberculosis in animals and is suspected of causing Crohn's Disease in humans. Characterization of strains led to classify paratuberculosis isolates in two main types, cattle type strains, found affecting all host species, and sheep type strains, reported affecting mainly sheep. In order to get a better understanding of the epidemiology of paratuberculosis a large set of Map isolates obtained from different species over the last 25 years have been characterized. Five-hundred and twenty isolates from different hosts (cattle, sheep, goats, bison, deer and wild boar) and origins had been cultured and typed by IS1311 restriction-endonuclease-analysis. Two-hundred and sixty-nine isolates were further characterized by pulsed-field gel electrophoresis (PFGE) using SnaBI and SpeI endonucleases. Differences in strain isolation upon various media conditions were also studied. RESULTS: All bovines, 4 and 26% of Spanish sheep and goats, respectively, and the deer and wild boar studied, carried IS1311-Cattle type strains. IS1311-Sheep type encompassed 96% and 74% of Spanish sheep and goats, and all three Portuguese sheep. Thirty-seven distinct multiplex PFGE profiles were found, giving 32 novel profiles. Profiles 2-1 and 1-1 accounted for the 85% of cattle isolates. Ten distinct profiles were detected in Spanish sheep, none of them with an incidence higher than 25%. Profile 16-11 (43%) and another three profiles were identified in Spanish caprine cultures. The hierarchical analysis, clustered all profiles found in cattle, "wild" hosts and some small ruminants within the same group. The other group included 11 profiles only found in Spanish sheep and goats, including Spanish pigmented profiles. Differences in growth requirements associated with isolate genotype were observed. CONCLUSION: Cattle in Spain are infected with cattle type strains, while sheep and goats are mainly infected with sheep type strains. Although 7H9 broth based culture media seem to broadly cover the growth requirements of most Map strains, the use of various solid media is recommended to reduce any recovery biases. High genetic homogeneity of isolates from cattle, and heterogeneity of those from sheep and goats have been detected
    corecore