6,418 research outputs found

    Clustered Chimera States in Systems of Type-I Excitability

    Get PDF
    Chimera is a fascinating phenomenon of coexisting synchronized and desynchronized behaviour that was discovered in networks of nonlocally coupled identical phase oscillators over ten years ago. Since then, chimeras were found in numerous theoretical and experimental studies and more recently in models of neuronal dynamics as well. In this work, we consider a generic model for a saddle-node bifurcation on a limit cycle representative for neural excitability type I. We obtain chimera states with multiple coherent regions (clustered chimeras/multi-chimeras) depending on the distance from the excitability threshold, the range of nonlocal coupling as well as the coupling strength. A detailed stability diagram for these chimera states as well as other interesting coexisting patterns like traveling waves are presented

    Nonlinear transient waves in coupled phase oscillators with inertia

    Full text link
    Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.Comment: 12 pages, 4 figure

    Amplitude chimeras and chimera death in dynamical networks

    Get PDF
    We find chimera states with respect to amplitude dynamics in a network of Stuart-Landau oscillators. These partially coherent and partially incoherent spatio-temporal patterns appear due to the interplay of nonlocal network topology and symmetry-breaking coupling. As the coupling range is increased, the oscillations are quenched, amplitude chimeras disappear and the network enters a symmetry-breaking stationary state. This particular regime is a novel pattern which we call chimera death. It is characterized by the coexistence of spatially coherent and incoherent inhomogeneous steady states and therefore combines the features of chimera state and oscillation death. Additionally, we show two different transition scenarios from amplitude chimera to chimera death. Moreover, for amplitude chimeras we uncover the mechanism of transition towards in-phase synchronized regime and discuss the role of initial conditions

    Stochastic Hydrodynamic Synchronization in Rotating Energy Landscapes

    Full text link
    Hydrodynamic synchronization provides a general mechanism for the spontaneous emergence of coherent beating states in independently driven mesoscopic oscillators. A complete physical picture of those phenomena is of definite importance to the understanding of biological cooperative motions of cilia and flagella. Moreover, it can potentially suggest novel routes to exploit synchronization in technological applications of soft matter. We demonstrate that driving colloidal particles in rotating energy landscapes results in a strong tendency towards synchronization, favouring states where all beads rotate in phase. The resulting dynamics can be described in terms of activated jumps with transition rates that are strongly affected by hydrodynamics leading to an increased probability and lifetime of the synchronous states. Using holographic optical tweezers we quantitatively verify our predictions in a variety of spatial configurations of rotors.Comment: Copyright (2013) by the American Physical Societ
    • …
    corecore