18 research outputs found

    DeepIPC: Deeply Integrated Perception and Control for an Autonomous Vehicle in Real Environments

    Full text link
    We propose DeepIPC, an end-to-end autonomous driving model that handles both perception and control tasks in driving a vehicle. The model consists of two main parts, perception and controller modules. The perception module takes an RGBD image to perform semantic segmentation and bird's eye view (BEV) semantic mapping along with providing their encoded features. Meanwhile, the controller module processes these features with the measurement of GNSS locations and angular speed to estimate waypoints that come with latent features. Then, two different agents are used to translate waypoints and latent features into a set of navigational controls to drive the vehicle. The model is evaluated by predicting driving records and performing automated driving under various conditions in real environments. The experimental results show that DeepIPC achieves the best drivability and multi-task performance even with fewer parameters compared to the other models. Codes are available at https://github.com/oskarnatan/DeepIPC

    Structure from Action: Learning Interactions for Articulated Object 3D Structure Discovery

    Full text link
    Articulated objects are abundant in daily life. Discovering their parts, joints, and kinematics is crucial for robots to interact with these objects. We introduce Structure from Action (SfA), a framework that discovers the 3D part geometry and joint parameters of unseen articulated objects via a sequence of inferred interactions. Our key insight is that 3D interaction and perception should be considered in conjunction to construct 3D articulated CAD models, especially in the case of categories not seen during training. By selecting informative interactions, SfA discovers parts and reveals initially occluded surfaces, like the inside of a closed drawer. By aggregating visual observations in 3D, SfA accurately segments multiple parts, reconstructs part geometry, and infers all joint parameters in a canonical coordinate frame. Our experiments demonstrate that a single SfA model trained in simulation can generalize to many unseen object categories with unknown kinematic structures and to real-world objects. Code and data will be publicly available

    Google Research Football: A Novel Reinforcement Learning Environment

    Full text link
    Recent progress in the field of reinforcement learning has been accelerated by virtual learning environments such as video games, where novel algorithms and ideas can be quickly tested in a safe and reproducible manner. We introduce the Google Research Football Environment, a new reinforcement learning environment where agents are trained to play football in an advanced, physics-based 3D simulator. The resulting environment is challenging, easy to use and customize, and it is available under a permissive open-source license. In addition, it provides support for multiplayer and multi-agent experiments. We propose three full-game scenarios of varying difficulty with the Football Benchmarks and report baseline results for three commonly used reinforcement algorithms (IMPALA, PPO, and Ape-X DQN). We also provide a diverse set of simpler scenarios with the Football Academy and showcase several promising research directions
    corecore