661 research outputs found

    Generation of correlated Rayleigh fading channels for accurate simulationof promising wireless communication systems

    Get PDF
    In this paper, a generalized method is proposed for the accurate simulation of equal/ unequal power correlated Rayleigh fading channels to overcome the shortcomings of existing methods. Spatial and spectral correlations are also considered in this technique for different transmission conditions. It employs successive coloring for the inphase and quadrature components of successive signals using real correlation vector of successive signal envelopes rather than complex covariance matrix of the Gaussian signals which is utilized in conventional methods. Any number of fading signals with any desired correlations of successive envelope pairs in the interval [0, 1] can be generated with high accuracy. Moreover, factorization of the desired covariance matrix is avoided to overcome the shortcomings and high computational complexity of conventional methods. Extensive simulations of different representative scenarios demonstrate the effectiveness of the proposedtechnique. The simplicity and accuracy of this method will help the researchers to study and simulate the impact of fading correlation on the performance evaluation of various multi-antenna and multicarrier communication systems. Moreover, it enables the engineers for efficient design and deployment of new schemes for feasible wireless application

    An efficient approximation to the correlated Nakagami-m sums and its application in equal gain diversity receivers

    Full text link
    There are several cases in wireless communications theory where the statistics of the sum of independent or correlated Nakagami-m random variables (RVs) is necessary to be known. However, a closed-form solution to the distribution of this sum does not exist when the number of constituent RVs exceeds two, even for the special case of Rayleigh fading. In this paper, we present an efficient closed-form approximation for the distribution of the sum of arbitrary correlated Nakagami-m envelopes with identical and integer fading parameters. The distribution becomes exact for maximal correlation, while the tightness of the proposed approximation is validated statistically by using the Chi-square and the Kolmogorov-Smirnov goodness-of-fit tests. As an application, the approximation is used to study the performance of equal-gain combining (EGC) systems operating over arbitrary correlated Nakagami-m fading channels, by utilizing the available analytical results for the error-rate performance of an equivalent maximal-ratio combining (MRC) system

    An Accurate Approximation to the Distribution of the Sum of Equally Correlated Nakagami-m Envelopes and its Application in Equal Gain Diversity Receivers

    Full text link
    We present a novel and accurate approximation for the distribution of the sum of equally correlated Nakagami-m variates. Ascertaining on this result we study the performance of Equal Gain Combining (EGC) receivers, operating over equally correlating fading channels. Numerical results and simulations show the accuracy of the proposed approximation and the validity of the mathematical analysis

    A Generalized Algorithm for the Generation of Correlated Rayleigh Fading Envelopes

    Get PDF
    Although generation of correlated Rayleigh fading envelopes has been intensively considered in the literature, all conventional methods have their own shortcomings, which seriously impede their applicability. In this paper, a very general, straightforward algorithm for generation of an arbitrary number of Rayleigh envelopes with any desired, equal or unequal power, in wireless channels either with or without Doppler frequency shifts, is proposed. The proposed algorithm can be applied in case of spatial correlation, such as with antenna arrays in Multiple Input Multiple Output (MIMO) systems, or spectral correlation between the random processes like in Orthogonal Frequency Division Multiplexing (OFDM) systems. It can also be used for generating correlated Rayleigh fading envelopes in either discrete-time instants or a real-time scenario. Besides being more generalized, our proposed algorithm is more precise, while overcoming all shortcomings of the conventional methods

    High capacity multiuser multiantenna communication techniques

    Get PDF
    One of the main issues involved in the development of future wireless communication systems is the multiple access technique used to efficiently share the available spectrum among users. In rich multipath environment, spatial dimension can be exploited to meet the increasing number of users and their demands without consuming extra bandwidth and power. Therefore, it is utilized in the multiple-input multiple-output (MIMO) technology to increase the spectral efficiency significantly. However, multiuser MIMO (MU-MIMO) systems are still challenging to be widely adopted in next generation standards. In this thesis, new techniques are proposed to increase the channel and user capacity and improve the error performance of MU-MIMO over Rayleigh fading channel environment. For realistic system design and performance evaluation, channel correlation is considered as one of the main channel impurities due its severe influence on capacity and reliability. Two simple methods called generalized successive coloring technique (GSCT) and generalized iterative coloring technique (GICT) are proposed for accurate generation of correlated Rayleigh fading channels (CRFC). They are designed to overcome the shortcomings of existing methods by avoiding factorization of desired covariance matrix of the Gaussian samples. The superiority of these techniques is demonstrated by extensive simulations of different practical system scenarios. To mitigate the effects of channel correlations, a novel constellation constrained MU-MIMO (CC-MU-MIMO) scheme is proposed using transmit signal design and maximum likelihood joint detection (MLJD) at the receiver. It is designed to maximize the channel capacity and error performance based on principles of maximizing the minimum Euclidean distance (dmin) of composite received signals. Two signal design methods named as unequal power allocation (UPA) and rotation constellation (RC) are utilized to resolve the detection ambiguity caused by correlation. Extensive analysis and simulations demonstrate the effectiveness of considered scheme compared with conventional MU-MIMO. Furthermore, significant gain in SNR is achieved particularly in moderate to high correlations which have direct impact to maintain high user capacity. A new efficient receive antenna selection (RAS) technique referred to as phase difference based selection (PDBS) is proposed for single and multiuser MIMO systems to maximize the capacity over CRFC. It utilizes the received signal constellation to select the subset of antennas with highest (dmin) constellations due to its direct impact on the capacity and BER performance. A low complexity algorithm is designed by employing the Euclidean norm of channel matrix rows with their corresponding phase differences. Capacity analysis and simulation results show that PDBS outperforms norm based selection (NBS) and near to optimal selection (OS) for all correlation and SNR values. This technique provides fast RAS to capture most of the gains promised by multiantenna systems over different channel conditions. Finally, novel group layered MU-MIMO (GL-MU-MIMO) scheme is introduced to exploit the available spectrum for higher user capacity with affordable complexity. It takes the advantages of spatial difference among users and power control at base station to increase the number of users beyond the available number of RF chains. It is achieved by dividing the users into two groups according to their received power, high power group (HPG) and low power group (LPG). Different configurations of low complexity group layered multiuser detection (GL-MUD) and group power allocation ratio (η) are utilized to provide a valuable tradeoff between complexity and overall system performance. Furthermore, RAS diversity is incorporated by using NBS and a new selection algorithm called HPG-PDBS to increase the channel capacity and enhance the error performance. Extensive analysis and simulations demonstrate the superiority of proposed scheme compared with conventional MU-MIMO. By using appropriate value of (η), it shows higher sum rate capacity and substantial increase in the user capacity up to two-fold at target BER and SNR values

    Statistical characteristics of the envelope in diversity combining of two correlated Rayleigh fading channels

    Get PDF
    Performance of diversity systems is often evaluated under the assumption of perfect interleaving and characterised in terms of long-term parameters such as the average bit-error rate, which does not capture the dynamics of fading channels. Statistical characteristics (static and dynamic) of the envelope of two correlated Rayleigh fading channels are explored using a physical model. For two popular diversity-combining schemes, maximal ratio combining and selection combining, both static and dynamic (level-crossing rate) properties of correlated fading channels are derived. These results are very useful for performance evaluation of diversity systems without bit-level simulations. The results can also provide very useful characteristics such as average duration of fades, fading rate and outage probability for two-channel diversity systems and can be extended to multiple fading channels
    corecore