213 research outputs found

    Large induced subgraphs via triangulations and CMSO

    Full text link
    We obtain an algorithmic meta-theorem for the following optimization problem. Let \phi\ be a Counting Monadic Second Order Logic (CMSO) formula and t be an integer. For a given graph G, the task is to maximize |X| subject to the following: there is a set of vertices F of G, containing X, such that the subgraph G[F] induced by F is of treewidth at most t, and structure (G[F],X) models \phi. Some special cases of this optimization problem are the following generic examples. Each of these cases contains various problems as a special subcase: 1) "Maximum induced subgraph with at most l copies of cycles of length 0 modulo m", where for fixed nonnegative integers m and l, the task is to find a maximum induced subgraph of a given graph with at most l vertex-disjoint cycles of length 0 modulo m. 2) "Minimum \Gamma-deletion", where for a fixed finite set of graphs \Gamma\ containing a planar graph, the task is to find a maximum induced subgraph of a given graph containing no graph from \Gamma\ as a minor. 3) "Independent \Pi-packing", where for a fixed finite set of connected graphs \Pi, the task is to find an induced subgraph G[F] of a given graph G with the maximum number of connected components, such that each connected component of G[F] is isomorphic to some graph from \Pi. We give an algorithm solving the optimization problem on an n-vertex graph G in time O(#pmc n^{t+4} f(t,\phi)), where #pmc is the number of all potential maximal cliques in G and f is a function depending of t and \phi\ only. We also show how a similar running time can be obtained for the weighted version of the problem. Pipelined with known bounds on the number of potential maximal cliques, we deduce that our optimization problem can be solved in time O(1.7347^n) for arbitrary graphs, and in polynomial time for graph classes with polynomial number of minimal separators

    Automorphism Groups of Geometrically Represented Graphs

    Full text link
    We describe a technique to determine the automorphism group of a geometrically represented graph, by understanding the structure of the induced action on all geometric representations. Using this, we characterize automorphism groups of interval, permutation and circle graphs. We combine techniques from group theory (products, homomorphisms, actions) with data structures from computer science (PQ-trees, split trees, modular trees) that encode all geometric representations. We prove that interval graphs have the same automorphism groups as trees, and for a given interval graph, we construct a tree with the same automorphism group which answers a question of Hanlon [Trans. Amer. Math. Soc 272(2), 1982]. For permutation and circle graphs, we give an inductive characterization by semidirect and wreath products. We also prove that every abstract group can be realized by the automorphism group of a comparability graph/poset of the dimension at most four

    Combinatorics and geometry of finite and infinite squaregraphs

    Full text link
    Squaregraphs were originally defined as finite plane graphs in which all inner faces are quadrilaterals (i.e., 4-cycles) and all inner vertices (i.e., the vertices not incident with the outer face) have degrees larger than three. The planar dual of a finite squaregraph is determined by a triangle-free chord diagram of the unit disk, which could alternatively be viewed as a triangle-free line arrangement in the hyperbolic plane. This representation carries over to infinite plane graphs with finite vertex degrees in which the balls are finite squaregraphs. Algebraically, finite squaregraphs are median graphs for which the duals are finite circular split systems. Hence squaregraphs are at the crosspoint of two dualities, an algebraic and a geometric one, and thus lend themselves to several combinatorial interpretations and structural characterizations. With these and the 5-colorability theorem for circle graphs at hand, we prove that every squaregraph can be isometrically embedded into the Cartesian product of five trees. This embedding result can also be extended to the infinite case without reference to an embedding in the plane and without any cardinality restriction when formulated for median graphs free of cubes and further finite obstructions. Further, we exhibit a class of squaregraphs that can be embedded into the product of three trees and we characterize those squaregraphs that are embeddable into the product of just two trees. Finally, finite squaregraphs enjoy a number of algorithmic features that do not extend to arbitrary median graphs. For instance, we show that median-generating sets of finite squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the corresponding problem for median graphs turns out to be NP-hard.Comment: 46 pages, 14 figure

    Layout of Graphs with Bounded Tree-Width

    Full text link
    A \emph{queue layout} of a graph consists of a total order of the vertices, and a partition of the edges into \emph{queues}, such that no two edges in the same queue are nested. The minimum number of queues in a queue layout of a graph is its \emph{queue-number}. A \emph{three-dimensional (straight-line grid) drawing} of a graph represents the vertices by points in Z3\mathbb{Z}^3 and the edges by non-crossing line-segments. This paper contributes three main results: (1) It is proved that the minimum volume of a certain type of three-dimensional drawing of a graph GG is closely related to the queue-number of GG. In particular, if GG is an nn-vertex member of a proper minor-closed family of graphs (such as a planar graph), then GG has a O(1)×O(1)×O(n)O(1)\times O(1)\times O(n) drawing if and only if GG has O(1) queue-number. (2) It is proved that queue-number is bounded by tree-width, thus resolving an open problem due to Ganley and Heath (2001), and disproving a conjecture of Pemmaraju (1992). This result provides renewed hope for the positive resolution of a number of open problems in the theory of queue layouts. (3) It is proved that graphs of bounded tree-width have three-dimensional drawings with O(n) volume. This is the most general family of graphs known to admit three-dimensional drawings with O(n) volume. The proofs depend upon our results regarding \emph{track layouts} and \emph{tree-partitions} of graphs, which may be of independent interest.Comment: This is a revised version of a journal paper submitted in October 2002. This paper incorporates the following conference papers: (1) Dujmovic', Morin & Wood. Path-width and three-dimensional straight-line grid drawings of graphs (GD'02), LNCS 2528:42-53, Springer, 2002. (2) Wood. Queue layouts, tree-width, and three-dimensional graph drawing (FSTTCS'02), LNCS 2556:348--359, Springer, 2002. (3) Dujmovic' & Wood. Tree-partitions of kk-trees with applications in graph layout (WG '03), LNCS 2880:205-217, 200

    Connectivity Constraints in Network Analysis

    Get PDF
    This dissertation establishes mathematical foundations of connectivity requirements arising in both abstract and geometric network analysis. Connectivity constraints are ubiquitous in network design and network analysis. Aside from the obvious applications in communication and transportation networks, they have also appeared in forest planning, political distracting, activity detection in video sequences and protein-protein interaction networks. Theoretically, connectivity constraints can be analyzed via polyhedral methods, in which we investigate the structure of (vertex)-connected subgraph polytope (CSP). One focus of this dissertation is on performing an extensive study of facets of CSP. We present the first systematic study of non-trivial facets of CSP. One advantage to study facets is that a facet-defining inequality is always among the tightest valid inequalities, so applying facet-defining inequalities when imposing connectivity constraints can guarantee good performance of the algorithm. We adopt lifting techniques to provide a framework to generate a wide class of facet-defining inequalities of CSP. We also derive the necessary and sufficient conditions when a vertex separator inequality, which plays a critical role in connectivity constraints, induces a facet of CSP. Another advantage to study facets is that CSP is uniquely determined by its facets, so full understanding of CSP's facets indicates full understanding of CSP itself. We are able to derive a full description of CSP for a wide class of graphs, including forest and several types of dense graphs, such as graphs with small independence number, s-plex with small s and s-defective cliques with small s. Furthermore, we investigate the relationship between lifting techniques, maximum weight connected subgraph problem and node-weight Steiner tree problem and study the computational complexity of generation of facet-defining inequalities. Another focus of this dissertation is to study connectivity in geometric network analysis. In geometric applications like wireless networks and communication networks, the concept of connectivity can be defined in various ways. In one case, connectivity is imposed by distance, which can be modeled by unit disk graphs (UDG). We create a polytime algorithm to identify large 2-clique in UDG; in another case when connectivity is based on visibility, we provide a generalization of the two-guard problem
    corecore