185,022 research outputs found

    Deep Generative Modeling of LiDAR Data

    Get PDF
    Building models capable of generating structured output is a key challenge for AI and robotics. While generative models have been explored on many types of data, little work has been done on synthesizing lidar scans, which play a key role in robot mapping and localization. In this work, we show that one can adapt deep generative models for this task by unravelling lidar scans into a 2D point map. Our approach can generate high quality samples, while simultaneously learning a meaningful latent representation of the data. We demonstrate significant improvements against state-of-the-art point cloud generation methods. Furthermore, we propose a novel data representation that augments the 2D signal with absolute positional information. We show that this helps robustness to noisy and imputed input; the learned model can recover the underlying lidar scan from seemingly uninformative dataComment: Presented at IROS 201

    Adversarial Learned Molecular Graph Inference and Generation

    Full text link
    Recent methods for generating novel molecules use graph representations of molecules and employ various forms of graph convolutional neural networks for inference. However, training requires solving an expensive graph isomorphism problem, which previous approaches do not address or solve only approximately. In this work, we propose ALMGIG, a likelihood-free adversarial learning framework for inference and de novo molecule generation that avoids explicitly computing a reconstruction loss. Our approach extends generative adversarial networks by including an adversarial cycle-consistency loss to implicitly enforce the reconstruction property. To capture properties unique to molecules, such as valence, we extend the Graph Isomorphism Network to multi-graphs. To quantify the performance of models, we propose to compute the distance between distributions of physicochemical properties with the 1-Wasserstein distance. We demonstrate that ALMGIG more accurately learns the distribution over the space of molecules than all baselines. Moreover, it can be utilized for drug discovery by efficiently searching the space of molecules using molecules' continuous latent representation. Our code is available at https://github.com/ai-med/almgigComment: Accepted at The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD); Code at https://github.com/ai-med/almgi

    Differentially Private Mixture of Generative Neural Networks

    Get PDF
    Generative models are used in a wide range of applications building on large amounts of contextually rich information. Due to possible privacy violations of the individuals whose data is used to train these models, however, publishing or sharing generative models is not always viable. In this paper, we present a novel technique for privately releasing generative models and entire high-dimensional datasets produced by these models. We model the generator distribution of the training data with a mixture of kk generative neural networks. These are trained together and collectively learn the generator distribution of a dataset. Data is divided into kk clusters, using a novel differentially private kernel kk-means, then each cluster is given to separate generative neural networks, such as Restricted Boltzmann Machines or Variational Autoencoders, which are trained only on their own cluster using differentially private gradient descent. We evaluate our approach using the MNIST dataset, as well as call detail records and transit datasets, showing that it produces realistic synthetic samples, which can also be used to accurately compute arbitrary number of counting queries.Comment: A shorter version of this paper appeared at the 17th IEEE International Conference on Data Mining (ICDM 2017). This is the full version, published in IEEE Transactions on Knowledge and Data Engineering (TKDE
    corecore