
Graph partitions with
proportional density and

colouring constraints

Doctoral thesis

Clément Dallard

University of Portsmouth
School of Computing

The thesis is submitted in partial fulfilment of the requirements for the award of the
degree of Doctor of Computer Science of the University of Portsmouth.

September 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/363921681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.port.ac.uk
http://www.port.ac.uk/school-of-computing

Declaration
Whilst registered as a candidate for the above degree, I have not been registered
for any other research award. The results and conclusions embodied in this thesis
are the work of the named candidate and have not been submitted for any other
academic award.

Acknowledgements
This three years journey, and obviously this resulting thesis, would not have been
possible without the commitment of my supervisor Janka Chlebíková. You have
always been thoughtful and generous. It has been a pleasure being your student!

I would also like to thank Cristina Bazgan with whom I had the chance to
work with. Our collaboration was very instructive, and I wish we will have other
opportunities to meet and work together again.

It has also been great to work with Thomas Pontoizeau. Who knows, we may
finally be done with the cubic graphs one day.

When I first came to Portsmouth, I have collaborated with Niklas Paulsen, a
funny man full of ideas. I wish you the best buddy, and hopefully we will meet
again soon.

If there is someone in Portsmouth I have discussed and drunk coffee with, that
must be my friend Ali. Thanks for your support, these three years would not have
been the same without you.

Valentin, I have always greatly enjoyed our discussions and afternoon proofs!
Thank you for offering your help and keeping me motivated.

Angie, you defied the English weather and Portsmouth’s accent so we could
be together. I am one lucky man.

Mamouchka, don’t worry anymore, I have survived the English food. Thanks
for your homemade tapenade supply.

Baboun, thank you for your encouragements and moral support. You have
been more helpful than you can realise.

Benouille, come hug your brother!

Abstract
Motivated by real life challenges and pure research curiosity, this thesis considers
several combinatorial problems related to combinatorial optimisation, computa-
tional complexity and graph theory. In each chapter, our goal is to refine our
understanding of the complexity of the studied problem. When considering NP-
hard problems, we eventually circumvent the expected exponential complexity
by providing parameterized and approximation algorithms. We also study the
problems on restricted type of instances and propose efficient polynomial-time
algorithms.

We study the notions of proportional density and define a proportionally dense
subgraph as a subgraph whose vertices have proportionally as many neighbours
inside the subgraph as in the whole graph. This notion combines local and global
properties of the subgraph, an interesting paradigm rarely encountered in graph
theory. Two problems related to proportionally dense subgraphs are studied,
from the perspectives of structural graph theory, computational complexity and
approximation. Then, we focus on a graph partitioning problem on vertex-coloured
graphs, and study its complexity on restricted classes of caterpillars with bounded
hair-length and planar graphs. Our contributions expose a gap in the complexity
of the problem with regard to the hair-length and the maximum degree of the
graph. Lastly, we propose a complexity study of a scheduling problem with fixed
route and soft time constraints. We show that the problem’s complexity inherently
depends on the ride time constraints and give several polynomial-time algorithms
for restricted type of instances.

Contents

1 Preliminaries 1
1.1 Graphs: notations and definitions 2
1.2 Computational complexity . 3

1.2.1 Algorithms . 3
1.2.2 Decision problems, P and NP 4
1.2.3 Optimisation problems, PO and NPO 9
1.2.4 Dealing with the complexity 10

1.2.4.1 Restriction of the problem on special types of
instances . 10

1.2.4.2 Approximation and inapproximability 11
1.2.4.3 Parameterized complexity 16

1.3 Overview of the thesis . 17

2 2-PDS Partition 19
2.1 Introduction . 20
2.2 Proportional density and PDS’s 22
2.3 Infinite classes of graphs . 23

2.3.1 Graphs without a 2-PDS partition 23
2.3.2 Graphs without a connected 2-PDS partition 29

2.4 Conclusion and further work . 31

3 Max Proportionally Dense Subgraph 32
3.1 Introduction . 33
3.2 Notations and definitions . 34
3.3 Hardness results . 35

3.3.1 Split graphs . 35
3.3.2 Bipartite graphs . 40

3.4 Approximation of Maximum PDS 45
3.5 Hamiltonian cubic graphs . 48
3.6 Conclusion and open problems . 56

4 Colourful Components Problems 57
4.1 Introduction . 58

iv

CONTENTS v

4.2 Complexity on k-caterpillars . 61
4.2.1 NP-complete cases . 61
4.2.2 The easy case . 66

4.3 Colourful Components on planar graphs 74
4.4 Conclusion . 77

5 Scheduling of Dial-A-Ride Problems 79
5.1 Introduction . 80
5.2 Problem statement . 81

5.2.1 Remarks on the model . 83
5.3 Complexity study . 86

5.3.1 Scheduling with soft ride time constraints 86
5.3.2 Scheduling with hard ride time constraints 89

5.4 Bounded maximum ride time . 90
5.5 First pickups then deliveries . 98
5.6 Conclusion . 104

6 Conclusion 105
6.1 Deciding if a 2-PDS partition exists 106
6.2 PDS of maximum size . 106
6.3 Colourful components problems 107
6.4 Scheduling with soft time constraints 108

Chapter 1
Preliminaries

Outline
1.1 Graphs: notations and definitions 2
1.2 Computational complexity . 3

1.2.1 Algorithms . 3
1.2.2 Decision problems, P and NP 4
1.2.3 Optimisation problems, PO and NPO 9
1.2.4 Dealing with the complexity 10

1.2.4.1 Restriction of the problem on special types of
instances . 10

1.2.4.2 Approximation and inapproximability 11
1.2.4.3 Parameterized complexity 16

1.3 Overview of the thesis . 17

The goal of this chapter is to introduce the basic concepts of graph theory and
computational complexity theory that are needed to apprehend the next chapters.
We will cover the notions of decision and optimisation problems, complexity classes
and approximation.

1

CHAPTER 1. PRELIMINARIES 2

This chapter aims to provide the basic definitions of the concepts needed
later in this thesis, such as the complexity classes P and NP, polynomial-time
reductions, approximation algorithms. First, we define some graph notations that
we use throughout the thesis. Then, we discuss the computational complexity
of decision and optimisation problems. Finally, we give a short overview of the
content of the next chapters.

1.1. Graphs: notations and definitions
An undirected graph is a pair G = (V,E), where V is a set of vertices and E is
a set of edges, which are elements of V × V . The vertices u and v of an edge
e = {u, v} are called the endpoints of e, and u and v are said to be adjacent. We
also say that an edge f is incident to a vertex w if w ∈ f , and f is incident to
another edge f ′ if f ∩ f ′ 6= ∅.

A loop is an edge {u, u}, for some vertex u ∈ V . When the edges are ordered
pairs of vertices, then the graph is directed and the edges are usually called arcs
to avoid any ambiguity.

In this thesis, we only consider finite graphs, that is, graphs with a finite
number of vertices. Also, unless stated otherwise, all graphs are unweighted,
undirected and simple, i.e. without loops or multiple edges.

A path is a sequence of distinct edges which joins a sequence of distinct vertices.
For simplicity, depending on the context, we may define a path as a sequence of
edges or as a sequence of vertices. A cycle is a sequence of distinct edges which
joins a sequence of vertices in which the only repeated vertices are the first and
last vertices. Again, we may define a cycle as a sequence of edges or as a sequence
of vertices.

A subgraph G′ = (V ′, E ′) of G is a graph such that V ′ ⊆ V , E ′ ⊆ E and each
edge in E ′ has both endpoints in V ′. A subgraph is connected if there exists
a path between any two vertices in the subgraph. A connected component is a
maximal connected subgraph. A subgraph G′ = (V ′, E ′) is an induced subgraph
of G if E ′ contains all the edges of E that have both endpoints in V ′. For a
given S ⊆ V , G[S] denotes the induced subgraph of S in G. The set S is a
clique if G[S] contains all possible edges between the vertices in S, and it is an
independent set if G[S] does not contain any edge. Let u ∈ V be a vertex in G,
then N(u) := {v ∈ V : {u, v} ∈ E} is the neighbourhood of u, N [u] := N(u)∪{u}
is the closed neighbourhood of u and d(u) := |N(u)| is the degree of u. We write
dS(u) := |N(u) ∩ S| for the degree of u in G[S]. We denote by S the complement

CHAPTER 1. PRELIMINARIES 3

of S in G, that is, S := V \ S. The cut (S, S) is a partition of V into two subsets
S and S, the cut-set is the set of edges with endpoints in different subsets, and
the size of the cut is the number of edges in the cut-set.

Besides these notations, we also consider some common classes of graphs. A
complete graph is a graph that contains all possible edges between its vertices.
A planar graph is a graph that can be drawn in the plane such that the edges
only intersect at their endpoints. A bipartite graph is a graph whose vertex-set
can be partitioned into two parts such that two adjacent vertices are in different
parts. A complete bipartite graph is a bipartite graph whose edge-set contains
every possible edge that connects vertices in different parts. A star is a complete
bipartite graph with one part of size 1; A tree is a connected and acyclic graph (a
tree is bipartite). A caterpillar is a tree which contains a central path such that
all vertices are within distance 1 of the path, called the backbone. By extension, a
k-caterpillar is a tree such that all vertices are within distance k of the backbone.

We recommend the reading of [15, 87] for the definitions of other commonly
used graph notations and terminology. Other notations, terms and graph classes
may also be introduced later in this thesis.

1.2. Computational complexity
This section will provide some basic definitions in computational complexity. We
made the choice to keep these definitions as simple as possible and refer to the
cited literature for formal definitions using languages and Turing machines.

1.2.1. Algorithms

An algorithm is a step-by-step procedure that receives an input and performs
some computation on it. We can assume that an algorithm always returns an
output, even if constant. Algorithms fall into two categories, deterministic and
nondeterministic.

Definition 1.1: Deterministic and nondeterministic algorithms
• A deterministic algorithm will always go through the same sequence

of states and return the same output for a fixed given input.

• A nondeterministic algorithm may go through a different sequence of
states and return different outputs for a fixed given input.

CHAPTER 1. PRELIMINARIES 4

A nondeterministic algorithm can be seen as an algorithm that can visit
all possible computational paths. This means that, instead of branching at
each alternative like a deterministic algorithm would, every alternative can run
simultaneously [45].

The computational complexity of an algorithm is the amount of resources
needed to run the algorithm. This amount is expressed as a function of the
size of the input. For instance, an algorithm with complexity f(n) means that
the algorithm needs f(n) resources to solve any instance of size n. If not clearly
specified, the resource is always the time, and the computational complexity of
an algorithm is called the running time (of the algorithm). The running time is
generally expressed as the number of elementary operations which are assumed to
take constant time on a computer. Hence, the running time of an algorithm can
be expressed as the number of elementary operations multiplied by a constant
factor, which depends on the computer. The space complexity of an algorithm
can also be studied but is not considered in this thesis1.

In this thesis we express the complexity of an algorithm with the O notation.

Definition 1.2: O notation
Given two functions f and g, we say that f = O(g) (“f is big Oh of g”)
if there exist two positive constants α and x0 such that, for all x ≥ x0,
f(x) ≤ α · g(x).

Other asymptotic notations can be encountered in the literature, such as the
o notation (f is dominated by g asymptotically), the Θ notation (f is bounded
both above and below by g asymptotically) and the Ω notation (f is bounded
below by g asymptotically).

1.2.2. Decision problems, P and NP

A decision problem is a problem that can be posed as a yes-no question of the
input values. We are particularly interested in the problems for which a certificate
(also called proof or witness in the literature) can be verified in polynomial time.
Informally, if someone gives us a “solution” for some instance of a problem, we
want to be able to check whether the “solution” is valid in efficient time.

1Since we consider decision problems in NP and NP ⊆ PSPACE, the problems we study can
be solved using a polynomial amount of space.

CHAPTER 1. PRELIMINARIES 5

Definition 1.3: NP class
The class NP is the set of all decision problems for which the problem
instances, where the answer is "yes", have certificates verifiable in polynomial
time.

An equivalent definition of the class NP is the set of decision problems for which
there exists a nondeterministic polynomial-time algorithm solving the problem [4].

The complement of a decision problem is the decision problem resulting from
reversing the “yes” and “no” answers, and the class coNP contains the decision
problems whose complements are in NP.

Some problems in NP are known to be polynomial-time solvable, and they
define a subset of NP.

Definition 1.4: P class
The class P is the set of all decision problems that can be solved in polynomial
time with a deterministic algorithm.

While some problems in NP are proved to belong to P, others are not, despite
decades of research. There lies the P versus NP problem : There seems to
exist a dichotomy of the problems in NP between problems that are “easy to
solve” (in P) and problems that are “hard to solve”. As described by Cook in
[28], the P versus NP problem is ”to determine whether every language accepted
by some nondeterministic algorithm in polynomial time is also accepted by some
(deterministic) algorithm in polynomial time.” It is one of the seven Millennium
Prize Problems2.

To describe this complexity dichotomy in further details, we need to define
the concept of polynomial-time reduction.

Definition 1.5: Polynomial-time reduction
Let A and B be two decision problems. A polynomial-time reduction is a
function f that maps instances of B into instances of A in polynomial-time
such that, for any instance x of B, x is a yes-instance if and only if f(x) is
a yes-instance. We say that B (polynomial-time) reduces to A.

We can now formally define the notions of NP-hardness and NP-completeness.
2https://www.claymath.org/millennium-problems/p-vs-np-problem

https://www.claymath.org/millennium-problems/p-vs-np-problem

CHAPTER 1. PRELIMINARIES 6

Definition 1.6: NP-hardness and NP-completeness
A decision problem A is NP-hard if every problem B in NP can be reduced
in polynomial time to A. Furthermore, if A is NP-hard and belongs to NP,
then A is NP-complete.

Informally, an NP-hard problem is at least as hard as any problem in NP. A
polynomial-time reduction is one of the most useful tools at the disposal of the
researcher for characterising the complexity of a problem. Its main use is to prove
that a problem A is NP-hard by showing that there exists an NP-hard problem B

and a polynomial-time reduction from B to A. But a polynomial-time reduction
can also prove that a problem is in P: If a problem A can be reduced to a problem
B in P, then A is obviously in P as well.

Even though not discussed in this, it is interesting to mention that, under the
assumption that P 6= NP, there exist problems within NP that are not in P and
not NP-complete [62] (these problems are called NP-intermediate).

Cook proved that the Boolean Satisfiability problem, commonly known
as SAT, is NP-hard by showing that any problem in NP can be reduced to SAT
[29]. An instance is a formula in conjunctive normal form (CNF), also called a
CNF formula, which is a conjunction of one or more clauses, where a clause is
a disjunction of literals. When each clause contains at most ` variables, we say
that the formula is a `-CNF formula. In the same paper, the 3-SAT problem
where each clause contains exactly 3 variables has also been proved NP-hard. If it
is possible to assign True or False values to all variables such that the formula
evaluates to True, then the formula is satisfiable and the assignment is satisfying.
On the other hand, if there is no satisfying assignment of the formula, then the
formula is unsatisfiable.

SAT

Input: A CNF formula φ.
Question: Is there a satisfying assignment of φ?

Note that the problems SAT and 3-SAT also belongs to NP, and therefore
are NP-complete.

Let us illustrate the concept of polynomial-time reduction by reducing 3-SAT
to the Min Vertex Cover problem, and thus proving that the latter is NP-hard.
A vertex cover is a subset of vertices S such that each edge contains at least one
endpoint in S. This proof comes from [47] and is the first known result showing

CHAPTER 1. PRELIMINARIES 7

that Min Vertex Cover is NP-hard. We safely assume that a clause does not
contain the positive and negative literals of a same variable, otherwise we can
simply remove the clause from the formula.

Min Vertex Cover

Input: A graph G and an integer k.
Question: Is there a vertex cover of size at most k in G?

The general idea of Construction 1.1 is to create a graph from a 3-CNF
formula where each variable is represented by a variable gadget and each clause is
represented by a clause gadget.

Construction 1.1
Let φ be a 3-CNF formula with exactly 3 variables per clause, that is, a set
of m clauses C1, C2, . . . , Cm on n variables x1, x2, . . . , xn. We construct the
graph G = (V,E) as follows:

• for each variable xi, create a variable gadget made of two adjacent
vertices vi and v̄i;

• for each clause Cj, create a clause gadget Tj, which is a clique of size
3 (a triangle);

• finally, for each variable xi of a clause Cj , connect one vertex in Tj to
vi if the literal xi ∈ Cj or to v̄i if x̄i ∈ Cj , and such that the vertices in
Tj have degree 3 (connected to exactly one vertex outside the clause
gadget).

Of course, Construction 1.1 can be done in polynomial time (see Fig. 1.1 for
an example).

Theorem 1.1
Min Vertex Cover is NP-complete.

Proof. Of course, Min Vertex Cover is in NP. Let φ be a 3-CNF
formula with exactly 3 variables per clause, that is, a set of m clauses
C1, C2, . . . , Cm on n variables x1, x2, . . . , xn, and consider the graph G =

(V,E) obtained through Construction 1.1. We claim that φ is satisfiable if
and only if there exists a vertex cover of size at most n+ 2m in G.

CHAPTER 1. PRELIMINARIES 8

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

Figure 1.1: Example of a graph obtained through Construction 1.1 with the 3-CNF
formula (x1∨x2∨x3)∧ (x̄1∨x2∨x3)∧ (x̄1∨ x̄3∨x4)∧ (x̄2∨ x̄3∨x4)∧ (x̄2∨ x̄3∨ x̄4).
Vertices in black belong to a vertex cover of size n + 2m = 14, and hence
x1 := False, x2 := False, x3 := True and x4 := True.

Let β be a satisfying assignment of φ and S be an empty set of vertices.
For each variable xi, if xi is set to True in β, then add the vertex vi to
S, otherwise add the vertex v̄i to S. At this point, |S| = n and S covers
all the edges between the vertices representing the literals of the variables.
Now, consider a clause gadget Tj representing a clause Cj and note that
there exists uj ∈ Tj adjacent to a vertex in S, since β satisfies φ. Then, add
the vertices in Tj \ {uj} to S. Note that all the edges of the clause gadget
and between the clause gadget and the corresponding variable gadgets are
covered by S. Once all the clause gadgets have been processed, S is a vertex
cover of size n+ 2m.
Let S be a vertex cover in G of size at most n+ 2m. It is easy to see that S
contains at least two vertices for each clause gadget and at least one vertex
for each variable gadget. Therefore, S has size exactly n+ 2m and contains
exactly two vertices per clause gadget and one vertex per variable gadget.
We set a variable xi to True in β if the vertex vi belongs to S, otherwise
we set it to False. Note that doing so, each variable is assigned one (and
only one) value because S contains exactly one vertex per variable gadget.
Now, suppose that there exists a clause Cj which is not satisfied by β and
let uj be the only vertex in Tj which does not belong to S. Without loss of
generality, let vi be the vertex from a variable gadget adjacent to uj. Since
S is a vertex cover and uj /∈ S, then vi ∈ S, which implies that xi = True

in β. A contradiction with the fact that the clause is not satisfied. �

CHAPTER 1. PRELIMINARIES 9

In Chapters 3 to 5 we make use of polynomial-time reductions to show that the
problems Max PDS, Colourful Components and Colourful Partition
are NP-hard on restricted classes of graphs, and the problem Min Pickup-
Delivery Scheduling is NP-hard when ride time constraints are soft.

1.2.3. Optimisation problems, PO and NPO

In this subsection we are interested in optimisation problems where the goal is to
find an optimal solution for a given input.

Definition 1.7: Optimisation problem

An optimisation problem is a quadruple (I, f, c, g) such that:

• I is a set of instances,

• given an instance x ∈ I, f(x) is the set of feasible solutions,

• given x ∈ I and y ∈ f(x), c(x, y) denotes the cost of y and c(x, y) is
computable in polynomial time, and

• g is a goal, either maximisation or minimisation.

An optimal solution is, therefore, a feasible solution with maximum or minimum
cost (depending on the goal of the problem).

Note that an optimisation problem is always associated with a decision problem
asking whether there exists a solution with cost at least k (if the goal is to maximise
the cost) or at most k (if the goal is to minimise the cost). We therefore talk
about the decision variant and optimisation variant of a problem.

Definition 1.8: NPO class
The class NPO contains all optimisation problems whose associated decision
problem is in NP.

Definition 1.9: PO class
The class PO contains all optimisation problems that can be solved in
polynomial time with a deterministic algorithm.

Of course, the inclusion PO ⊆ NPO holds. Note that, given an optimisation
problem A, if its decision variant is NP-hard, then necessarily its optimisation
variant is NP-hard. We refer the reader to [8] for more details.

CHAPTER 1. PRELIMINARIES 10

The notion of NPO-completeness also exists, and says that a problem A is
NPO-complete if it belongs to NPO and there exists a PTAS-reduction from every
problem in NPO. We do not cover the definition of PTAS-reduction here but we
redirect the reader to [31].

1.2.4. Dealing with the complexity

The Exponential Time Hypothesis states that 3-SAT cannot be solved in subex-
ponential time in the worst case. Note that some NP-complete problems can
be solved in subexponential time (but not polynomial), for example, the Max
Independent Set can be solved in subexponential time on planar graphs. How-
ever, when an instance of 3-SAT of size n is reduced to an instance of Max
Independent Set on a planar graph, the latter graph contains Θ(n2) vertices,
so an exponential lower bound of O(2cn) for 3-SAT translates into a lower bound
of O(2

√
cn).

In order to comprehend the computational complexity of an NP-hard problem,
two complementary methods are available. On the one hand, one may decrease the
values of the exponent and the base in the function expressing the computational
complexity of the algorithm (this often implies the design of complex algorithms
and fine complexity analysis). On the other hand, one can prove complexity lower
bounds of the problem. For a short paper on the subject, see [76].

While the above methods are interesting to classify problems, the complexity
of the problems is not polynomial in the size of the input, and therefore quickly
intractable even for relatively small instances. In this section, we discuss three
different approaches: restricting the problem on special types of instances, ap-
proximating the solution, and designing parameterized algorithms and kernels.

1.2.4.1. Restriction of the problem on special types of instances

Many structural properties of an instance can be restricted, thus allowing us to
design efficient algorithms. In the general case, it is sometimes possible to design
polynomial-time algorithms for restricted types of instances.

Taking the example of Min Vertex Cover again, it is not difficult to prove
that the problem is polynomial-time solvable on bipartite graphs. This result is
known as König’s theorem, which in fact proves that in any bipartite graph the
size of a maximum matching (a set of pairwise non-incident edges of maximum
size) equals the size of a minimum vertex cover (see [15] for a proof).

CHAPTER 1. PRELIMINARIES 11

For graph problems, many structural properties can be restricted, thus allowing
us to design efficient algorithms. Also, one can focus on minor-free classes of
graphs [66], for instance, planar graphs forbid K3,3 (complete bipartite graphs
with two parts of size 3) and K5 (the complete graph on 5 vertices) as minors.
A less restrictive but common technique is to forbid (induced) subgraphs. For
example, Min Vertex Cover is polynomial-time solvable on P5-free graphs
[65] (graphs with no induced paths on 5 vertices), even though NP-hard on cubic
graphs (all the vertices have degree 3) [2].

Of course, this restriction can be done together with the other techniques
presented in the next subsections to obtain even more efficient algorithms.

1.2.4.2. Approximation and inapproximability

Assuming that P 6= NP, the optimality of a solution for an NP-hard problem comes
at a price: an exponential running-time. However, it is sometimes interesting to
obtain a “good” but not necessarily optimal solution in a shorter time. This is
exactly what approximation algorithms intend to do, trading the optimality of a
solution for a gain of time. We refer the reader to [8, 84] for detailed definitions
and advanced notions of approximation.

Let A be an optimisation problem and x be an instance of A. We denote
by OPTA(x), or simply OPT (x) if clear from context, the value of an optimal
solution for x, and by |x| the size of the instance.

Definition 1.10: Approximation ratio
Given an an optimisation problem A and an instance x of A, the approxim-
ation ratio, also called performance ratio, of a solution y to an instance x of
A is defined as

RA(x, y) = max

{
cA(x, y)

OPT (x)
,
OPT (x)

cA(x, y)

}
.

A polynomial-time approximation algorithm is a generic name to describe an
algorithm that runs in polynomial time and returns approximated solutions with
a provable guarantee on the ratio between the optimal and the returned solution.

Definition 1.11: Approximation algorithm
Given an an optimisation problem A and an instance x of A, an approxim-
ation algorithm for A is an algorithm that returns a solution y to x such
that RA(x, y) ≤ f(|x|) for some function f .

CHAPTER 1. PRELIMINARIES 12

Depending on the type of the function f , we can classify optimisation problems
into complexity classes depending on difficulty to find an approximation algorithm
for them. Let us first define the class APX that we will also encounter later in
this thesis.

Definition 1.12: APX class
The class APX is the class of optimisation problems in NPO that admit
a polynomial-time approximation algorithm whose approximation ratio is
bounded by a constant.

A problem in APX with ratio bounded by a constant α is called a polynomial-
time α-approximation algorithm, or more generally a constant-factor polynomial-
time algorithm. Problems having an approximation algorithm with approximation
ratio bounded by α · log(|x|) form the class log−APX. In the same way, problems
admitting an approximation algorithm with approximation ratio bounded by
α · p(|x|), with p a polynomial, form the class poly − APX.

To give an example of a problem in APX, we consider the optimisation variant
of Min Vertex Cover and prove that there exists a polynomial-time 2-approx-
imation algorithm for the problem.

Min Vertex Cover

Input: A graph G.
Output: A vertex cover in G of minimum size.

Theorem 1.2
Min Vertex Cover is polynomial-time 2-approximable.

Proof. Let G = (V,E) be a graph, G′ = (V ′, E ′) be a copy of G and S

be an empty set of vertices. Find a maximal matching M in G, that is, a
maximal set of edges pairwise non-incident. Note that a maximal matching
can be otained greedily in O(|E|). For each edge {u, v} in M , add u and v

to S. Obviously, because M is maximal, then S is a vertex cover. Moreover,
if {u, v} ∈M , then every vertex cover contains u or v, otherwise the edge is
not covered. Therefore, any vertex cover contains at least |M | vertices, that
is, OPT (G) ≥ |M |. This means that OPT (G) ≤ |S| ≤ 2 · OPT (G), and
therefore Min Vertex Cover is polynomial-time 2-approximable. �

CHAPTER 1. PRELIMINARIES 13

Corollary 1.2.1
Min Vertex Cover is in APX.

In Section 3.4, we give a polynomial-time approximation algorithm proving
that Max PDS can be approximated within an approximation of 2, hence showing
that the problem belongs to APX.

Note that, for some problems in NPO, it is possible to arbitrarily fix the ap-
proximation ratio to any constant. Suppose that A is a minimisation problem,
then a polynomial-time approximation scheme (PTAS) is an approximation al-
gorithm that, given an instance x, returns a solution y such that cA(x, y) ≤
(1 + ε) · OPT (x) for any given ε > 0. If A is a maximisation problem, then
cA(x, y) ≥ (1− ε) ·OPT (x). Note that its running time can be exponential in 1

ε
.

The optimisation problems in NPO that admit a polynomial-time approximation
scheme form the class PTAS, and if the running time is polynomial in the size of
the instance and in 1

ε
, they form the class FPTAS.

We naturally obtain the following inclusions:

PO ⊆ FPTAS ⊆ PTAS ⊆ APX ⊆ log − APX ⊆ poly − APX ⊆ NPO .

It is also interesting to prove lower bounds on the approximation ratio of
a problem, or more generally to prove that a given problem does or does not
belong to some approximation class, (e.g. PTAS or APX). In this thesis, we use
two main techniques for such proofs: approximation-preserving reductions and
gap reductions.

Definition 1.13: Approximation-preserving reduction
An approximation-preserving reduction between two optimisation problems
A and B is a pair of functions (f, g) such that:

• f maps instances x of A to instances x′ of B,

• g maps solutions y′ of B to solutions y of A, and

• g preserves some guarantee on the approximation ratio of the output
solutions.

CHAPTER 1. PRELIMINARIES 14

This means that if A reduces to B via an approximation-preserving reduction,
then given an instance x of A and an (approximation) algorithm for B, it is
possible to convert the instance x of A into an instance x′ of B, run the algorithm
on x′, and recover a solution for A that has some guarantee on the approximation
ratio.

Some approximation-preserving reductions also preserve the membership in
a complexity class C: If A reduces to B with such an approximation-preserving
reduction and B belongs to C, then A belongs to C. Note that if a problem A is
C-hard and A reduces to B through an approximation-preserving reduction, then
B is C-hard [31].

In Section 3.3.1 and Section 5.3.1, we use an L-reduction to prove the APX-
hardness of two different problems.

Definition 1.14: L-reduction
Let A and B be two optimisation problems. An L-reduction from A to B is
an approximation-preserving reduction (f, g) such that for any instance x

of A and any solution y′ of f(x):

• OPTB(f(x)) ≤ α ·OPTA(x), with α a constant, and

• |OPTA(x)− cA(x, g(y
′))| ≤ β · |OPTB(f(x))− cB(f(x), y

′)|, with β a
constant.

We now introduce the concept of gap reductions, a powerful technique to prove
hardness results. Gap reductions are usually used to prove lower bounds on the best
possible approximation ratio for a problem (or eventually the inapproximability
of the problem).

Definition 1.15: Gap introducing reduction
A gap-introducing reduction, also called gap-producing reduction, from a
decision problem A to a minimisation problem B consists of functions f

and β along with a polynomial-time algorithm which given an instance x of
A outputs an instance x′ of B such that:

• if x is a yes-instance, then OPTB(x
′) ≤ f(x′), and

• if x is a no-instance, then OPTB(x
′) > β(|x′|) · f(x′).

If B is a maximisation problem, then:

• If x is a yes-instance, then OPTB(x
′) ≥ f(x′).

CHAPTER 1. PRELIMINARIES 15

• If x is a no-instance, then OPTB(x
′) < f(x′)

β(|x′|) .

The gap, β(|x|) is the hardness factor of the gap-introducing reduction. This
means that a polynomial-time approximation algorithm for B with approximation
ratio β(|x|), or better, would be able to distinguish between the two cases, and
ultimately solve problem B in polynomial time. Therefore, if A is NP-hard, then
it is NP-hard to approximate B within β(|x|).

It is now possible to use this result and obtain a gap-preserving reduction
between two optimisation problems.

Definition 1.16: Gap-preserving reduction
Let A and B be optimisation problems. A gap-preserving reduction from
A to B comes with four functions fA, fB, α and β. Assume that A and B

are minimisation problems. Then, given an instance x of A, the reduction
returns in polynomial time an instance x′ of B such that:

• OPT (x) ≤ fA(x) =⇒ OPT (x′) ≤ fB(x
′);

• OPT (x) ≥ α(|x|) · fA(x) =⇒ OPT (x′) ≥ β(|x′|) · fB(x′).

If A and B are maximisation problems, then:

• OPT (x) ≥ fA(x) =⇒ OPT (x′) ≥ fB(x
′);

• OPT (x) ≤ fA(x)
α(|x|) =⇒ OPT (x′) ≤ fB(x′)

β(|x′|) .

Approximating B in polynomial-time within a ratio of β(|x′|) would imply
that we can distinguish between the two cases for A. Hence, if it is NP-hard to
approximate A within α(|x|), then it must be NP-hard to approximate B within
β(|x′|).

A similar technique has been used in [35] to prove that Min Vertex Cover
cannot be approximated within 1.3606 unless P = NP. If the unique games
conjecture (UGC) [58] is true, then it can be showed that Min Vertex Cover
cannot be approximated within a constant factor strictly smaller than 2 [59].
Another way to state these results is to say that any polynomial-time approximation
algorithm that solves Min Vertex Cover has an approximation ratio greater
than 1.3606 unless P = NP and greater than 2 − ε, for any ε > 0, unless UGC
fails. Hence, Min Vertex Cover is APX-hard, and since we proved that Min
Vertex Cover is in APX, we obtain the following corollary.

CHAPTER 1. PRELIMINARIES 16

Corollary 1.2.2
Min Vertex Cover is APX-complete.

In Section 3.3, we use a gap-preserving reduction to give a constant lower
bound on the approximation ratio of any polynomial-time algorithm for the Max
PDS problem and therefore prove that the problem is APX-hard.

1.2.4.3. Parameterized complexity

To effectively tackle an NP-hard problem and understand which parts of the
instance influence the complexity, one can study the parameterized complexity
of the problem [32, 38, 46]. The idea is to express the complexity of a decision
problem by a parameter k. The natural parameter is usually the size of the
solution, but many other parameters can be compared, such as treewidth, clique
number, independent number, chromatic number. . .

A simple brute force algorithm usually implies a complexity of type O(cO(n)),
for c a constant and n the size of the instance. The goal here is to avoid the
appearance of n in the exponent.

Definition 1.17: XP class
The class XP contains the decision problems that can be solved in time
O(nf(k)), for some computable function f .

While the complexity of a problem in XP can be interesting when f(k) is small,
a major improvement would be to make sure that n does not participate in the
exponent or the base of the exponential.

Definition 1.18: FPT class
The class FPT contains the decision problems for which an algorithm with
complexity O(f(k) · nc) exists, for some computable function f .

An algorithm with this kind of complexity if called a fixed-parameter algorithm
(also known as FPT algorithm). Often, such complexities are written O∗(f(k)),
which drops the polynomial factor in n. Problems in FPT are said to be fixed-
parameter tractable.

An alternative to finding such an algorithm is to design a kernel for the
problem. A kernel is an instance (I ′, k′) such that:

• the size of I ′ must be bounded by a function of k′,

• k′ must be bounded by a function of k,

CHAPTER 1. PRELIMINARIES 17

• (I ′, k′) is obtained in O(f(k) · nc) time, and

• there is a solution to (I ′, k′) if and only if there is a solution to (I, k).

It can be shown that a problem is FPT if and only if it admits a kernel. Thus,
kernelization is another way of defining fixed-parameter tractability. For example,
the Min Vertex Cover problem admits a kernel of size at most 3k [26], with k

the natural parameter of the problem, and hence can be solved in time O∗(23k).
Unfortunately, not all problems are fixed parameter tractable, and such a

complexity cannot be obtained. We refer the reader to [37] for a definition of the
W -hierarchy and its implications on the (parameterized) complexity of problems.

1.3. Overview of the thesis
In this thesis, we study several different problems related to graph partitioning,
computational complexity and combinatorial optimisation.

In Chapter 2, we consider the problem of partitioning a graph into two parts
such that each part induces a proportionally dense subgraph (PDS), namely a
2-PDS partition. A PDS is a subgraph in which each vertex has proportionally as
many neighbours within the subgraph as in the whole graph. We say that a PDS
is a subgraph that respects the notion of proportional density. We provide the
first known examples of graphs that do not admit a 2-PDS partition. In fact, we
are able to construct an infinite family of graphs without a 2-PDS partition. The
existence of such graphs was left as an open question in [10]. Then, we provide
another class of graphs which have a 2-PDS partition but where one of the parts
necessarily induces a disconnected subgraph.

Inspired by the notion of proportional density and PDS, in Chapter 3 we
consider the problem of finding a PDS of maximum size, namely the Max
PDS problem. We prove several hardness results on the problem, such as the
APX-hardness on split graphs and the NP-hardness on bipartite graphs. We also
show that deciding if a PDS is inclusion-wise maximal is coNP-hard, even on
bipartite graphs. Nevertheless, we give a polynomial-time (2− 2

∆+1
)-approximation

algorithm for the problem, where ∆ is the maximum degree of the graph. This, in
turn, proves that the problem is APX-complete. Then, we consider the problem
on Hamiltonian cubic graphs and show that all such graphs except two have a
PDS of size b2n+1

3
c, which we prove to be an upper bound on the size of a PDS

in cubic graphs. Such a PDS is connected and can be found in linear time if a
Hamiltonian cycle is given.

CHAPTER 1. PRELIMINARIES 18

In Chapter 4, we study two graph partition problems on vertex coloured graphs.
The goal is to partition the graph into colourful components which are connected
components with no two vertices of the same colour while minimising the number
of components (Colourful Partition) or minimising the number of edges with
endpoints in different components (Colourful Components). These problems,
originally motivated by comparative genomics, have been studied in several classes
of graphs but questions regarding their complexity were left open. We first prove
that both problems are NP-hard on quaternary 2-caterpillars, ternary 3-caterpillars
and binary 4-caterpillars, answering at the same time an open question regarding
their complexity on trees with maximum degree at most 5 [18]. Nonetheless, we
show that the problems are linear-time solvable on 1-caterpillars, without any
restriction on the degrees and even if the backbone induces a cycle. Our algorithm
outperforms the previously best known quadratic algorithm for paths. Finally, we
answer an open question regarding the complexity of Colourful Components
in `-coloured graphs [18] with maximum degree at most 5 by proving that the
problem remains NP-hard on 5-coloured planar graphs with maximum degree 4

and on 12-coloured planar graphs with maximum degree 3.
In Chapter 5, we give several contributions to a well-studied scheduling problem

in the context of Dial-A-Ride problems. An instance of our problem is a fixed
route of stops, where each stop is either a pickup or a delivery of a request. Each
stop is associated with a time window constraint and a corresponding penalty
function when the former is violated. Also, each request is associated with a
ride time constraint, which is an upper bound on the time between the scheduled
pickup and the scheduled delivery, and a corresponding penalty function. Our first
contribution is to show that this problem is NP-hard if and only if the ride time
constraints are soft, i.e. if such constraints can be violated. Then, we consider
several subclasses of instances where the problem becomes polynomial, for instance
when the value of the maximum ride time is bounded by a constant and when
the stops in the sequence are ordered such that all pickups appear before all the
deliveries.

Finally, in Chapter 6, we review the problems studied in this thesis and
summarise our contributions.

Chapter 2
Partition into Two Proportionally Dense

Subgraphs

Outline
2.1 Introduction . 20
2.2 Proportional density and PDS’s 22
2.3 Infinite classes of graphs . 23

2.3.1 Graphs without a 2-PDS partition 23
2.3.2 Graphs without a connected 2-PDS partition 29

2.4 Conclusion and further work . 31

In this chapter, we are interested in a problem of partition of a graph into
exactly two proportionally dense subgraphs (PDS), namely a 2-PDS partition. In
a PDS, each vertex must have proportionally as many neighbours in its PDS than
in the other. We answer in the negative to a question left open in [10] regarding
the decidability of the problem: Do all graphs admit a 2-PDS partition? Then,
we investigate the cases where a 2-PDS partition exists but at least one of the
PDS’s is disconnected.

Some of the results presented in this chapter appear in the following paper:

v C. Bazgan, J. Chlebíková and C. Dallard, ‘Graphs without a partition
into two proportionally dense subgraphs’, arXiv e-prints, Submitted to
Information Processing Letters, 2018. arXiv: 1806.10963 [cs.DM].

A journal version is currently under review for publication in a selected journal.

19

https://arxiv.org/abs/1806.10963

CHAPTER 2. 2-PDS PARTITION 20

2.1. Introduction
In this chapter, we are interested in the graphs that cannot be partitioned into
two (connected) subgraphs respecting the notion of proportional density. First,
let us mention some NP-hard problems that consider a partition into two parts,
that are close to our notion of 2-PDS partition.

The Satisfactory Partition problem, introduced by Gerber and Kobler
[50], asks whether a graph can be partitioned into two parts such that every vertex
is adjacent to more vertices in its own part than in the other. The problem has
been extensively studied, both from complexity and approximation perspectives
[13, 49, 50, 80].

The Bisection problem asks whether there exists a partition into two parts
of the same size such that the cut between the two parts is smaller or equal than
a given integer k. However, several polynomial-time approximation algorithms
exist [41, 77] and the problem is FPT [33]. An interesting work from Wagner and
Wagner investigates the complexity of intermediate problems between Min Cut
and Bisection [86], i.e. problems deciding if there exists a partition into two
parts of bounded sizes whose cut is bounded as well.

In the Maximally Balanced Connected Partition problem, the task
is to partition a graph into two connected subgraphs such that the size of the
smallest subgraph is maximised [23].

Another closely related problem is the Sparsest Cut problem asking whether
there exists a cut with sparsity at most k, for some given k ∈ Q. The sparsity
of a cut (S, S) is |E(S,S)|

min{|S|,|S|} , where E(S, S) is the set of edges with endpoints in
both S and S. The problem is NP-hard [68] but there exists a polynomial-time
approximation algorithm with ratio O(

√
log n), with n the number of vertices in

the graph.
Lastly, we mention the notion of isoperimetric number [20, 21] described

as the minimum ratio |N(X)|/|X| for all possible proper subsets of vertices X,
with N(X) =

(⋃
v∈X N(v)

)
\X. Mohar proved that deciding if the isoperimetric

number of a graph is smaller than a given constant is NP-complete [72].
Our definition of proportionally dense subgraph is closely related to the defini-

tion of a community as introduced in [73]. Olsen defines a community structure
as a partition of the vertices into communities, where a part, i.e. an induced
subgraph (with at least 2 vertices), is a community if and only if each vertex has
proportionally as many neighbours in its community than in any other community.
Hence, the notion of proportional density can be seen as a way to define dense
regions of the graph, correlating the size of the region and the degree of each

CHAPTER 2. 2-PDS PARTITION 21

vertex composing it. In [10], the authors investigate the notion of 2-community
structure as a community structure with exactly two parts. We use the same
definition (up to the special case where a community is of size one) to define a
2-PDS partition.

So far, only a few results are known about the existence of a 2-PDS partition
in a graph, and the complexity of finding one. In fact, all known results are
positive results, that is, polynomial-time algorithms to find a 2-PDS partition
in a special class of graphs. It has been proved in [40] that deciding if a graph
contains a 2-PDS partition with both PDS’s of the same size is NP-complete. On
trees [10, 40] and graphs with maximum degree 3 or minimum degree n− 3 (n
the order of the graph) a connected 2-PDS partition always exists and can be
found in polynomial time [10]. The results extensively use the connectivity of the
PDS’s. To find a connected 2-PDS partition in a tree, one can prove that there
exists an edge such that its removal yields two connected PDS’s. If a graph has a
maximum degree at most 3, a greedy algorithm keeps decreasing the size of a cut
under some constraints and the removal of the final cut describes two connected
PDS’s.

Observe that, in the mentioned results, the algorithms do not decide whether
there exists a 2-PDS partition but find and return a 2-PDS partition as solution.
Since no graphs were known to not have a 2-PDS partition, we are left with a
natural question: Do graphs without a 2-PDS partition exist? If the answer is
no, that is, if all graphs were to admit a 2-PDS partition, one could consider the
associated search problem and study its complexity. While the goal of this chapter
is not to discuss the computational complexity of search problems (as we effectively
answer yes to the latter question), it is worth mentioning that even if a decision
problem is trivial (the existence is always true), its corresponding search problem
may be hard to solve. Firstly introduced in [70], the class TFNP is the class of
nondeterministic multivalued functions with values that are guaranteed to exist
and can be verified in polynomial time. Simply put, TFNP is a complexity class
that contains problems whose associated decision variants are trivial (the existence
is always true). The class FP is a subclass of TFNP and contains problems (total
functions) that can be solved in polynomial time. There is also the class FNP,
superclass of TFNP that drops the requirement that the functions are total. Of
course, FP ⊆ TFNP ⊆ FNP. Deciding whether the inclusions are strict or not is
equivalent to decide if P = NP. For further details on these complexity classes
and their subclasses, we recommend the reading of [14, 19, 74, 75].

CHAPTER 2. 2-PDS PARTITION 22

2.2. Proportional density and PDS’s
Throughout the chapter, we use the notations introduced in Section 1.1. We also
say that a vertex u is universal if d(u) = |V | − 1 and pendant if d(u) = 1.

Given a graph G = (V,E), the density of a subgraph on a vertex set S ⊆ V

is usually defined as |E(S)|
|S| , where E(S) is the set of edges in the subgraph. The

problem of finding a subgraph of maximum density can be solved in polynomial
time [51], but it becomes NP-hard when at least, or exactly, k vertices must belong
to the subgraph [6, 42, 60].

Here, we introduce the notion of proportional density, which captures both the
size of the subset and the number of neighbours. In turn, we define a proportionally
dense subgraph (PDS) as an induced subgraph respecting the proportional density
constraint.

Definition 2.1: Proportionally dense subgraph (PDS)

For a graph G = (V,E), a proportionally dense subgraph of G is an induced
subgraph on a vertex set S ⊂ V such that each vertex u ∈ S is satisfied in
S, that is,

|S|·dS(u) ≥ (|S|−1)·dS(u) , or, equivalently, (|V |−1)·dS(u) ≥ (|S|−1)·d(u) .

Note that if |S| ≥ 2, then we can rewrite the inequalities as

dS(u)

|S| − 1
≥ dS(u)

|S|
or, equivalently, dS(u)

|S| − 1
≥ d(u)

|V | − 1
.

The proof of the equivalence can be found in [10]. Note that a subgraph
containing a single vertex is also a PDS, but obviously a PDS cannot be the entire
graph.

Definition 2.2: 2-PDS partition

A 2-PDS partition of a graph G = (V,E) is a partition Π = {S1, S2} of V
such that S1 and S2 induce two PDS’s in G.

In this chapter, we address the problem of deciding if a graph admits a 2-PDS
partition. Notice that a PDS does not necessarily need to be connected. Therefore,
we also consider the problem of deciding if a graph has a connected 2-PDS partition,
that is, a 2-PDS partition whose PDS’s are connected subgraphs. As we will see
in Section 2.3, both problems are proved to be decision problems since we are

CHAPTER 2. 2-PDS PARTITION 23

able to give an infinite class of graphs that do not admit a 2-PDS partition, and a
second infinite class of graphs that only admit a disconnected 2-PDS partition,
but not a connected one.

If a graph is disconnected, both problems become trivial, and hence we assume
that all graphs are connected.

Overview of the results.
In Section 2.3.1, we construct an infinite family of graphs without a 2-PDS
partition. As far as we know, these are the first negative results regarding the
existence of a 2-PDS partition, and therefore the problem of deciding if a graph
admits a 2-PDS partition is a decision problem. We also give examples of graphs
without a 2-PDS partition that do not belong to the family. Then, in Section 2.3.2,
we propose another infinite family of graphs without a connected 2-PDS but with
a disconnected one.

2.3. Infinite classes of graphs
In the hope of finding small graphs without a 2-PDS partition, we used a computer
based approach and generated all connected graphs up to 11 vertices1 and checked
for each graph whether it admits a 2-PDS partition, connected if possible. This
procedure returned four graphs with 10 vertices (see Fig. 2.4) from which we were
able to construct an infinite family of graphs without a 2-PDS partition. We also
obtained graphs with 11 vertices that have a disconnected 2-PDS partition but
no connected one. Again, from these examples we defined an infinite family of
graphs which do not have a connected 2-PDS partition but admit a disconnected
one. The structural properties of these examples were crucial to define our infinite
families.

2.3.1. Graphs without a 2-PDS partition

The question about the existence of graphs without a 2-PDS was left open in [10].
To the best of our knowledge, no graphs without a 2-PDS partition were known.
In this section we present an infinite class G (see Definition 2.3) of graphs with
even number of vertices without a 2-PDS partition.

1For the generation of the graph, we used the program geng from the gtools suite [69]:
http://pallini.di.uniroma1.it/

http://pallini.di.uniroma1.it/

CHAPTER 2. 2-PDS PARTITION 24

Definition 2.3
Let G be the class of graphs such that, if G = (V,E) ∈ G, then

• V = W1∪W2∪{w, x, y, z}, where W1, W2 are cliques of the same size
k, k ≥ 3, and {w, x, y} is a clique of size 3;

• w is adjacent to all vertices in W1 ∪W2, and z is only adjacent to y;

• 1 ≤ dW1(x) = dW2(x) ≤ k − 1 and 2 ≤ dW1(y) = dW2(y) ≤ k − 1;

• |Wi ∩ (N(x) ∪N(y)) | > 3k
k+3

for each i ∈ {1, 2};

• there exist vertices α, β ∈ W1 ∪W2 such that α ∈ N(y) \N(x), and
β ∈ N(x) ∩N(y);

• there is no edge between the vertex sets W1 and W2.

z

y

x

w

W1

clique on
k vertices

W2

clique on
k vertices

fully

connected

Figure 2.1: A schematic representation of a graph in G.

Note that the smallest graphs in G have 10 vertices (see Fig. 2.2), and one of
them is planar (see Fig. 2.3).

Theorem 2.1
All graphs in G do not have a 2-PDS partition.

Proof.
Let G = (V,E) be a graph in G. Firstly, notice that there is no 2-PDS
partition {A,B} in G such that |A| = 1 or |B| = 1. Without loss of
generality, suppose by contradiction that A = {v} for some vertex v ∈ V ,
and notice that the neighbour of v in B must be a universal vertex in order

CHAPTER 2. 2-PDS PARTITION 25

z

y

x

w

a

b

c

a′

b′

c′

z

y

x

w

a

b

c

a′

b′

c′

z

y

x

w

a

b

c

a′

b′

c′

z

y

x

w

a

b

c

a′

b′

c′

Figure 2.2: The four graphs with 10 vertices that belong to G.

z

y

x

w

a

b

c

a′

b′

c′

z

y

x

w

a

b

c

a′

b′

c′

Figure 2.3: A planar graph from G with 10 vertices without a 2-PDS partition.
On the left, its schematic representation as in Fig. 2.1; on the right, its planar
representation.

CHAPTER 2. 2-PDS PARTITION 26

to be satisfied. Since G does not contain a universal vertex, there is no
2-PDS partition {A,B} in G with |A| = 1 or |B| = 1. Hence, assume that
|A|, |B| ≥ 2.
Observe that the vertex z is satisfied if and only if it belongs to the same
PDS as the vertex y. Hence, without loss of generality, we assume that
y, z ∈ B. In addition, the vertex w has degree |V | − 2 and is not connected
to z ∈ B. Hence, necessarily w ∈ A.
Now we prove that for any partition {A,B} of V , where w ∈ A and y, z ∈ B,
there is at least one vertex which is not satisfied, and hence there is no
2-PDS partition in G. For any partition {A,B} of V , we denote by Ai and
Bi the sets A ∩Wi and B ∩Wi, respectively, for i ∈ {1, 2}. We split the
proof into two cases: In the first case, we suppose that B1 or B2 is empty;
in the second case, we assume that B1 and B2 are not empty.

Case 1: B1 = ∅ or B2 = ∅.
Suppose first that B1 = ∅ and B ⊆ {x, y, z} ∪W2.

• If B2 = ∅, we have two possibilities:

– if x ∈ B, then B = {x, y, z} and β ∈ A is not satisfied since
dA(β)
|A|−1

= k
2k

< 2
3
= dB(β)

|B| ;

– if x ∈ A, then B = {y, z} and α ∈ A is not satisfied since
dA(α)
|A|−1

= k
2k+1

< 1
2
= dB(α)

|B| .

• If B2 6= ∅ and B2 6= W2:

– Case x ∈ B.

∗ If there exists u ∈ A2 such that u ∈ N(x) ∪ N(y) and u is
satisfied, then we have:

|A2|
k + |A2|

=
dA(u)

|A| − 1
≥ d(u)

|V | − 1
≥ k + 1

2k + 3
,

which implies that |A2| · (k+2) ≥ k · (k+1), and hence that
|A2| > k − 1. A contradiction since |A2| ≤ k − 1.

∗ Otherwise, for all u ∈ A2, u /∈ N(x) ∪N(y). Hence, for any
u ∈ A2, if u is satisfied then:

|A2|
k + |A2|

=
dA(u)

|A| − 1
≥ d(u)

|V | − 1
=

k

2k + 3
,

CHAPTER 2. 2-PDS PARTITION 27

which implies that |A2| · (k + 3) ≥ k2, and hence that
|A2| ≥ k2

k+3
. Due to our assumptions about the graph,

|W2∩ (N(x) ∪N(y)) | > 3k
k+3

. Thus, k− 3k
k+3

> |W2 \ (N(x)∪
N(y))| ≥ |A2| ≥ k2

k+3
which implies k > k, a contradiction.

– Case x ∈ A. Let u ∈ A2.

∗ If u ∈ N(y) ∩N(x) and u is satisfied, then we have:

|A2|+ 1

k + |A2|+ 1
=

dA(u)

|A| − 1
≥ d(u)

|V | − 1
=

k + 2

2k + 3
,

which implies that |A2| ≥ k − 1
k+1

, and then |A2| ≥ k, a
contradiction since B2 6= ∅.

∗ If u ∈ N(y) \ N(x), then dA(u) = |A2| and d(u) = k + 1.
Therefore, similarly to the previous case, we obtain that
|A2| ≥ k + 1

k+2
and so |A2| > k, a contradiction.

∗ If u ∈ N(x) \N(y), then:

|A2|+ 1

k + |A2|+ 1
=

dA(u)

|A| − 1
≥ d(u)

|V | − 1
=

k + 1

2k + 3
,

which implies that |A2| · (k + 2) ≥ k2 − 2, and hence |A2| ≥
k2−2
k+2

> k − 2. Since assuming that there is a vertex in
A2 ∩N(y) leads to a contradiction (see previous cases), we
can assume that A2 ∩ N(y) = ∅. Then, since dW2(y) ≥ 2,
then |W2 \ N(y)| ≤ k − 2. Thus, k − 2 ≥ |A2| > k − 2, a
contradiction.

∗ If u /∈ N(x)∪N(y), then dA(u) = |A2| and d(u) = k. Again,
similarly to the previous case, we obtain |A2| > k − 2 and a
contradiction.

• If B2 = W2, then either B = {x, y, z}∪W2, and we have |A|+2 = |B|
but dA(x) = dB(x), and thus x is not satisfied, or B = {y, z} ∪W2;
since |A| = |B| we have: dB(y)

|B|−1
< dB(y)+1

|B| = dA(y)
|B| = dA(y)

|A| , and therefore
y is not satisfied.

We conclude that if there is a 2-PDS partition in G, then B1 6= ∅. The case
B2 = ∅ is similar, and therefore if there is a 2-PDS partition in G, then
B2 6= ∅.

Case 2: B1, B2 6= ∅.

CHAPTER 2. 2-PDS PARTITION 28

Without loss of generality, we suppose |B1| ≤ |B2|. Let u ∈ B1 and suppose
that u is satisfied in the partition {A,B}. We prove that in all cases, if u is
satisfied then it implies a contradiction with |B1| ≤ |B2|.

∗ If x ∈ A:

– If u ∈ N(x) ∩N(y) is satisfied, then:

|B1|
|B1|+ |B2|+ 1

=
dB(u)

|B| − 1
≥ d(u)

|V | − 1
=

k + 2

2k + 3
,

which implies that |B1| · (k + 1) ≥ (|B2|+ 1) · (k + 2), and hence
that |B1| > |B2|. A contradiction with the assumption that
|B1| ≤ |B2|, and hence u is not satisfied.

– If u ∈ N(x) \N(y), we have dB(u) = |B1| − 1 and d(u) = k + 1

and similarly we obtain |B1| · (k+2) ≥ |B2| · (k+1)+ (3k+4) ≥
|B2| · (k + 1) + (|B2| + 4) > |B2| · (k + 2), a contradiction since
|B1| ≤ |B2|.

– If u ∈ N(y) \N(x), we have dB(u) = |B1| and d(u) = k + 1 and
similarly we obtain |B1| · (k + 2) ≥ |B2| · (k + 1) + (k + 1) ≥
|B2| · (k + 1) + (|B2| + 1) > |B2| · (k + 2), a contradiction since
|B1| ≤ |B2|.

– If u /∈ N(x) ∪ N(y), we have dB(u) = |B1| − 1 and d(u) = k

and similarly we obtain |B1| · (k + 3) ≥ |B2| · k + 3(k + 1) ≥
|B2| · k + 3(|B2| + 1) > |B2| · (k + 3), a contradiction since
|B1| ≤ |B2|.

∗ If x ∈ B:

– If u ∈ N(x) ∩N(y) is satisfied, then:

|B1|+ 1

|B1|+ |B2|+ 2
=

dB(u)

|B| − 1
≥ d(u)

|V | − 1
=

k + 2

2k + 3
,

which implies that |B1| · (k + 1) ≥ |B2| · (k + 2) + 1, and thus
that |B1| > |B2|. A contradiction with the assumption that
|B1| ≤ |B2|, and hence u is not satisfied.

– If u ∈ N(x) \ N(y) or u ∈ N(y) \ N(x), we have dB(u) = |B1|
and d(u) = k + 1 and similarly we obtain |B1| · (k + 2) ≥ |B2| ·
(k+1)+ 2(k+1) ≥ |B2| · (k+1)+ 2(|B2|+1) > |B2| · (k+3), a
contradiction since |B1| ≤ |B2|.

CHAPTER 2. 2-PDS PARTITION 29

– If u /∈ N(x) ∪ N(y), we have dB(u) = |B1| − 1 and d(u) = k

and similarly we obtain |B1| · (k + 3) ≥ |B2| · k + 4k + 3 ≥
|B2| · k + 4 · |B2| + 3 > |B2| · (k + 4), a contradiction since
|B1| ≤ |B2|.

�

In Fig. 2.4, we present four graphs with 11 vertices without a 2-PDS partition.
These graphs have an odd number of vertices, and hence they do not belong to G.
To prove that they do not have a 2-PDS partition, one can notice that, like the
graphs in G, they have a pendant vertex z connected to a vertex y, and a vertex
w connected to all the vertices except the pendant vertex. As a result, the vertex
z is satisfied if and only if it belongs to the same PDS as y, and thus w must be
in the other PDS. The rest of the proof can be done by case distinction.

Figure 2.4: Four graphs with 11 vertices which do not have a 2-PDS partition

2.3.2. Graphs without a connected 2-PDS partition

Now, we present an infinite family of graphs where each graph admits a discon-
nected 2-PDS partition, but not a connected one. The existence of such graphs
was left as an open problem in [10].

Definition 2.4
We define the infinite class of graphs H such that, if G = (V,E) ∈ H, then

• V := W ∪ {α1, β1, α2, β2}, where W is a clique of odd size at least 7;

• ∃x ∈ W such that N(x) \W := {α1, β1, β2};

CHAPTER 2. 2-PDS PARTITION 30

• ∃y ∈ W such that N(y) \W := {α2, β2, β1};

• N(α1) := {β1, x}, N(α2) := {β2, y};

• N(β1) := {α1, x, y}, N(β2) := {α2, x, y}.

α1 β1 β2 α2

x y

clique on
2k + 1
vertices

W

Figure 2.5: A schematic representation of a graph in H.

Compared to the graphs in G, each graph in H has an odd number of vertices,
the smallest one has 11 vertices.

Theorem 2.2
All graphs in H do not have a connected 2-PDS partition but have a
disconnected one.

Proof. Let G = (V,E) ∈ H. Suppose that G has a connected 2-PDS
partition {A,B}. If A ⊆ W , then we have two cases: either A = W but
then G[B] is disconnected or A ⊂ W but then a vertex in W \ A is not
satisfied in B. Hence, A * W and similarly B * W . Consequently, to
guarantee the connectivity of G[A] and G[B], the vertices x and y must be
in different parts of the partition. Therefore, we assume without loss of
generality that x ∈ A and y ∈ B.
If α1 ∈ B, then y is not satisfied since it is connected to each vertex in A.
Similarly, α2 cannot belong to A since otherwise x is not satisfied. As a
result, we only have to consider the possible cases for β1 and β2, knowing
that x, α1 ∈ A and y, α2 ∈ B.
If A = {x, α1, β1}, then the vertex β2 is not satisfied in B since dB(β2)

|B|−1
≤ 2

7
<

1
3
= dA(β2)

|A| . Similarly, if B = {y, α2, β2}, then the vertex β1 is not satisfied
in A.

CHAPTER 2. 2-PDS PARTITION 31

If {x, α1, β1} ⊂ A and {y, α2, β2} ⊂ B, then consider two vertices a ∈
(W \ {x}) ∩ A and b ∈ (W \ {y}) ∩B. The vertex a is satisfied in A if and
only if

dA(a)

|A| − 1
=
|A| − 3

|A| − 1
≥ |B| − 2

|B|
=

dB(a)

|B|
,

which implies that |A| ≥ |B|+ 1. Similarly, the vertex b is satisfied in B if
and only if |A| ≤ |B| − 1, which is a contradiction.
If β1, β2 ∈ A, then the vertex β2 is satisfied in A if and only if

dA(β2)

|A| − 1
=

1

|A| − 1
≥ 2

|B|
=

dB(β2)

|B|
,

which implies that |A| ≤ |B|
2
+ 1. Moreover, the vertex α2 is satisfied in B if

and only if
dB(α2)

|B| − 1
=

1

|B| − 1
≥ 1

|A|
=

dA(α2)

|A|
,

which implies that |A| ≥ |B| − 1. We then obtain |B| − 1 ≤ |A| ≤ |B|
2
+ 1,

and therefore |B| ≤ 4. Thus, |A| ≤ 3, which is not possible since |V | ≥ 11.
Similar arguments can be used to prove that β1 and β2 cannot both belong
to B.
We conclude that G does not have a connected 2-PDS partition. However,
it is easy to see that, if A := {α1, β1, α2, β2} and B := V \ A, then {A,B}
is a disconnected 2-PDS partition of G. �

2.4. Conclusion and further work
The notion of proportional density, and the definition of a proportionally dense
subgraph, is based on a combination of local and global properties: In a PDS
each vertex has to satisfy a condition depending not only on its degree but also
on the size of the subgraph. This condition makes the problem complex from an
algorithmic point of view and requires a novel approach.

Our infinite families of graphs bring a new insight into the existence of 2-PDS
partitions in graphs, with and without constraint of connectivity. One way of
research could try to find a characterisation of these graphs. Obviously, the main
open question is the complexity of deciding the existence of a (connected) 2-PDS
partition.

Chapter 3
Max Proportionally Dense Subgraph

Outline
3.1 Introduction . 33
3.2 Notations and definitions . 34
3.3 Hardness results . 35

3.3.1 Split graphs . 35
3.3.2 Bipartite graphs . 40

3.4 Approximation of Maximum PDS 45
3.5 Hamiltonian cubic graphs . 48
3.6 Conclusion and open problems . 56

Motivated by the notion of proportional density and PDS studied in the
previous chapter, we now investigate the complexity of the problem of finding a
PDS of maximum size in a graph. We prove several hardness results for the problem
on split and bipartite graphs. On the positive side, we present a polynomial-time
approximation algorithm for the problem. We also show that all Hamiltonian
cubic graphs with n vertices (except two) have a PDS of size b2n+1

3
c, which we

prove to be an upper bound on the size of a PDS in cubic graphs.

Some of the results presented in this chapter appear in the following paper:

v C. Bazgan, J. Chlebíková, C. Dallard and T. Pontoizeau, ‘Proportionally
dense subgraph of maximum size: complexity and approximation’, arXiv
e-prints, Accepted for publication in Discrete Applied Mathematics, 2019.
doi: 10.1016/j.dam.2019.07.010. arXiv: 1903.06579 [cs.CC].

32

https://doi.org/10.1016/j.dam.2019.07.010
https://arxiv.org/abs/1903.06579

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 33

3.1. Introduction
In Chapter 2, we have defined the notions of proportional density and proportionally
dense subgraph (PDS). In this chapter, we use the same notions but focus on the
problem of finding a PDS of maximum size in a graph.

For a graph G = (V,E), the density of a subgraph on a vertex set S ⊆ V is
commonly defined as |E(S)|

|S| , where E(S) is the set of edges in the subgraph. The
problem of finding a subgraph of maximum density can be solved in polynomial
time using a max flow technique [51]. However, when the subgraph must contain
exactly k vertices, the problem becomes NP-hard [6, 42] and is known as the
Densest k-subgraph problem. Two variants of the problem have also been
studied where the number of vertices in the subgraph must be either at least k or
at most k. The former is known to be NP-hard [60], but there exists a polynomial-
time 2-approximation algorithm to solve it [5]. It was also shown that any α-
approximation for the at most k variant would imply a Θ(α2)-approximation for
the densest k-subgraph problem [5].

As we have seen in Chapter 2, an induced subgraph on a vertex set S ⊂ V is
said to be proportionally dense if all of its vertices in S have proportionally as many
neighbours in the subgraph as in the graph, hence the condition dS(u)

|S|−1
≥ d(u)

|V |−1
holds

for each vertex u in S. A proportionally dense subgraph grants more importance to
the vertices than the standard definition of a dense subgraph, as all the vertices in
a PDS must be ‘satisfied’, i.e. respect the above condition. This can be compared
with defensive alliances in graphs, where the vertices in the alliance must have at
least as many neighbours inside the alliance than outside it [61, 79], without the
notion of proportion of neighbours.

From a theoretical point of view, it is interesting to observe a problem that
connects local and global properties of vertex subsets, interweaving the size of the
subset and the number of neighbours. Moreover, this paradigm has rarely been
seen in graph theory problems.

Overview of the results.
In Section 3.2, we introduce the basic notations used in the chapter. Section 3.3
presents various hardness results of the Max Proportionally Dense Sub-
graph problem. Then, we give positive results about the approximation of this
problem in Section 3.4. We also prove that the the problem can be solved in linear
time on Hamiltonian cubic graphs in Section 3.5. Conclusion and open problems
are given in Section 3.6.

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 34

3.2. Notations and definitions
Throughout the chapter, we use the notations introduced in Section 1.1. We say
that a graph G is a Hamiltonian graph if it contains a Hamiltonian cycle (a cycle
going through all the vertices). Moreover, G is a cubic graph if d(u) = 3 for any
vertex u ∈ V . Lastly, G is a split graph if the vertex-set can be partitioned into a
clique and an independent set.

We assume that all graphs contain at least 3 vertices.
Although Definition 2.1 from Chapter 2 already defines the notion of PDS, for

the sake of completeness, let us recall it.

Definition 3.1: Proportionally dense subgraph (PDS)

For a graph G = (V,E), a proportionally dense subgraph of G is an induced
subgraph on a vertex set S ⊂ V such that each vertex u ∈ S is satisfied in
S, that is,

|S|·dS(u) ≥ (|S|−1)·dS(u) , or, equivalently, (|V |−1)·dS(u) ≥ (|S|−1)·d(u) .

Note that if |S| ≥ 2, then we can rewrite the inequalities as

dS(u)

|S| − 1
≥ dS(u)

|S|
or, equivalently, dS(u)

|S| − 1
≥ d(u)

|V | − 1
. (3.1)

Note that two adjacent vertices form a PDS of size 2. Therefore, in the rest of
the chapter we assume that every PDS contains at least 2 vertices and make use
of the ratios in the inequality.

Max PDS

Input: A graph G.
Output: A proportionally dense subgraph in G of maximum size.

Remark 3.1. Observe that a proportionally dense subgraph may be connected
or not, even if the graph is connected. We study both cases and talk about a
connected PDS in the former case.

To give an example of graphs illustrating Remark 3.1, we give two connected
graphs in which the proportionally dense subgraph of maximum size is not
connected. In the cubic graph in Fig. 3.1, the grey vertices represent a PDS of size
7, which is not connected. In fact, for any set S ⊂ V , at least one vertex u ∈ S

has dS(u) ≤ 2. If S is a PDS, then we must have 2
|S|−1

≥ dS(u)
|S|−1

≥ d(u)
|V |−1

= 3
9
= 1

3
,

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 35

which directly implies that |S| ≤ 7. Morever, if the set S contains 7 vertices and
induces a connected subgraph, then there exists u ∈ S such that dS(u) = 1, which
is not satisfied since 1

7−1
= dS(u)

|S|−1
<

dS(u)

|S| = 2
3
. It can be checked that the maximum

size for a connected PDS is only 5. Similarly, in the caterpillar in Fig. 3.1, any
connected induced subgraph of size at least 12 has one unsatisfied vertex. The
maximum size for a PDS is 12, while only 8 for a connected PDS.

Figure 3.1: Two connected graphs in which all PDS of maximum size are not
connected. Gray vertices represent a PDS of maximum size in each graph.

3.3. Hardness results
In this section we prove several hardness results for Max PDS on split and
bipartite graphs, and further extend the results to prove that deciding if a PDS is
inclusion wise maximal is coNP-complete.

We construct two polynomial-time reductions from Max Independent Set,
which is known to be NP-hard [57].

Max Independent Set

Input: A graph G.
Output: An independent set in G of maximum size.

3.3.1. Split graphs

We first describe a polynomial-time reduction, and then prove two intermediate
results allowing us to prove the NP-hardness of Max PDS on split graphs.

Construction 3.1
Let G = (V,E) be a connected graph not isomorphic to a star. We define
the graph G′ = (V ′, E ′) as follows:

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 36

• V ′ := {z1, z2} ∪M ∪N , where N := V , M := {uv : {u, v} ∈ E} and
z1, z2 are two additional vertices;

• for all e ∈M and u ∈ N , the edge {e, u} ∈ E ′ if and only if u /∈ e;

• the set M ∪ {z1, z2} induces a clique in G′.

Obviously, Construction 3.1 can be done in polynomial time. Notice that G′

is a split graph, and is connected if and only if G is not isomorphic to a star. See
Fig. 3.2 for an example.

q

p

r

s t

G = (V,E)

z1

z2

pq

qr

qs

qt

rs

st

clique on
{z1, z2}∪M N

t

s

r

q

p

G′ = (V ′, E ′)

Figure 3.2: The graph G′ obtained from the graph G using Construction 3.1.

Lemma 3.1
Let G = (V,E) be a graph not isomorphic to a star and let G′ = (V ′, E ′)

be the graph obtained through Construction 3.1. Let S ⊂ V ′ be a set of
vertices such that M ∪ {z1, z2} ⊆ S. Then a vertex e ∈ M is satisfied in
G′[S] if and only if dS(e) ≥ |S| − 2.

Proof. A vertex e ∈ M has degree d(e) = |V ′| − 3. Hence if dS(e) <

|S| − 2, then dS(e) = |S|, and thus e is not satisfied in G′[S]. However,
if dS(e) ≥ |S| − 2, then dS(e) < |S|. Also, since G is connected, then
|M | ≥ |N | − 1 and |S| ≥ |M |+ 2 > |N | ≥ |S|. Therefore, we have

|S| · dS(e) ≥ |S| · (|S| − 2) ≥ (|S| − 1) · (|S| − 1) ≥ (|S| − 1) · dS(e) ,

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 37

and thus e is satisfied in G′[S]. �

Lemma 3.2
Let G = (V,E) be a graph not isomorphic to a star and let G′ = (V ′, E ′) be
the graph obtained through Construction 3.1. Let S1 ⊂ V ′ such that G′[S1]

is a PDS. Then there exists S2 ⊂ V ′ such that G′[S2] is a PDS, |S2| ≥ |S1|
and M ∪ {z1, z2} ⊆ S2. Moreover, S2 can be found in polynomial time.

Proof. Firstly, we show that N * S1.

• if S1 = N , since G′[N] is an independent set, then any vertex u ∈ S1

has dS1(u) = 0 and dS1
(u) > 0; hence u is not satisfied and G′[S1] is

not a PDS;

• if N ⊂ S1, then S1 is a subset of the clique M ∪ {z1, z2}; it means any
vertex u ∈ S1∩ (M ∪{z1, z2}) has dS1

(u) = |S1| and dS1(u) < |S1|− 2,
and thus

|S1| · dS1(u) < |S1| · (|S1| − 2) < |S1| · (|S1| − 1) = (|S1| − 1) · dS1
(u) ,

so u is not satisfied and G′[S1] is not a PDS.

Now, let S2 := S1 ∪M ∪ {z1, z2} and S2 := V ′ \ S2.
Observe that for any f ∈ S1 ∩M , dS2(f) − dS1(f) = |S2| − |S1| ≥ 0 and
dS2

(f) ≤ dS1
(f). Thereby, we obtain dS2

(f)

|S2|−1
≥ dS1

(f)

|S1|−1
≥

dS1
(f)

|S1|
≥

dS2
(f)

|S2|
, so f

is satisfied in S2. Also, if a vertex in M is satisfied in S2, then according to
Lemma 3.1 it is also satisfied in any S ′

2 ⊆ S2, as long as M ∪ {z1, z2} ⊆ S ′
2.

If there exists e ∈M\S1 which is not satisfied in S2, then following Lemma 3.1
it holds dS2(e) < |S2|−2. Thus, there exists a vertex u ∈ S2∩N , non-adjacent
to e, which we can transfer from S2 to S2. Obviously, at most |M \ S1|
transfers are needed to satisfy all the vertices in S2, and thus |S2| ≥ |S1|
holds true. Since S2 ∩N ⊆ S1 ∩N and N * S1, then S2 6= V ′.
Note that S2 ⊆ N and that each vertex u ∈ S1 ∩N is satisfied in S2, since
dS2

(u) = 0. Clearly, z1 and z2 are satisfied in S2. Thus, G′[S2] is a PDS,
and it can be found in polynomial time. �

Notice that Lemma 3.2 implies that there exists a PDS of maximum size in
G′ that is connected. Hence, the following result also holds when looking for a
connected PDS.

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 38

Theorem 3.1
Max Proportionally Dense Subgraph is NP-hard on split graphs.

Proof. Let G = (V,E) be a graph not isomorphic to a star, G′ = (V ′, E ′)

be the graph obtained through Construction 3.1, and k ∈ {1, . . . , |V | − 2}.
Notice that since G is connected and not isomorphic to a star, then there is
no independent set of size |V |−1 in G. We claim that there is an independent
set of size at least k in G if and only if there is a PDS of size at least
|M |+ 2 + k in G′.
Let R be an independent set of G of size at least k. In G′, we define
S := M ∪ {z1, z2} ∪ R and S := V ′ \ S. First, note that R ⊆ N thus
S = N \R. The vertices in S ∩N ∪ {z2, z2} are obviously satisfied in G′[S]

as they only have neighbours in S. Hence, if there exist unsatisfied vertices,
then they must be from the set M . Choose a vertex e ∈M . Since R is an
independent set of G, then for each edge e = {u, v} ∈ E at most one of the
vertices u and v belongs to R. Hence, the vertex e ∈M is not adjacent to at
most one vertex in S and thus dS(e) ≥ |S|−2. According to Lemma 3.1, the
vertex e is satisfied in G[S]. Thus G[S] is a PDS of size at least |M |+ 2+ k.
Let S ⊂ V ′ be of size at least |M |+2+k such that G′[S] is a PDS. According
to Lemma 3.2, there exists S ′ ⊂ V ′ such that G′[S ′] is a PDS, |S ′| ≥ |S|
and {z1, z2} ∪M ⊆ S ′. We claim that R′ := S ′ ∩N is an independent set of
G of size at least k. Obviously |R′| ≥ k. Moreover, Lemma 3.1 states that
for all satisfied vertices e ∈M , dS′(e) ≥ |S ′| − 2. This means that for each
vertex e ∈ M there is at most one vertex u ∈ S ′ that is not adjacent to e.
Since the vertices e ∈M and u ∈ N are not adjacent in G′, it implies that
u ∈ e in G, and therefore the edge e ∈ E has at most one endpoint u ∈ R′

in the graph G. Thus, R′ is an independent set of size at least k. �

There exist several ways to prove that a problem is APX-hard. Below, we
propose two different proofs showing that Max PDS is APX-hard on split graphs.

In Proposition 3.1, we show that the reduction used in Theorem 3.1 is an
approximation-preserving reduction, more specifically an L-reduction from Max
Independent Set to Max PDS. In turn, we obtain that Max PDS is APX-
hard, even on split graphs. Then, in Proposition 3.2, we use the concept of
gap-preserving reduction to show that it is NP-hard to approximate Max PDS
within 1.0026028 on split graphs. This clearly implies the APX-hardness of Max
PDS on split graphs.

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 39

Proposition 3.1
Max Proportionally Dense Subgraph is APX-hard on split graphs.

Proof. We prove that the reduction from Theorem 3.1 can be seen as an
L-reduction (see Definition 1.14) from Max Independent Set on cubic
graphs to Max PDS. Let I be an instance of Max Independent Set
on the cubic graph G = (V,E). We construct an instance I ′ of Max PDS
defined on the graph G′ = (V ′, E ′) obtained through Construction 3.1.
Since each cubic graph is 4-colourable, OPT (I) ≥ |V |

4
. Moreover, a cubic

graph has exactly 3|V |
2

edges, and hence OPT (I ′) = 2 + |E| + OPT (I) =

2+ 3|V |
2

+OPT (I) ≤ 2+ 3|V |
2

+|V | ≤ 2+ 5|V |
2
≤ 2+10·OPT (I) ≤ 12·OPT (I).

For any S inducing a PDS in G′ we can construct an independent set R in G of
size |R| = |S| − |E| − 2. Since OPT (I ′) ≥ |S| = |R|+ |E|+ 2, in particular,
when R is a maximum independent set, OPT (I ′) ≥ OPT (I) + |E|+ 2. In
addition, OPT (I) ≥ |R| = |S| − |E| − 2, and when G′[S] is a maximum
PDS, OPT (I) ≥ OPT (I ′)− |E| − 2. Thus, OPT (I) = OPT (I ′)− |E| − 2

and OPT (I)− |R| = OPT (I ′)− |S|.
Since Max Independent Set is APX-hard on cubic graphs [2], we conclude
that Max PDS is APX-hard on split graphs. �

Proposition 3.2
It is NP-hard to approximate Max Proportionally Dense Subgraph
within 1.0026028 on split graphs, and hence the problem is APX-hard (even
on split graphs).

Proof. Let I be an instance of Max Independent Set on a cubic
graph G = (V,E). It is known that it is NP-hard to decide whether
OPT (I) < 12τ+11+2ε

24τ+28
· |V | or OPT (I) > 12τ+12−2ε

24τ+28
· |V |, for any ε > 0, where

τ ≤ 6.9 [22].
We construct an instance I ′ of Max PDS defined on the graph G′ = (V ′, E ′)

obtained through Construction 3.1. Note that M ⊂ V ′ is of size |E|, that
is |M | = |E| = 3|V |

2
since G is cubic. From Theorem 3.1, we know that

OPT (I ′) = |M |+2+OPT (I). Consequently, it is NP-hard to decide whether
OPT (I ′) < |M | + 2 + 12τ+11+2ε

24τ+28
· |V | = 48τ+53+2ε

24τ+28
· |V | + 2 or OPT (I ′) >

|M | + 2 + 12τ+12−2ε
24τ+28

= 48τ+54−2ε
24τ+28

· |V | + 2. We obtain that it is NP-hard to
approximate Max PDS within 1.0026028. �

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 40

3.3.2. Bipartite graphs

In the following, we modify the previous construction in order to prove the NP-
hardness of Max PDS on bipartite graph. The reduction will also be used to
show the NP-hardness of an “extension version” of the problem, implying the
coNP-completeness of deciding if a PDS is inclusion wise maximal.

Construction 3.2
Let G = (V,E) be a graph with |E| ≥ |V |, and an integer k such that
1 ≤ k < |V | − 1. We define the graph G′

k = (V ′, E ′) as follows:

• V ′ := L ∪M ∪ N , where N := V , M := {uv : {u, v} ∈ E} and L

contains |L| := |M | · (|V | − k − 1)− k + 1 additional vertices;

• for all e ∈M and u ∈ N , the edge {e, u} ∈ E ′ if and only if u /∈ e;

• for all e ∈M and v ∈ L, the edge {e, v} ∈ E ′.

Obviously, Construction 3.2 can be done in polynomial time. Clearly, G′
k is

connected if and only if the input graph is not isomorphic to a star, which can’t
be since |E| ≥ |V |. Also, notice that G′

k is a bipartite graph as there are edges
only between M and L ∪N . See Fig. 3.3 for an example.

q

p

r

s t

G = (V,E)

pq

qr

qs

qt

rs

st
p

q

r

s

t

L M N

G′ = (V ′, E ′)

Figure 3.3: The graph G′
k obtained from G through Construction 3.2 using with

k = 3.

We now prove intermediate results, which help concluding that Max PDS is
NP-complete on bipartite graphs.

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 41

Lemma 3.3
Let m, n and k be integers such that 1 ≤ k < n − 1 < m and ` :=

m · (n− k − 1)− k + 1. Then `+k−1
`+m+k−1

= n−k−1
n−k

.

Proof. (n − k) · (` + k − 1) = (n − k − 1) · (` + k − 1) + ` + k − 1 =

(n− k− 1) · (`+ k+1)+m · (n− k− 1) = (n− k− 1) · (`+m+ k+1) . �

Lemma 3.4
Let G = (V,E) be a graph not isomorphic to a star, k be an integer such
that 1 ≤ k < |V | − 1 and G′

k = (V ′, E ′) be the graph obtained through
Construction 3.2. Let S ⊂ V ′ be such that |S| ≥ |L| + |M | + k. Then a
vertex f ∈M ∩ S is satisfied in G′

k[S] if and only if dS(f) < |S|.

Proof. If dS(f) = |S|, f is obviously not satisfied. If dS(f) < |S|, then
notice that d(f) = |L| + |N | − 2 = |V ′| − |M | − 2. Therefore, dS(f) =

d(f)− dS(f) ≥ |V ′|− |M |− 2−|S|+1 = |S|− |M |− 1. Also, |S| ≤ |N |− k.
Consequently, according to Lemma 3.3,

dS(f)

|S| − 1
≥ |S| − |M | − 1

|S| − 1
≥ |L|+ k − 1

|L|+ |M |+ k − 1
=
|N | − k − 1

|N | − k
≥ dS(f)

|S|
.

�

Lemma 3.5
Let G = (V,E) be a graph not isomorphic to a star, k be an integer
such that 1 ≤ k < |V | − 1, and G′

k = (V ′, E ′) be the graph obtained
through Construction 3.2. Let S1 ⊂ V ′ such that G′

k[S1] is a PDS and
|S1| ≥ |L|+ |M |+ k. Then there exists S2 ⊂ V ′ such that G′

k[S2] is a PDS,
|S2| ≥ |S1| and L∪M ⊆ S2. Moreover, S2 can be found in polynomial time.

Proof. First, we prove that M ⊂ S1. As |S1| ≥ |L|+ |M |+k > |M |+ |N |,
then S1 ∩L 6= ∅. Take a vertex z ∈ S1 ∩L and notice that since d(z) = |M |,
then dS1

(z) = |M \ S1|. The vertex z is satisfied in G′
k[S1] if and only if

|M | − dS1
(z)

|L|+ |M |+ k − 1
≥ dS1(z)

|S1| − 1
≥

dS1
(z)

|S1|
≥

dS1
(z)

|N | − k
.

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 42

This implies that

|M | · (|N | − k)− dS1
(z) · (|N | − k) ≥ dS1

(z) · (|L|+ |M |+ k − 1)

⇐⇒ |M | · (|N | − k)− dS1
(z) · (|N | − k) ≥ dS1

(z) · |M | · (|N | − k)

⇐⇒ |M | · (|N | − k) ≥ dS1
(z) · (|M |+ 1) · (|N | − k)

⇐⇒ 0 ≥ dS1
(z) .

Thus, we have dS1
(z) = 0 and conclude that M ⊂ S1.

Let S2 := S1 ∪ L ∪M and f ∈M . As f is satisfied in G′
k[S1], according to

Lemma 3.4, we have dS1
(f) < |S1|. Since f is connected to all the vertices

in L, necessarily dS2
(f) < |S2| and f remains satisfied in G′

k[S2]. Obviously,
the vertices in L are satisfied in G′

k[S2] since all their neighbours are in M .
This is also true for the vertices in N ∩ S2. �

Notice that Lemma 3.5 implies that there exists a PDS of maximum size that
is connected in G′

k. Hence, the following result also holds when looking for a
connected PDS.

Theorem 3.2
Max Proportionally Dense Subgraph is NP-hard on bipartite graphs.

Proof. Let G = (V,E) be a graph not isomorphic to a star and k ∈
{1, . . . , |V | − 2}. Notice that since G is connected and not isomorphic to a
star, then there is no independent set of size |V | − 1 in G. Let G′

k = (V ′, E ′)

be the graph obtained through Construction 3.2. We claim that there is an
independent set of size at least k in G if and only if there is a PDS of size
at least |L|+ |M |+ k in G′

k.
Let R be an independent set of G of size at least k. In G′

k, we define
S := L ∪M ∪R and S := V ′ \ S. First, note that R ⊆ N thus S = N \R.
The vertices in L ∪R are obviously satisfied in G′

k[S] as all their neighbours
are in S. Hence, if there exist vertices not satisfied in G′

k[S], then they must
belong to the set M . Consider a vertex e ∈M . Since R is an independent
set of G, then for each edge e = {u, v} ∈ E at most one of the vertices u

and v belongs to R, and, therefore, at least one belongs to S. Therefore, the
vertex e ∈M is not adjacent to at least one vertex in S and thus dS(f) < |S|.
According to Lemma 3.4, e is satisfied in G[S]. Thus G[S] is a PDS of size
at least |L|+ |M |+ k.

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 43

Let S ⊂ V ′ be of size at least |L| + |M | + k such that G′
k[S] is a PDS.

According to Lemma 3.5, there exists S ′ ⊂ V ′ such that G′
k[S

′] is a PDS,
|S ′| ≥ |S| and L ∪M ⊆ S ′. We claim that R′ := S ′ ∩N is an independent
set of G of size at least k. Obviously |R′| ≥ k. Lemma 3.4 states that for all
satisfied vertices e ∈ M , dS′(e) < |S ′|. Therefore, as dN(e) = |N | − 2 and
S ′ ⊆ N , there is at most one vertex u ∈ S ′ ∩ N not adjacent to e. From
Construction 3.1, if there is no edge between the vertices e ∈M and u ∈ N

in G′
k, then u ∈ e in G. Hence, the edge e ∈ E in G has at most one vertex

u ∈ R′. Thus, R′ is an independent set of size at least k. �

Below, we prove that deciding if a subset of vertices can be extended into a
larger subset which induces a PDS is NP-complete. We obtain as a corollary that
deciding if a PDS is inclusion wise maximal is coNP-complete.

PDS Extension

Input: A graph G = (V,E), U ⊂ V .
Question: Is there a vertex subset S ⊂ V such that U ⊂ S and G[S] is

a proportionally dense subgraph?

To prove that PDS Extension is NP-complete, we use again Construction 3.2.

Lemma 3.6
Let G = (V,E) be a graph not isomorphic to a star, k be an integer such
that 1 ≤ k < |V | − 1, and G′

k = (V ′, E ′) be the graph obtained through
Construction 3.2. Let S ⊂ V ′ be such that L ∪M ⊂ S and G′

k[S] is a PDS.
Then |S| ≥ |L|+ |M |+ k.

Proof. Let u ∈ S ∩ N , and notice that dS(u) < |M |, so there exists a
vertex in M which is not connected to u. Let f ∈ M be such a vertex.
Note that dS(f) ≤ |S| − |M | − 1 and dS(f) ≥ |S| − 1, as f is not connected
to u. Let k′ := |N \ S| = |N | − |S|. We claim that k′ ≥ k. Suppose by
contradiction that k′ < k. Then |L|+k′−1

|L|+|M |+k′−1
< |L|+k−1

|L|+|M |+k−1
and |N |−k−1

|N |−k
<

|N |−k′−1
|N |−k′

. According to Lemma 3.3, we conclude that |L|+k′−1
|L|+|M |+k′−1

< |N |−k′−1
|N |−k′

.
Therefore,

dS(f)

|S| − 1
≤ |L|+ k′ − 1

|L|+ |M |+ k′ − 1
<
|N | − k′ − 1

|N | − k′ ≤ dS(f)

|S|
,

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 44

which contradicts that f is satisfied, thus that G′
k[S] is a PDS. We conclude

that |S| = |L|+ |M |+ k′ ≥ |L|+ |M |+ k. �

Theorem 3.3
PDS Extension is NP-complete on bipartite graphs.

Proof. Obviously, PDS Extension is in NP. Let G = (V,E) be a graph
not isomorphic to a star and k ∈ {1, . . . , |V | − 1}. Notice that since G is
connected and not isomorphic to a star, then there is no independent set of
size |V | − 1 in G, so we can consider that k ≤ |V | − 2. Let G′

k = (V ′, E ′)

be the graph obtained through Construction 3.2. We claim that there is an
independent set of size at least k in G if and only if there is PDS of size of
size at least |L|+ |M |+ k in G′

k.
Assume there exists an independent set of size k in G. Then there exists
S ⊂ V ′ of size |S| ≥ |L|+ |M |+k such that G′

k[S] is a PDS, and L∪M ⊂ S

(see proof of Theorem 3.2).
According to Lemma 3.6, if there exists S ⊂ V ′ such that G′

k[S] is a PDS and
L∪M ⊂ S, then |S| ≥ |L|+ |M |+k. Therefore, there exists an independent
set of size at least k in G (see proof of Theorem 3.2).
We conclude that deciding if there exists S ⊂ V ′ such that L ∪M ⊂ S

and G′
k[S] is a PDS is NP-complete, and thus that PDS Extension is

NP-complete on bipartite graphs. �

Notice that the set L ∪M is connected, thus if it can be extended into a PDS,
then the PDS is connected. Hence, it is NP-complete to decide whether a vertex
subset (inducing a connected subgraph) can be extended into a connected PDS.
Furthermore, the set L ∪M can induce a PDS or not, depending on the values
of k and |V |. Indeed, G′

k[L ∪M] is a PDS if and only if |L|
|L|+|M |−1

≥ |N |−2
|N | , which

implies k ≤ n
2
. Therefore, we conclude that deciding if a PDS is inclusion-wise

maximal is coNP-complete.

Corollary 3.3.1

Let G = (V,E) be a graph and S ⊂ V such that G[S] is a proportionally
dense subgraph. Deciding if S is inclusion-wise maximal is coNP-complete
on bipartite graphs.

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 45

3.4. Approximation of Maximum PDS
We show that Max PDS is polynomial-time 2-approximable, which establishes
its APX-completeness. We also show that the ratio can be improved to 2·(∆−1)+1

∆

on connected graphs, where ∆ is the maximum degree of the graph, using an
upper-bound on the maximum possible size of a PDS.

Now, we design a polynomial-time algorithm that generates, given a graph
G = (V,E), a PDS of size at least d |V |

2
e.

Lemma 3.7

Let G = (V,E) be a graph and S ⊂ V be a set of vertices of size |V |
2

or
|V |
2

+ 1 for |V | even, and |V |+1
2

for |V | odd. If S is not a PDS in G, then
there exists a vertex u ∈ S such that dS(u) < dS(u) if |S| ≤ |V |+1

2
, and

dS(u) ≤ dS(u) otherwise.

Proof. Let S ⊂ V be a subset such that G[S] is not a PDS. Then,
there exists a vertex u ∈ S that is not satisfied in G[S], and therefore
|S| · dS(u) < (|S| − 1) · dS(u) (∗).

• If |S| = d |V |
2
e, the inequality (∗) implies b |V |

2
c · dS(u) < (d |V |

2
e − 1) ·

dS(u) ≤ b
|V |
2
c · dS(u), and hence dS(u) < dS(u).

• If |S| = |V |
2

+ 1 (|V | even), assume by contradiction that for each
vertex v ∈ S it holds dS(v) > dS(v). In particular, the inequality (∗)
implies (|V |

2
− 1) · (dS(u) + 1) < |V |

2
· dS(u), which is true if and only if

dS(u) ≥
|V |
2

. Thus, d(u) = dS(u) + dS(u) > |V | − 1, a contradiction.

�

Theorem 3.4

For any graph G = (V,E), a proportionally dense subgraph of size d |V |
2
e or

d |V |
2
e+ 1 can be constructed in O(|V | · |E|) time.

Proof. First, we show that Algorithm 1 terminates and returns a PDS of
size d |V |

2
e or d |V |

2
e+ 1.

• Case 1: |V | is odd. Notice that at the end of each loop, the set S

is modified without changing its size |S| = |V |+1
2

= d |V |
2
e. If G[S] is

not a PDS, then according to Lemma 3.7 there exists an unsatisfied

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 46

vertex v ∈ S for which dS(v) < dS(v). Therefore, the vertex u chosen
within the loop has the property dS(u)− dS(u) > 0. Thus, the size of
the cut between S and S decreases after each loop and the algorithm
terminates.

• Case 2: |V | is even. Notice that Algorithm 1 starts with |S| = |V |
2

.
If G[S] is not a PDS, then due to Lemma 3.7, there exists a vertex
v ∈ S such that dS(v) < dS(v). The selection of the vertex u ∈ S

inside the loop ensures that the size of the cut between S and S strictly
decreases at the end of the loop. Now, observe that after the first loop,
|S| = |V |

2
+ 1. If G[S] is not a PDS, according to Lemma 3.7, there

exists a vertex v ∈ S such that dS(v) ≤ dS(v). Therefore, the vertex
u inside the loop has dS(u) ≤ dS(u). Obviously, after the second loop,
|S| = |V |

2
. Since after each loop |S| alternates between |V |

2
and |V |

2
+ 1,

the size of the cut between S and S strictly decreases every two loops,
and the algorithm terminates.

It is easy to see that the while-loop is called at most O(|E|) times. Now, we
prove how one can obtain a O(|V | · |E|) running time by computing Lines 2
to 4 in O(|V |) time.
Preprocessing. Once S has been defined at Line 1, compute and store
the following properties for each vertex u ∈ V : dS(u), dS(u), and whether u

belongs to S or S. The computation of these properties for all the vertices
can be done in O(|E|) time. While computing the properties, one can also
choose a vertex u ∈ S that maximises dS(u)− dS(u) (as in Line 3).
Main loop. If dS(u) − dS(u) > 0, then S is not a PDS. However, if
dS(u) − dS(u) = 0, then S is a PDS if and only if |S| < |V |

2
+ 1 (so we

compute Line 2 in constant time). Therefore, if S is not a PDS, set
S := S ∪ {u} (as in Line 4), update the properties of all the vertices
and select u ∈ S maximising dS(u)− dS(u) (as in Line 3) in O(|V |). Then,
repeat the main loop. �

Algorithm 1 implies several consequences. Firstly, it gives a 2-approximation
algorithm since any PDS has size at most |V | − 1. Besides, it shows that the
decision version associated to Max PDS is FPT when parameterized by the
natural parameter k (i.e. the size of the solution). Indeed, if the parameter
k ≤ d |V |

2
e, then a PDS of size greater than k can be found in polynomial time

using Algorithm 1. On the other hand, if k > d |V |
2
e, then we have |V | < 2k and

an exhaustive research can be done in O(22k) operations.

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 47

Algorithm 1: Find a PDS of size d |V |
2
e or d |V |

2
e+ 1.

Input: G = (V,E) a graph.
Output: S ⊂ V such that G[S] is a PDS.

1 Let S ⊂ V with |S| = d |V |
2
e;

2 while G[S] is not a PDS do
3 Let u ∈ S such that dS(u)− dS(u) is maximum;
4 S := S ∪ {u};
5 return S;

We show in the following how the calculation of the approximation ratio can
be improved on connected with regard to the maximum degree of the graph.

Lemma 3.8
Let G = (V,E) be a connected graph and S ⊂ V be a PDS in G. Then
|S| ≤ b (∆(G)−1)·|V |+1

∆(G)
c.

Proof. Let v be a vertex of S with at least one neighbour in S = V \ C
(such vertex exists since G is connected). Since S is a PDS, v fulfils the
proportion condition, that is to say: ∆(G)−1

|S|−1
≥ dS(v)

|S|−1
≥ dS(v)

|S| ≥
1

|V |−|S|

which implies that |S| ≤ (∆(G)−1)·|V |+1
∆(G)

. Since |S| is an integer, we obtain
|S| ≤ b (∆(G)−1)·|V |+1

∆(G)
c. �

Proposition 3.3

Max PDS is polynomial-time 2·(∆(G)−1)+1
∆(G)

-approximable on connected
graphs.

Proof. Let G = (V,E) be a connected graph, S be a solution given by
Algorithm 1 and OPT (G) denote the size of a PDS of maximum size in G.
According to Lemma 3.8 we have OPT (G) ≤ (∆(G)−1)·|V |+1

∆(G)
. Thus we obtain

|S| ≥ |V |
2
≥ ∆(G)

2·(∆(G)−1)+1
· (∆(G)−1)·|V |+1

∆(G)
≥ ∆(G)

2·(∆(G)−1)+1
·OPT (G). �

As mentioned above, regardless of the connected or the maximum degree of the
graph, Algorithm 1 gives a 2-approximation for Max PDS since |S| ≥ 1

2
· |V | ≥

1
2
·OPT (G).

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 48

Theorem 3.5
Max PDS is APX-complete.

3.5. Hamiltonian cubic graphs
In this section, we prove that all Hamiltonian cubic graphs of order n, except two
graphs (see Fig. 3.4), have a proportionally dense subgraph of the maximum pos-
sible size b2n+1

3
c (see Lemma 3.8 for an upper bound on a PDS size). Furthermore,

we show that such a PDS can be found in linear time if a Hamiltonian cycle is
given in the input. Note that almost all cubic graphs are Hamiltonian, as proved
in [78].

H1 H2

Figure 3.4: Two Hamiltonian cubic graphs with 8 vertices without a PDS of
maximum possible size b2×8+1

3
c = 5.

We represent a Hamiltonian cubic graph of order n as a cycle with the vertices
labelled in such a way that (0, 1, . . . , n− 1) is a Hamiltonian cycle and a set of
edges between non-successive vertices in the Hamiltonian cycle. We always refer
to this cycle when we say the Hamiltonian cycle of a graph. To avoid tedious
notations, we use i ∈ N (with 0 ∈ N) to refer to the vertex labelled by i mod n.

Definition 3.2
Let G = (V,E) be a Hamiltonian cubic graph, u ∈ V . Let P be a set
of successive vertices in the Hamiltonian cycle labelled with u, u+ 1, . . . ,
u−k−1, with k ≥ 3. The set P is called a shift if the first and the last vertices
of the sequence, u and u− k − 1, are such that dP (u) = dP (u− k − 1) = 2.

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 49

Notice that a shift P contains |V | − k vertices. Also, any vertex of P has at
least two neighbours in P . Consequently, if k ≥ d |V |−1

3
e, then |P | ≤ b2·|V |+1

3
c, and

the following holds for any u ∈ P :

dP (u)

|P | − 1
≥ 2

|V | − k − 1
≥ 1

k
≥ dP (u)

|P |
.

Thus, G[P] is a PDS. If k = d |V |−1
3
e, then G[P] is a PDS of the maximum possible

size b2·|V |+1
3
c (see Lemma 3.8) and we call P a good shift. On the other hand,

if k = d |V |−1
3
e − 1, then the size of P is one vertex larger than the size of the

maximum possible PDS, and thus G[P] is not a PDS. Such a shift is called an
almost good shift.

In the following, we prove that either G contains a good shift or we can find an
almost good shift P and a vertex v ∈ P such that G[P \ {v}] is a proportionally
dense subgraph of the maximum possible size b2·|V |+1

3
c.

Definition 3.3
Let G = (V,E) be a Hamiltonian cubic graph. For each v ∈ V , we denote by
c(v) the non-successive neighbour of v in the Hamiltonian cycle. Additionally,
we define the subsets of vertices L and R in the following way for k := d |V |−1

3
e:

• L := {u ∈ V : c(u) ∈ {u− k, u− k + 1, , . . . , u− 2}};

• R := {u ∈ V : c(u) ∈ {u+ 2, u+ 3, . . . , u+ k}}.

For a Hamiltonian cubic graph G = (V,E) and u ∈ V , notice that u ∈ L if
and only if c(u) ∈ R, and symmetrically u ∈ R if and only if c(u) ∈ L. This
particularly implies that |L| = |R| ≤ |V |

2
. Moreover, notice that for a vertex u ∈ L,

the set P := {u, u+ 1, . . . , u− k − 1} cannot be a good shift, since dP (u) = 1. In
the same way, if u ∈ R, the set P := {u+ k+1, u+ k+2, . . . , u− 1, u} cannot be
a good shift, since dP (u) = 1. These observations are summed up in the following
lemma.

Lemma 3.9

Let G = (V,E) be a Hamiltonian cubic graph, k := d |V |−1
3
e and u ∈ V . If u /∈

L and (u−(k+1)) /∈ R, then the set {u, u+1, . . . , u−(k+1)−1, u−(k+1)}
is a good shift. Symmetrically, if u /∈ R and (u+ k + 1) /∈ L, then the set
{u+ k + 1, u+ k + 2, . . . , u− 1, u} is a good shift.

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 50

Proof. The proof is straightforward. Since u /∈ L and (u− (k + 1)) /∈ R,
we have dP (u) = dP (u− (k+1)) = 2, where P := {u, u+1, . . . , u− (k+1)}.
The other case is similar. �

An important consequence of Lemma 3.9 is that if G is a Hamiltonian cubic
graph with no good shift, then we can define subsets of vertices that must be
either in L or in R. To define such subsets we introduce the following notation.

Definition 3.4
Let G = (V,E) be a Hamiltonian cubic graph and u ∈ V . We define the
vertex subset <u>:= {v ∈ V : v ≡ u (mod (k + 1))} where k := d |V |−1

3
e.

Corollary 3.5.1

Let G = (V,E) be a Hamiltonian cubic graph with no good shift and u ∈ V :

• if u /∈ R then <u>⊆ L,

• if u /∈ L, then <u>⊆ R,

• |L| = |R| = |V |
2

.

Proof. First notice that for any integer δ ≥ 1, u − δ · (k + 1) ≡ u − δ ·
(k + 1) + |V | · δ · (k + 1) (mod |V |)≡ u + δ · (|V | − 1) · (k + 1) (mod |V |).
Moreover, u ≡ u+ |V | · (k + 1) (mod |V |). Thus, we have {u− δ · (k + 1) :

δ ≥ 1, δ ∈ N} = {u+ δ · (k + 1) : δ ≥ 1, δ ∈ N} =<u>.
Now, if u /∈ R, then, with our assumption that G has no good shift and
Lemma 3.9, we derive that < u>= {u + δ · (k + 1) : δ ≥ 1, δ ∈ N} ⊆ L.
Symmetrically, if u /∈ L, then {u− δ · (k + 1) : δ ≥ 1, δ ∈ N} ⊆ R.
This implies that for any vertex u ∈ V , either u ∈ L or u ∈ R. Finally, since
u ∈ L if and only if c(u) ∈ R and u ∈ R if and only if c(u) ∈ L, then it is
obvious that |L| = |R| = |V |

2
. �

Let G = (V,E) be a Hamiltonian cubic graph with no good shift and d :=

gcd(k + 1, |V |), where gcd(k + 1, |V |) is the greatest common divisor of (k + 1)

and |V |. We show that V can be partitioned into d subsets of vertices <0>,<

1>, . . . , <d− 1>. This partition will be useful to find an almost good shift P and
a vertex to remove from P in order to obtain a PDS in G. This result comes from
a basic property of the cyclic group Z/nZ that we recall in the following lemma.

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 51

Lemma 3.10
Let α ≥ 1 and β ≥ 1 be positive integers, and d := gcd(α, β). If all integers
are considered mod α, then {0, 1, . . . , α − 1} = ∪i∈{0,1,...,d−1} < i> where
< i>:= {l : l ≡ i (mod β) and l ∈ {0, 1, . . . , α − 1}}. Moreover, for any
i, j ∈ {0, 1, . . . , d− 1} with i 6= j, <i> ∩ <j>= ∅.

Proof. First, we prove that for any u ≥ d, u ∈< i > for some i ∈
{0, 1, · · · , d − 1}. Let u ≥ d. Then there exist two integers a, b with
b ≤ d−1, such that u = a ·d+ b. Moreover, there exist two integers c, f such
that c · β + f · α = d since d = gcd(α, β). Then, u = a · c · β + a · f · α+ b ≡
b+a·c·β (mod α). Thus, u ∈ with b ≤ d−1. This proves that any integer
is in a set <i> for some i ≤ d−1, i.e. {0, 1, · · · , α−1} = ∪i∈{0,1,··· ,d−1} <i>.
To prove the second part of the statement, we first show that α = |<u> | · d
for any u ∈ {0, 1, · · · , d − 1}. Let u ∈ {0, 1, · · · , d − 1} and p ≥ 1 be the
smallest integer such that u+ p · β ≡ u (mod α). Notice that |<u> | = p

and let us show that α = p · d. Let α′, β′ be two integers such that α = α′ · d,
β = β′ · d and gcd(α′, β′) = 1. We prove that α′ = p by verifying that α′

divides p and p divides α′. First, notice that u + α′ · β = u + α′ · k′ · d =

u + α · β′ ≡ u (mod α). Thus, p divides α′. On the other hand, recall
that u + p · β ≡ u (mod α) and notice that u + p · β = u + p · β′ · d, then
p · β′ · d ≡ 0 (mod α). This implies that α divides p · β′ · d, and thus α′

divides p · β′. Since gcd(α′, β′) = 1, α′ divides p. Now, notice that two sets
<i>,<j> for some integers i, j are either equal or disjoint. Since for any
u ∈ {0, 1, · · · , α − 1} we have |< u> | = α

d
, then obviously all sets < i >,

i ∈ {0, 1, · · · , d− 1} are disjoint. �

In the following lemma, we summarise the possible values of gcd(n, k + 1) for
some specific values of n and k.

Lemma 3.11
Let n be an even integer, n ≥ 4. Then:

• if n = 3k − 1, then gcd(n, k + 1) ∈ {2, 4},

• if n = 3k, then gcd(n, k + 1) ∈ {1, 3},

• if n = 3k + 1, then gcd(n, k + 1) = 2.

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 52

Proof. Consider the case n = 3k − 1, then d := gcd(k + 1, 3k − 1) =

gcd(k + 1, 3k − 1 − 2(k + 1)) = gcd(k + 1, k − 3) = gcd(4, k − 3). As n is
even, then k is odd and d ∈ {2, 4}. The other cases can be proved using the
same reasoning. �

Firstly, we show that if |V | = 3k, then there is always a good shift in G.

Corollary 3.5.2
Let G be a Hamiltonian cubic graph with 3k vertices, k ≥ 2. Then G has a
good shift.

Proof. Suppose by contradiction that there is no good shift in G = (V,E).
Notice that if |V | = 3k, then k = d |V |−1

3
e. Let d := gcd(k + 1, |V |). From

Lemma 3.11 we get d ∈ {1, 3}. According to Corollary 3.5.1, |L| = |R| = |V |
2

.
If d = 1, then V = <0> (Lemma 3.10), and hence V = L or V = R, which
is impossible. If d = 3, then |V | = < 0> ∪ < 1> ∪ < 2> (Lemma 3.10).
According to Corollary 3.5.1, < i>⊆ L or < i>⊆ R for any i ∈ {0, 1, 2},
thus |R| 6= |L|, which is not possible. �

From Lemma 3.10 and Lemma 3.11, if a Hamiltonian cubic graph G = (V,E)

has no good shift, then V can be written as V = <0> ∪ <1> ∪ <2> ∪ <3>

(we may have <0> = <2> and <1> = <3>). Hence those graphs can be split
into two categories:

• type RLRL: for any vertices i, i+1 with i ∈ V , we have i ∈ L and i+1 ∈ R,
or i ∈ R and i + 1 ∈ L. In this case, we always assume without loss of
generality that R = <0> ∪ <2> and L = <1> ∪ <3>.

• type RRLL: there exist two vertices i, i+1 with i ∈ V such that i, i+1 ∈ L

or i, i + 1 ∈ R. In this case, we always assume without loss of generality
that R = <0> ∪ <1> and L = <2> ∪ <3>.

Now, we show that if a Hamiltonian cubic graph G has no good shift, then there
exists an almost good shift P in G (Lemma 3.12) and a vertex v ∈ P such that
G[P \ {v}] is a PDS (Lemma 3.13 and Theorem 3.6).

Lemma 3.12
Any Hamiltonian cubic graph with no good shift has an almost good shift.

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 53

Proof. Let G = (V,E) be a Hamiltonian cubic graph with no good shift,
k = d |V |−1

3
e and d := gcd(k+1, |V |). Since G has no good shift, according to

Lemma 3.11 and Corollary 3.5.2, d ∈ {2, 4} and |V | = 3k−1 or |V | = 3k+1.
From Corollary 3.5.1, we know that each vertex in V belongs to either L or
R.

• Case 1: G is of type RLRL. Let P := {0, 1, · · · ,−k}. Since |V | is
even, then |P | is even. Therefore, since two vertices i, i + 1 ∈ P do
not both belong to L or R, then the vertex −k belongs to L. Then
the set P fulfils the requirements.

• Case 2: G is of type RRLL. Consider the set P := {1, 2, · · · ,−k + 1}.
According to Lemma 3.11, since d = 4, |V | = 3k− 1. Hence, −k+1 =

2− (k + 1) ∈ <2>. Thus −k + 1 ∈ L and P fulfils the requirements.

�

Recall that the graphs H1 and H2 from Fig. 3.4 have no proportionally dense
subgraph of the maximum possible size. In Theorem 3.6, we show that these are
the only cubic Hamiltonian graphs with this property.

Before proving the main theorem, we first deal with small graphs (|V | < 20)
that are particular cases that need to be treated independently.

Lemma 3.13
Let G = (V,E) be a Hamiltonian cubic graph not isomorphic to H1 or H2

with |V | < 20. Then there exists a PDS of size b2·|V |+1
3
c in G.

Proof. Let k = d |V |−1
3
e. Since G is cubic, its number of vertices is even.

From Lemma 3.11, gcd(k + 1, |V |) ∈ {1, 2, 3, 4}. If gcd(k + 1, |V |) ∈ {1, 3},
then there exists a good shift from Corollary 3.5.2. We suppose then that
gcd(k + 1, |V |) ∈ {2, 4}. The following cases remain:

• If |V | = 4, then G is the complete graph K4, and any set of 3 vertices
induces a PDS of size b2·4+1

3
c.

• If |V | = 8, we claim that G must have a good shift. By contradiction,
suppose that G has no good shift. If G is of type RRLL then G is
isomorphic to H1, and if G is of type RLRL then G is isomorphic to
H2, which is impossible since we assumed that G is not isomorphic to
H1 or H2.

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 54

• If |V | = 10 and G has no good shift, since gcd(k + 1, |V |) = 2, G is
necessarily of type RLRL and c(0) = 3, c(1) = 8, c(2) = 5, c(4) = 7,
c(6) = 9. In this case, V \ {0, 6, 9} induces a PDS of size b2·10+1

3
c.

• If |V | = 14, if G has no good shift, since gcd(k+1, |V |) = 2, then G is
necessarily of type RLRL. Following Lemma 3.12, let P := {0, 1, · · · , 9}
be an almost good shift and:

– If c(6) 6= 9, notice that c(7), c(5) ∈ P (since 5, 7 ∈ L) and
c(6) ∈ V \ P . Thus G[P \ {6}] is a PDS of size b2·14+1

3
c. If

c(3) 6= 0, the case is symmetrical.

– If c(3) = 0 and c(6) = 9, notice that c(3) ∈ P , c(5) ∈ P and
dP (c(4)) = 3 since c(4) 6= 9). Thus G[P \ {4}] is a PDS of size
b2·14+1

3
c.

• If |V | = 16, if G has no good shift, since gcd(k + 1, |V |) = 2, G is ne-
cessarily of type RLRL. Following Lemma 3.12, let P := (0, 1, · · · ,−k)
be an almost good shift. Since 0 ∈ R, we have either c(0) = 3 or
c(0) = 5. In each case, the graph is completely determined due to the
constraints. In the first case, P \ {4} induces a PDS of size b2·16+1

3
c.

In the second case, P \ {3} induces a PDS of size b2·16+1
3
c.

In each case, if G is not isomorphic to H1 or H2, then either G has a good
shift which is a PDS of size b2·|V |+1

3
c, or we give a PDS of such size. �

Theorem 3.6
Let G = (V,E) be a Hamiltonian cubic graph not isomorphic to H1 or H2.
Then there exists a connected PDS of size b2·|V |+1

3
c in G.

Proof. If |V | < 20, then there is a PDS of size b2·|V |+1
3
c in G from

Lemma 3.13. Now we suppose that |V | ≥ 20, which implies that k :=

d |V |−1
3
e ≥ 7.

From Lemma 3.11, gcd(k + 1, |V |) ∈ {1, 2, 3, 4}. If gcd(k + 1, |V |) ∈ {1, 3},
then there exists a good shift (Corollary 3.5.2).
We suppose that gcd(k + 1, |V |) ∈ {2, 4}. If G contains a good shift, then
the proof is done. Notice that in such case, the PDS is obviously connected.
Now, we assume that G has no good shift. We prove that given an almost

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 55

good shift P , there exists a vertex u∗ ∈ P such that G[P \ {u∗}] is a PDS.
Observe that such vertex u∗ exists if and only if c(u∗ − 1), c(u∗ + 1) ∈ P ,
and either c(u∗) ∈ V \ P or dP (c(u

∗)) = 3.

• If G is of type RLRL, then R = < 0 > ∪ < 2 > and L = < 1 > ∪ <

3 >. According to Lemma 3.12, the set P := {0, 1, 2, · · · ,−k} is an
almost good shift and 0 ∈ R, 1 ∈ L. Since 2 ∈ R and 4 ∈ R, then
c(2) ∈ P and c(4) ∈ P . If c(3) 6= 0, then c(3) ∈ V \ P since 3 ∈ L.
Thus, G[P\{3}] is a PDS of size b2·|V |+1

3
c. Symmetrically, if c(−k−3) 6=

−k, then c(−k−3) ∈ V \P since 3 ∈ R. Thus, G[P \{−k−3}] is a PDS
of size b2·|V |+1

3
c. On the other hand, if c(3) = 0 and c(−k − 3) = −k,

then c(k − 1) 6= −k and c(k − 1) ∈ P . Moreover, since k − 3 ∈ R

then c(k − 3) ∈ P . Therefore, c(k − 2) ∈ V \ P or dP (c(k − 2)) = 3

(since k ≥ 7, k − 2 6= 3 and c(k − 2) 6= 0). Thus, G[P \ {k − 2}] is
a PDS of size b2·|V |+1

3
c. Notice that the resulting PDS is connected.

Indeed, let v be the vertex we removed from the path {0, 1, · · · ,−k}.
It is easy to see that, either c(v − 1) ∈ {v + 1, v + 2, · · · ,−k}, or
c(v+1) ∈ {0, 1, · · · , v− 1} since the graph is of type RLRL, and thus
the PDS is connected.

• If G is of type RRLL, then R = <0> ∪ <1> and L = <2> ∪ <3>.
According to Lemma 3.12, the set P := {1, 2, · · · ,−k+1} is an almost
good shift and 1 ∈ R, 2 ∈ L,−k ∈ R,−k+1 ∈ L. Since k+1 ∈ < 0 >

and k+2 ∈ < 1 >, we necessarily have k−1, k ∈ L and k+1, k+2 ∈ R.
In this case, notice that since k ≥ 7, {k−3, k−2, k−1} ∈ P . Moreover,
k − 3, k − 2 ∈ R, which implies c(k − 3), c(k − 2) ∈ P . We show
that either c(k − 1) ∈ P or c(k) ∈ P . Suppose that c(k) /∈ P .
Then since k ∈ L, we have c(k) = 0. Since k − 1 ∈ L, we have
c(k − 1) ∈ {−1, 0, 1, · · · , k − 3}. Since 0 = c(k) and −1 ∈ L, then
c(k− 1) 6= −1 and c(k− 1) 6= 0. Thus c(k− 1) ∈ {1, 2, ..., k− 3} ⊂ P .
Thus either c(k − 1) ∈ P or c(k) ∈ P . Now, if c(k − 1) ∈ P , then
since c(k − 3) ∈ P , the set G[P \ {k − 2}] is a PDS of size b2·|V |+1

3
c.

Else, c(k) ∈ P and then since c(k − 2) ∈ P , the set G[P \ {k − 1}] is
a PDS of size b2·|V |+1

3
c. Notice that the resulting PDS is connected.

Indeed, let v be the vertex we removed from the almost good path
{1, 2, · · · ,−k + 1}. Again, it is easy to verify that either v = k − 2,
and then c(k − 3) ∈ {k − 1, k, · · · ,−k + 1}, or v = k − 1, and then
c(k) ∈ {1, 2, · · · , k − 2} since the graph is of type RRLL. Thus the
PDS is connected.

CHAPTER 3. MAX PROPORTIONALLY DENSE SUBGRAPH 56

�

According to Lemma 3.8, a PDS in a cubic graph of order n contains at most
b2n+1

3
c vertices. Thus, we obtain the following corollary.

Corollary 3.6.1
Let G be a Hamiltonian cubic graph with a given Hamiltonian cycle. Then
a connected proportional dense subgraph of maximum size in G can be
found in linear time.

3.6. Conclusion and open problems
We prove that Max Proportionally Dense Subgraph is APX-hard even
on split graphs, and NP-hard on bipartite graphs, whether the PDS is required
to be connected or not. Furthermore, the problem is proved to be 2(∆−1)+1

∆
)-

approximable, where ∆ is the maximum degree of the graph. We also show that
deciding if a PDS is inclusion-wise maximal is coNP-complete, even on bipartite
graphs. Nonetheless, Max PDS can be solved in linear time on Hamiltonian
cubic graphs if a Hamiltonian cycle is given.

However, the complexity of finding a PDS of maximum size in cubic graphs
remains unknown. More specifically, the question whether a PDS of size b2n+1

3
c

always exists in a cubic graph is still open (except for the two graphs given in
Fig. 3.4). Also, Algorithm 1 returns, for any graph of order n, a PDS of size dn

2
e

or dn
2
e+ 1 (in linear time), but the PDS may not be connected. An interesting

open question is whether there is always a connected PDS of size at least dn
2
e.

Finally, the parameterized complexity of finding a PDS of size at least dn
2
e+ k is

unknown, where k is the size of the PDS.

Chapter 4
Colourful Components Problems

Outline
4.1 Introduction . 58
4.2 Complexity on k-caterpillars . 61

4.2.1 NP-complete cases . 61
4.2.2 The easy case . 66

4.3 Colourful Components on planar graphs 74
4.4 Conclusion . 77

In this chapter, we consider two problems of partition of vertex-coloured graphs.
We are interested in partitions into colourful components, that is, connected
components with no two vertices of the same colour. The goal is to find such a
partition minimising the number of edges with endpoints in different colourful
components (Colourful Components) or minimising the number of colourful
components (Colourful Partition). We prove that both problems are NP-
complete on binary 4-caterpillars, on ternary 3-caterpillars and on quaternary
2-caterpillars. On the positive side, we give a linear time algorithm for 1-caterpillars
with unbounded degree, even if the backbone is a cycle, which outperforms the
previous best complexity on paths and can be applied to a much wider class of
graphs. Finally, we show that Colourful Components remains NP-complete
on 5-coloured planar graphs with maximum degree 4 and on 12-coloured planar
graphs with maximum degree 3.

Some of the results presented in this chapter appear in the following paper:

v J. Chlebíková and C. Dallard, ‘Towards a complexity dichotomy for colourful
components problems on k-caterpillars and small-degree planar graphs’,
in International Workshop on Combinatorial Algorithms, Springer, 2019,
pp. 136–147. doi: 10.1007/978-3-030-25005-8_12.

A journal version containing our latest results is under construction.

57

https://doi.org/10.1007/978-3-030-25005-8_12

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 58

4.1. Introduction
A vertex coloured graph, or simply a coloured graph, is a graph whose vertices are
(not necessarily properly) coloured. A connected component of a coloured graph
is a colourful component if all its vertices have different colours. A graph is said
to be colourful if all its connected components are colourful.

In this chapter we focus on two closely related problems where a coloured
graph and a positive integer p are given as inputs: the Colourful Components
problem asks if there exist at most p edges whose removal makes the graph
colourful; the Colourful Partition problem is to decide if there exists a
partition of the vertex set with at most p parts such that each part induces a
colourful component in the graph.

One key problem in comparative genomics is to partition a set of genes into
orthologous genes, which are sets of genes in different species that have evolved
through speciation events only, i.e. originated by vertical descent from a single
gene in the last common ancestor. The problem has been modelled as a graph
problem where orthologous genes translate into colourful components in the graph
[1, 88]. The vertices of the graph represent the genes, and a colour is given to
each vertex to symbolise the species the corresponding gene belongs to. An edge
between two vertices is present in the graph if the two corresponding genes are
(sufficiently) similar. The quality of a partition of a set of genes into orthologous
genes can be expressed in different ways. Minimising the number of similar genes in
different subsets of the partition is a well studied variant [17, 18, 53, 71, 88], and it
corresponds to minimising the number of edges between the colourful components
(as in Colourful Components). Alternatively, one can ask for a partition
of minimum size, i.e which contains the minimum number of orthologous genes,
or equivalently the minimum number of colourful components [1, 18, 36] (as in
Colourful Partition). Another variant, not studied in this chapter, considers
the objective function that maximises the number of edges in the transitive closure
[1, 36, 71].

Now, we give the formal definitions of the problems considered herein.

Colourful Components

Input: A vertex-coloured graph G = (V,E), a positive integer p.
Question: Are there at most p edges in E whose removal makes G

colourful?

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 59

Colourful Partition

Input: A vertex-coloured graph G = (V,E), a positive integer p.
Question: Is there a partition of V with at most p parts s.t. each part

induces a colourful component in G?

Figure 4.1: A colourful graph with outlined colourful components.

See Fig. 4.1 for an example of a graph partitioned into colourful components.
It is interesting to notice the similarities between Colourful Components

and the Multicut [16, 67] and Multi-Multiway Cut [9] problems. In the
Multicut problem, a graph and a set of pairs of vertices are given and the goal
is to minimise the number of edges to remove in order to disconnect each pair of
vertices. In the Multi-Multiway Cut problem, a graph and sets of vertices
are given and the goal is to minimise the number of edges to remove in order to
disconnect all paths between vertices from the same vertex set. Thus, Colourful
Components is a special case where the sets of vertices form a partition.

Both Colourful Components and Colourful Partition problems can
be compared to the Graph Motif problem [43]. This problem takes a coloured
graph and a multiset of colours M (the motif) as input, and the goal is to determine
whether there exists a connected subgraph S such that the multiset of colours
used by the vertices in S corresponds exactly to M . If M is a set (where each
colour appears at most once), then M is said to be colourful.

We assume that a coloured graph G = (V,E) is always associated with a
colouring function c from V to a set of colours, hence for each vertex u ∈ V , c(u)
is the colour of the vertex u. The colour multiplicity of G corresponds to the
maximum number of occurrences of any colour in the graph. If G contains at
most ` colours we say that G is an `-coloured graph. A path P in G between two
vertices u and v is called a bad path if c(u) = c(v) = γ and u, v are the only two

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 60

vertices of colour γ in P . Hence, a connected component is colourful if and only if
it does not contain a bad path. Lastly, given a set of edges S ⊆ E, we denote by
G− S the graph (V,E \ S).

A k-caterpillar, also commonly called a caterpillar with hairs of length at most
k [56], is a tree in which all the vertices are within distance k of a central path,
called the backbone. Note that 2-caterpillars are also known as lobster graphs.

Observe that, on a tree, there is a solution to Colourful Components
with p edges if and only if there is a solution to Colourful Partition with
p+ 1 parts. However, this is not the case on general graphs [18]. Both problems
are known to be NP-complete on subdivided stars [36], trees of diameter at most 4
[17], and trees with maximum degree 6 [18]. Trees of diameter at most 4 are in fact
a subclass of 2-caterpillars, so both problems are NP-complete on 2-caterpillars
when the maximum degree is unbounded.

Overview of the results.
In Section 4.2.1, we prove that Colourful Components and Colourful
Partition are NP-complete on binary 4-caterpillars and on ternary 3-caterpillar,
hence with the maximum degree at most 3 or 4. This answers an open ques-
tion, proposed in [18], regarding the complexity of the problems on trees with
maximum degree at most 5. Nonetheless, we propose a linear time algorithm
for Colourful Components and Colourful Partition on 1-caterpillars
with unbounded degree in Section 4.2.2, even if the backbone induces a cycle.
This result improves the complexity of the previously known quadratic-time al-
gorithm on paths [36] and applies to a wider class of graphs. We, therefore, obtain
a partial complexity dichotomy for the problems on k-caterpillars with regard
to k and the maximum degree in the graph. We also consider the complexity
of Colourful Components in planar graphs with small degree. It is known
that the problem is NP-complete on 3-coloured graphs with maximum degree 6

[17], while Colourful Partition is NP-complete on 3-coloured 2-connected
planar graphs with maximum degree 3 [18]. However, it was an open question
whether Colourful Components is NP-complete on `-coloured graphs with
maximum degree at most 5. In Section 4.3, we answer that question and show
that Colourful Components is NP-complete on 5-coloured planar graphs with
maximum degree 4 and on 12-coloured planar graphs with maximum degree 3. As
Colourful Components is polynomial-time solvable on graphs with maximum
degree 2, our result is the best possible with regard to the maximum degree.

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 61

4.2. Complexity on k-caterpillars
In this section, we focus on the complexity of Colourful Components and
Colourful Partition on k-caterpillars, depending on the value of k and the
maximum degree of the graphs.

4.2.1. NP-complete cases

First, we show that Colourful Components and Colourful Partition are
NP-complete on binary 4-caterpillars and ternary 3-caterpillars. We recall that a
binary tree (resp. ternary) is a rooted tree in which each vertex has no more than
two children (resp. three children). We propose a reduction from 3-SAT with
at most three occurrence of each variable, denoted by 3, 3-SAT, which is proved
NP-complete in [27].

3, 3-SAT

Input: A 3-CNF formula φ in which each variable occurs at most
three times.

Question: Is there a satisfying assignment of φ?

If a clause contains a unique literal, we can set the value of the corresponding
variable deterministically and reduce the number of clauses or prove that the
formula is unsatisfiable. Hence, we assume that each clause of a 3-CNF formula
contains at least 2 literals. Also, note that, since a variable appears at most three
times, we can assume that each literal appears at least once and at most two
times (otherwise we can simplify the formula by setting the variable to a value
that satisfies all the clauses containing it).

Construction 4.1
Let φ be an instance of 3, 3-SAT, that is, a set of m clauses C1, C2, . . . , Cm

on n variables x1, x2, . . . , xn, where each clause contains at most three literals
and where each variable appears at most three times. We denote by m3 the
number of clauses containing three literals and by m2 the number of clauses
containing two literals.
We construct a tree T in which every variable and clause is represented by
a unique gadget.

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 62

For each variable xi, we construct a variable gadget: Firstly, create three
vertices labelled rxi

, xi, x̄i, and connect xi and x̄i to rxi
. If a clause Cj

contains the literal xi, then create a vertex labelled xi,j and connect it to
the vertex xi. Similarly, if a clause Cj contains the literal x̄i, then create
a vertex labelled x̄i,j and connect it to the vertex x̄i. Since each variable
appears at most three times, then each literal appears at most two times,
rxi

is the root of a binary tree of depth 2. Also, since each literal appears
at least once, each leaf of the gadget corresponds to one literal in a clause
(see Fig. 4.2d).
For each clause Cj , we construct a clause gadget. Depending on the properties
we want on the final tree, we propose different kinds of clause gadgets. First,
suppose that Cj contains three literals `1, `2, `3:

• Clause gadget of type A: Create four vertices yj, y′j, zj, z′j, three
vertices labelled `1,j, `2,j, `3,j representing the literals in Cj, and one
extra vertex rCj

. Then, add the edges {`1,j, yj}, {`2,j, y′j}, {`3,j, z′j},
{yj, zj}, {y′j, zj}, and the edges {zj, rCj

}, {z′j, rCj
}. The gadget is a

binary tree of depth 3 rooted in rCj
(see Fig. 4.2a).

• Clause gadget of type B: Create three vertices zj , z′j , z′′j , three vertices
labelled `1,j, `2,j, `3,j representing the literals in Cj, and one extra
vertex rCj

. Then, connect zj, z′′j and z′′j to rCj
, `1,j to zj, `2,j to z′j

and `3,j to z′′j . The gadget is a ternary tree of depth 2 rooted in rCj

(see Fig. 4.2b).

Now, if Cj contains two literals `1,j and `2,j:

• Clause gadget of type C: Create two vertices zj, z′j, two vertices
labelled `1,j, `2,j representing the literals in Cj, and one extra vertex
rCj

. Then, connect zj and z′j to rCj
, `1,j to zj and `2,j to z′j. The

gadget is a binary tree of depth 2 rooted in rCj
(see Fig. 4.2c).

We now explain which clause gadgets must be used and how variable and
clause gadgets must be connected together so that the final tree T has
different properties. First and foremost, create a variable gadget for each
variable. Also, for each clause containing two literals only, create a clause
gadget of type C. Then, apply one of the following options:

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 63

• To get T as a binary 4-caterpillar: Create a clause gadget of type A

for each clause containing three literals, create a central path with
n +m3 +m2 new vertices, and connect all rxi

and rCj
vertices to a

different vertex of the central path.

• To get T as a ternary 3-caterpillar: Create a clause gadget of type
A for each clause containing three literals and connect all rxi

and
rCj

vertices together to create a central path. Alternatively, create
a clause gadget of type B for each clause containing three literals,
create a central path with n+m3 +m2 new vertices and connect all
rxi

and rCj
vertices to a different vertex of the central path.

• To get T as a quaternary 2-caterpillar: Create a clause gadget of type
B for each clause containing three literals and connect all rxi

and rCj

vertices together to create a central path.

In all cases, the central path corresponds to the backbone of T . We set the
root r of T such that it belongs to the backbone and has minimum degree,
hence two, three or four children, if T is a binary, ternary or quaternary
caterpillar, respectively.
Finally, we assign a colour to each vertex in T . For each variable gadget
of a variable xi, let c(xi) = c(x̄i) be a new colour. Also, for each vertex
x̃i,j ∈ {xi,j, x̄i,j}, let c(x̃i,j) be a new colour. Then, for each clause gadget
of clause Cj, if the literal `k,j = xi in Cj, then set c(`k,j) := c(xi,j), but if
`k,j = x̄i, then set c(`k,j) := c(x̄i,j). If a clause gadget is of type A, then let
c(yj) = c(y′j) and c(zj) = c(z′j) be two new colours. If a clause gadget is of
type B, then let c(zj) = c(z′j) = c(z′′j) be a new colour. If a clause gadget is
of type C, then let c(zj) = c(z′j) be a new colour. Lastly, all the vertices in
T which do not belong to any gadget are given new colours. If T does not
contain clause gadgets of type B, then its colour-multiplicity is 2, otherwise
it is 3.

Note that Construction 4.1 can be done in polynomial time.

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 64

rC2

z2

y2

`1,2

y′2

`2,2

z′2

`3,2

(a) Type A: Clause gadget of C2

rC2

z2

`1,2

z′2

`2,2

z′′2

`3,2

(b) Type B: Clause gadget of C2

rC3

z3

`1,3

z′3

`2,3

(c) Type C: Clause gadget of C3

rx1

x1

x1,2

x1,5

x̄1

x̄1,3

(d) Variable gadget of x1

Figure 4.2: Examples of gadgets used in Construction 4.1.

Theorem 4.1
Colourful Components and Colourful Partition are NP-complete
on coloured :

• quaternary 2-caterpillars with colour-multiplicity 3,

• ternary 3-caterpillars with colour-multiplicity 2, and

• binary 4-caterpillars with colour-multiplicity 2.

Proof. Obviously, the problem is in NP. Let φ be an instance of 3, 3-SAT
with m clauses and n variables. We denote by m3 the number of clauses
containing 3 literals and by m2 the number of clauses containing 2 literals.
We transform φ into a coloured tree T as described in Construction 4.1.
Note that T is either a quaternary 2-caterpillar, a ternary 3-caterpillar or a
binary 4-caterpillar. The colour-multiplicity of T depends on the use of clause
gadgets of type B, and therefore is exactly 3 for a quaternary 2-caterpillar
but can be only 2 for a ternary 3-caterpillar or a binary 4-caterpillar. We
claim that there exists a satisfying assignment of φ if and only if there is a
set of exactly n+ 2m3 +m2 edges in T whose removal makes T colourful.
Let β be a satisfying assignment of φ. We define the set of edges S as follows:

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 65

• For each variable xi, the set S contains the edge {rxi
, xi} if xi = True

in β, or {rxi
, x̄i} if xi = False in β .

• For each clause Cj with three literals:

– If the clause gadget is of type A, then the set S contains two
edges: one from the path between yj and y′j, and one from the
path between zj and z′j. These edges are chosen in such a way
that, in G− S, the leaf `k,j which belongs to the same connected
component as the vertex rCj

corresponds to (one of) the literal(s)
satisfying the clause Cj in β.

– If the clause gadget is of type B, then the set S contains two
edges incident to the vertex rCj

such that zj, z′j and z′′j are in
different connected component in G− S. These edges are chosen
so that, in G−S, the leaf `k,j which belongs to the same connected
component as the vertex rCj

corresponds to (one of) the literal(s)
satisfying the clause Cj in β.

• For each clause Cj with two literals, and then represented by a clause
gadget of type C, the set S contains either the edge {rCj

, zj} or the
edge {rCj

, z′j}. Again, this edge is chosen in order that, in G− S, the
leaf `k,j which belongs to the same connected component as the vertex
rCj

corresponds to (one of) the literal(s) satisfying the clause Cj in β.

Clearly, the set S contains n+ 2m3 +m2 edges. We denote by F the forest
T − S, and by T ′ the connected component in F containing the root r.
Obviously, two vertices of the same colour from a same variable gadget do
not both belong to a same connected component of F , and the same is true
for a clause gadget. Also, note that two vertices of different variable gadgets
do not have the same colour, and similarly for vertices of different clause
gadgets. Lastly, observe that two vertices of two different gadgets belong to
the same connected component if and only if they are connected through the
backbone, which is in T ′. Thus, if there exist two vertices of the same colour
in a same connected component of F , one is from a variable gadget and
the other one from a clause gadget, and they both belong to T ′. Without
loss of generality, consider xi,j from the variable gadget of xi and `k,j from
the clause gadget of Cj, such that xi,j, `k,j ∈ T ′. To prove a contradiction,
assume that c(xi,j) = c(`k,j). Note that the literal represented by `k,j is xi,j,
otherwise the two vertices would not have the same colour. Since `k,j is in
T ′, it is connected to the vertex rCj

of the clause gadget, hence `k,j satisfies

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 66

the clause Cj. Therefore, the variable xi = True in β. By construction,
this implies that the edge {rxi

, xi} belongs to S, and that the subtree Txi
,

containing xi,j, is not part of T ′, which is a contradiction.
Let S be a solution to Colourful Components on T . Observe that S

contains at least one edge per variable gadget to put the vertices xi and x̄i

into different connected components, at least two edges per clause gadget of
type A or type B, and at least one edge per clause gadget of type C. Hence,
|S| ≥ n+2m3+m2. Suppose that |S| = n+2m3+m2, and therefore that S
contains exactly one edge per variable gadgets, exactly two edges per clause
gadget of type A or type B, and exactly one edge per clause gadget of type
C. We denote by T ′ the connected component of T − S containing the root
r. Notice that, for each variable gadget, either xi or x̄i belongs to T ′, but
not both. Also, for each clause gadget, exactly one leaf `k,j belongs to T ′.
We construct an assignment β of φ such that, for each variable gadget, if
{rxi

, xi} ∈ S, then we set xi := True in β, and if {rxi
, x̄i} ∈ S, then we set

xi := False in β. To prove a contradiction, assume that there is a clause
Cj which is not satisfied in φ with regard to β. Consider the leaf `k,j ∈ T ′

from the gadget clause of Cj, and assume without loss of generality that
`k,j = xi. If Cj is not satisfied, then the variable xi := False in β. This
means that S contains the edge {rxi

, x̄i}, but not the edge {rxi
, xi}, and

thus xi,j ∈ T ′. However, since c(xi,j) = c(`k,j), then S is not a solution for
T , a contradiction. �

4.2.2. The easy case

A cyclic 1-caterpillar is a connected graph with a unique cycle called the backbone
such that each vertex either belongs to the backbone or is pendant. To simplify
the notations, 1-caterpillars and cyclic 1-caterpillars are called caterpillars. In
this subsection, we prove that Colourful Components and Colourful
Partition can be solved in linear time on coloured caterpillars with unbounded
maximum degree.

We consider the vertices in the backbone as internal vertices of stars, hence
vertices of degree 1 are the leaves of a star whose internal vertex belongs to the
backbone. We assume that the edges and the vertices in the backbone are either
linearly or cyclically ordered, if the backbone is a path or a cycle, respectively.

Remark 4.1. Consider a coloured caterpillar. If two vertices of a star have the
same colour, then at least one of these vertices is a leaf and it must belong to
a different colourful component than the internal vertex of the star. Hence, a

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 67

caterpillar can be preprocessed in such a way that, for each such leaf, we add its
adjacent edge to a set Sp. This procedure is repeated until there is no such leaf
in G − Sp. At the end of the preprocessing, each star in G − Sp is a colourful
star, that is, only contains vertices with different colours. See an example of
preprocessing in Fig. 4.3.

Figure 4.3: A 7-coloured cyclic caterpillar with only colourful stars. Dotted edges
belong to all solutions to Colourful Components (up to isomorphism) and
are removed from the graph in the preprocessing.

If a coloured caterpillar is not colourful, then it contains either one or at
least two colours that appear more than once. We deal with these two cases
independently in the following lemmas.

Lemma 4.1
Colourful Components and Colourful Partition can be solved
in linear time on coloured caterpillars where exactly one colour appears at
least twice.

Proof. Let G = (V,E) be a coloured caterpillar such that there is exactly
one colour γ appearing at least twice in G and fγ(G) denote the number of
vertices of colour γ in G.
First, notice that if the backbone of G is a path, then an optimal solution to
Colourful Partition with fγ(G) parts, i.e. with exactly one vertex of
colour γ per part, can be found in linear time. Of course, the fγ(G)−1 edges
with endpoints in different parts form an optimal solution to Colourful
Components.
Suppose now that the backbone is an induced cycle. Let fγ

B(G) be the
number of vertices of colour γ that appear on the backbone. It is easy to see
that if fγ

B(G) = 1, then an optimal solution to Colourful Components
contains exactly fγ(G) − 1 edges. We show that if fγ

B(G) ≥ 2, then an
optimal solution to Colourful Components contains exactly fγ(G) edges.
The property is obviously true if fγ(G) = fγ

B(G), that is, if all the vertices

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 68

with colour γ are on the backbone. Suppose that the property is true for
fγ(G) = fγ

B(G)+ k, for some positive integer k, and consider the case where
fγ(G) = fγ

B(G) + k + 1. Let u be a vertex of colour γ that is not on the
backbone, v be the neighbour of u and G′ = G − {u}. For any optimal
solution S ′ to Colourful Components on G′, the connected component
of the vertex v in G′ − S ′ contains a vertex of colour γ, otherwise S ′ is not
optimal. Thus, any optimal solution on G contains at least one more edge
than S ′. Since u is a leaf, the set S ′ ∪ {u, v} is an optimal solution on G of
size fγ(G′)+1 = fγ(G). Of course, the partition of the vertices described by
each connected component is an optimal solution to Colourful Partition
since each part contains exactly one vertex of colour γ. �

Lemma 4.2
Let G be a coloured caterpillar with only colourful stars such that at least
two colours appear at least twice in G. Then there exists an optimal solution
S of Colourful Components in G such that S ⊆ B, where B is the
backbone of G.

Proof. We assume that G = (V,E). Let f(G) := |{u ∈ V | ∃v ∈ V, v 6=
u, c(v) = c(u)}| denote the number of vertices whose colour appears at least
twice in G. Notice that if at least two colours appear at least twice in G,
then f(G) ≥ 4. One can easily check that if f(G) = 4, then there always
exists an optimal solution S ⊆ B on G, so we suppose f(G) ≥ 5.
Assume that for any coloured caterpillar with only colourful stars H with
backbone BH such that at least two colours appear at least twice, if f(H) ≤ t,
t ≥ 5, then there exists an optimal solution SH ⊆ BH . Suppose that
f(G) = t+ 1, and take a vertex u ∈ V such that there exists another vertex
v ∈ V of the same colour. Let G′ denote the graph G in which the colour of
u is set to a new colour, not yet used in the graph, hence f(G′) ≤ t. Let SG′

be an optimal solution on G′. If SG′ is also a solution on G, then obviously
SG′ is optimal on G, and the property that SG′ ⊆ BG holds. Therefore, we
suppose there is no optimal solution on G′ that is a solution on G. Notice
that, in the connected component of u in G− SG′ , there is only one vertex
v such that c(v) = c(u). Let P be the bad path from u to v, and choose
e ∈ P ∩B. Thus, SG := SG′ ∪ {e} is an optimal solution of size |SG′|+ 1 on
G and SG ⊆ B. �

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 69

Algorithm 2: From coloured caterpillar to ordered pairs.
Input: G = (V,E), an `-coloured caterpillar with only colourful stars and

backbone B.
Output: A, a multiset of ordered pairs of vertices.
// Initialisation

1 let U := {u ∈ e | e ∈ B} be an ordered set of vertices, w.r.t. the order on
B;

2 let A be an empty multiset of ordered pairs of vertices;
3 let L be an array of length ` initialised at NULL;
4 let proceed := True;
5 let u ∈ U such that, if U is linearly ordered, then u is minimum in U ;

// if U is cyclically ordered, any u ∈ U can be taken
6 let end := NULL and temp_end := NULL;

// Main procedure
7 while proceed do // O(n)
8 foreach v ∈ {w ∈ N [u] | d(w) = 1 or w = u} do
9 if L[c(v)] = NULL then

10 temp_end := u;
11 else if L[c(v)] 6= u then
12 add (L[c(v)], u) to A;
13 if u = end then
14 proceed := False; // U is cyclically ordered

15 L[c(v)] := u;
16 end := temp_end;
17 if U is linearly ordered and u is maximum in U then
18 proceed := False;
19 u := v, such that v is the element after u in U , w.r.t. its order;
20 return A;

Let G be a coloured caterpillar with backbone B and only colourful stars. We
say that a bad path P between two vertices of colour γ in G is a colour-critical
bad path if and only if there is no other bad path P ′ between two vertices of colour
γ such that P ′ ∩B ⊆ P . Hence, two colour-critical bad paths with endpoints of
colour γ do not have any common edge in the backbone B.

Remark 4.2. Let G be a coloured caterpillar with only colourful stars such that
at least two colours appear twice. We denote by B the backbone of G. Lemma 4.2
guarantees that there exists an optimal solution S to Colourful Components
on G such that S ⊆ B. It is clear that if each colour-critical bad path contains an
edge in S and S ⊆ B, then S is a solution to Colourful Components on G.
Hence, there is an optimal solution to Colourful Components that contains
only edges in B that also belong to some colour-critical bad path.

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 70

Now, the idea is to define a circular-arc graph H (an intersection graph of
a collection of arcs on the circle) based on the colour-critical bad paths of G.
A minimum clique cover Q of H, which is a partition of the vertex set into a
minimum number of cliques, can be obtained in linear time [55]. We show that Q
can be translated back into an optimal solution to Colourful Components
and Colourful Partition on G in linear time.

Lemma 4.3
Let G be a coloured caterpillar with only colourful stars, and A be the
multiset of pairs returned by Algorithm 2. Then there is a bijection between
the set of colour-critical bad paths in G and the multiset A.

Proof. Let B be the backbone of G = (V,E). A colour-critical bad path
P from a to b is detected in Algorithm 2 at Line 11, when b is found to
have the same colour γ as a (the last recorded vertex of colour γ). Let x be
the internal vertex of the star to which a belongs, and y for b, respectively.
When b is considered in the algorithm, the pair (L[c(b)], y) is added to A

at Line 12, and since L[c(b)] = x, then (x, y) ∈ A. Therefore, the arc with
endpoints (x, y) ∈ A corresponds to the colour-critical bad path P from a

to b in G.
An ordered pair (x, y) in A refers to two vertices x and y in V that are
internal vertices of two stars. If such a pair exists, then there are two vertices
a and b with the same colour γ, such that a belongs to the same star as x

and b to the same star as y, and in the path P from a to b, with regard to the
order on B, there is no other vertex w with colour γ in a star whose internal
vertex is in P (since the last seen vertex of colour γ, before b, is L[c(b)] = a).
Thus, the path P is a colour-critical bad path and it corresponds to the pair
(x, y) in A. �

Lemma 4.4
Algorithm 2 runs in linear time.

Proof. Let G be a coloured caterpillar with only colourful stars and back-
bone B, and let A be the multiset of ordered pairs obtained by Algorithm 2
with input G.
In Algorithm 2, when a colour is detected for the first time at Line 9, the
internal vertex u of the star is stored in the variable end. If the backbone
induces a cycle, i.e. if G is a cyclic caterpillar, the second time that the vertex

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 71

end is considered in the main loop the algorithm sets the variable proceed

to false at Line 14. If the backbone is a path, i.e. if G is a caterpillar, the
algorithm considers each vertex exactly once and sets the variable proceed

to false at Line 18. Thus, Algorithm 2 runs in linear time. �

In the following, we show that we can reduce our problem on coloured cater-
pillars to the problem of finding a minimum clique cover in a circular-arc graph.

Definition 4.1: Clique cover

A clique cover of a graph G = (V,E) is a partition Q of V such that for
each Qi ∈ Q, Qi is a clique. A minimum clique cover is a clique cover
containing a minimum number of cliques.

Definition 4.2: Circular arc graph
A circular-arc graph is the intersection graph of a set of arcs on the circle,
that is, each vertex of the graph can be represented as an arc on the circle
and there is an edge between two vertices if and only if the corresponding
two arcs intersect.

Theorem 4.2
Colourful Components and Colourful Partition can be solved in
linear time on coloured caterpillars.

Proof. Let G = (V,E) be a coloured caterpillar with backbone B. First,
we prove that a solution to Colourful Components on G can be found
in linear time. We apply the preprocessing to G, as defined in Remark 4.1,
and denote by Sp the set of edges that have been removed. Hence, G− Sp

contains only colourful stars. If G− Sp is colourful, then Sp is an optimal
solution to Colourful Components. Otherwise, denote by G′ = (V ′, E ′)

the connected component of G− Sp which contains the backbone B. If G′

contains exactly one colour that appears more than once, then according to
Lemma 4.1 Colourful Components and Colourful Partition can
be solved in linear time. Therefore, we assume that G′ contains at least two
colours that appear at least twice. Let A be the multiset of ordered pairs
obtained by Algorithm 2 with input G′. According to Lemma 4.4, A can be
obtained in linear time.

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 72

According to Lemma 4.3, each ordered pair (x, y) in A corresponds to a
colour-critical bad path P from x to y in G. These paths can be seen as
arcs on the circle, which represent a circular-arc graph H = (X,F). Let Q
be a minimum clique cover of H obtained in linear time with the use of the
algorithm of Hsu and Tsai [55]. As mentioned in the paper, there are two
types of cliques in a circular-arc graph. The first type of cliques contains
three arcs which do not contain a common point of the circle. The second
type of cliques contain a common point of the circle and are referred as
linear cliques. It is proved that it suffices to use linear cliques in a minimum
clique cover unless the graph is a complete graph and the unique maximal
clique is not linear. Hence, either all cliques in Q are linear or the unique
clique in Q is not linear. In the following, we first deal with the case where
Q contains linear cliques and then consider the case where the unique clique
in Q is not linear.
Suppose that all cliques in Q are linear. Let S ′ be an empty set of edges.
Choose a clique Qi ∈ Q. From our construction of H, each vertex z ∈ Qi

corresponds to a colour-critical bad path Pz in G. Let Di :=
⋂

z∈Qi
Pz, and

notice that, since Qi is linear, |Di∩B| > 0. Then, choose an edge e ∈ Di∩B,
and add e to S ′. We claim that, once each clique in Q has been processed,
that is, when |S ′| = |Q|, the set S ′ is an optimal solution to Colourful
Components on G. Notice that S ′ can be computed in linear time. As
stated before, each colour-critical bad path in G′ maps to an ordered pair
in A, which corresponds to a vertex of H. Hence, a linear clique Qi in H

corresponds to a set of colour-critical bad paths sharing a common subpath
Di. The set S ′ contains an edge in Di ∩B for each Qi ∈ Q, hence there is
no colour-critical bad path in G′ − S ′. Since S ′ ⊂ B and each colour-critical
bad path has an edge in S ′, then, following Remark 4.2, S ′ is a solution to
Colourful Components on G′. Moreover, since Q is minimum, S ′ is an
optimal solution on G′. Thus, the set S := Sp ∪ S ′ is an optimal solution to
Colourful Components on G.
Now, suppose that the unique clique in Q is not linear, which implies that
H is a complete graph. As mentioned before, there exist at least three
arcs that do not have a common point on the circle. Let z denote one
of these arcs such that it does not strictly contain any other arc. Clearly,
since H is a complete graph, z overlaps every other arc. Also, since z does
not strictly contain any other arc, if one extremity of z does not overlap
another arc z′, then its other extremity must overlap z′. Let Pz be the colour-
minimal bad path, with endpoints u and v, corresponding to z. Denote

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 73

by u′ and v′ the neighbours of u and v in Pz, respectively. Then, the set
S ′ := {{u, u′}, {v, v′}} is a solution to Colourful Components on G′.
Since the intersection of all the colour-critical bad paths in G′ is empty,
any solution to Colourful Components on G′ contains at least 2 edges.
Hence, S ′ is an optimal solution and S := Sp ∪ S ′ is an optimal solution to
Colourful Components on G.
Finally, as |E| ∈ O(|V |), we can detect each connected component of
G− S in linear time (for instance, with a breadth-first search). Thus, we
can construct the partition π of V such that each part corresponds to a
connected component of G− S in linear time. Obviously, π is a solution to
Colourful Partition on G. Since S is optimal, due to the structure of
G, the partition π is optimal. �

Note that if there exists a colour-critical bad path P such that P ∩ B ⊂ P ′

for some other colour-critical bad path P ′ in G, then P does not have to be
represented in the circular-arc graph. While this observation can help decreasing
the number of vertices in the circular-arc graph, it does not affect the overall
worst-case linear complexity of the algorithm.

Figure 4.4 gives an example of a cyclic 1-caterpillar G and its representation
as circular-arc graph H where a minimum clique cover on H represents an optimal
solution to Colourful Components on G.

Figure 4.4: On the left, a cyclic 1-caterpillar G: dotted edges are removed in the
preprocessing; dashed edges are obtain from the algorithm; dotted and dashed
edges form an optimal solution to Colourful Components. On the right, an
arc representation of the circular-arc graph constructed from the colour-critical
bad paths in G (after preprocessing): dotted segments represent a minimum clique
cover and correspond to the dashed edges in G.

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 74

4.3. Colourful Components on planar graphs
In [17], the authors prove that Colourful Components is NP-complete even
when restricted to 3-coloured graphs with maximum degree 6. Using a similar
reduction from Planar 3-SAT, we show how the vertices of degree 6 can be
replaced with gadgets only containing vertices of degree 4, or 3, if we relax the
number of colours from 3 to 5, or to 12, respectively.

Planar 3-SAT

Input: A 3-CNF formula φ in which the bipartite graph of variables
and clauses is planar.

Question: Is there a satisfying assignment of φ?

Note that Planar 3-SAT is NP-complete [64] and it can be shown that it
remains so even if each clause contains exactly 3 literals [83]. In the following, we
consider the latter version.

Construction 4.2
Given an instance φ of Planar 3-SAT, that is a set of m clauses
C1, C2, . . . , Cm on n variables, we construct the graph G = (V,E) such
that:

• For each variable x in φ, let mx denotes the number of clauses in which
x appears. We construct a cycle of length 4mx in G with vertices
Vx := {x1

j , x
2
j , x

3
j , x

4
j | x ∈ Cj} with an arbitrary fixed cyclic ordering

of the clauses containing x. The vertices are coloured alternatively
with two colours co and ce, that is, c(x1

j) = c(x3
j) = co and c(x2

j) =

c(x4
j) = ce, for all j such that x ∈ Cj.

• For each clause Cj containing three variables p, q and r, we construct
a clause gadget. We propose two types of gadgets:

– The gadget A4
j is made of a cycle of length 3, with vertices a1j , a2j

and a3j such that each aij is given colour i, different from co and ce.
We define how the vertices from Vp are connected to A4

j . If the
variable p appears as a positive literal in Cj , connect the vertices
p1j to a1j and p2j to a2j . Otherwise, if p occurs as a negative literal,
connect the vertices p2j to a1j and p3j to a2j . Do the same for the

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 75

variables q and r by connecting the corresponding vertices in Vq

to a2j and a3j , and the corresponding vertices in Vr to a3j and a1j .
Notice that the vertices in A4

j have degree 4.

– The gadget A3
j is made of a cycle of length 9 with vertices labelled

a1j , . . . , a
9
j and an additional vertex a10j connected to a2j , a5j and a8j .

We set the colour i to each vertex aij, different from co and
ce. We define how the vertices from Vp are connected to A3

j .
If the variable p appears as a positive literal in Cj, connect
the vertices p1j to a1j and p2j to a3j . Otherwise, the variable p

occurs as a negative literal, connect the vertices p2j to a1j and p3j

to a3j . Do the same for the variables q and r by connecting the
corresponding vertices in Vq to a4j and a6j , and the corresponding
vertices in Vr a7j and a9j . Notice that the vertices in A3

j have
degree 3.

See Fig. 4.5 for an example of the gadgets.

Since the bipartite graph of variables and clauses of φ is planar and each
vertex can be replaced by a clause or vertex gadget, with a correct cyclic
ordering of the clauses for each variable, the resulting graph G is planar.

Note that Construction 4.2 can be done in polynomial time.

p1j

p2j q2j

q3j

r1jr2j

a1j

a2j

a3j

Gadget with vertices of degree 4.

p1j

p2j q2j

q3j

r1jr2j

a1j

a3j

a2j

a4j

a6j

a5j

a7ja9j
a8j

a10j

Gadget with vertices of degree 3.

Figure 4.5: Two clause gadgets A4
j (left) and A4

j (right) of a clause Cj := (p∨ q̄∨r).
White vertices have colour co, grey vertices have colour ce.

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 76

Theorem 4.3
Colourful Components is NP-complete on 5-coloured planar graphs
with maximum degree 4 and on 12-coloured planar graphs with maximum
degree 3.

Proof. Let φ be an instance of Planar 3-SAT with m clauses and n

variables and G = (V,E) be the graph obtained through Construction 4.2,
using either A4

j gadgets or A3
j gadgets. Notice that, depending on the type

of gadget used, G is either a 5-coloured graph with maximum degree 4, or
a 12-coloured graph with maximum degree 3. We claim that there exists
a satisfying assignment β for φ if and only if there exists a solution S to
Colourful Components such that |S| = 6m+ 4m = 10m.
Let β be a satisfying assignment for φ. If a variable x = True in β, then
remove the edges {x4

k, x
1
j} and {x2

j , x
3
j}, for each clause Cj , where Ck precedes

Cj in the order of the clauses containing x. Otherwise, if x = False in β,
then remove the edges {x1

j , x
2
j} and {x3

j , x
4
j} for each clause Cj containing

x. Hence,
∑

1≤i≤n 4mi/2 = 6m edges have been removed, and G does not
have any bad path that contains only vertices from the variable cycles. Now,
choose a clause Cj and denote its variables by p, q and r. Without loss
of generality assume that p satisfies Cj. Remove the 4 edges between the
clause gadget of Cj and the vertices in Vq and Vr. Without loss of generality,
assume that Cj contains p as a positive literal, hence the gadget is connected
to the vertices p1j and p2j . Since p is set to true in β, the edges {x4

k, x
1
j} and

{x2
j , x

3
j} have been removed. Therefore, the vertices p1j , p2j and the vertices

in the clause gadget form a colourful component. The other case where Cj

contains p as a negative literal is similar, and the vertices p2j , p3j and those
in the clause gadget form a colourful component. If the clause gadget is A4

j ,
then the colourful component is of size 5. If the clause gadget is A3

j , then
the colourful component is of size 12. Since 4 edges are removed for each
clause, a total of 4m edges between variable cycles and clause gadget are
removed. Let S be the set of removed edges, and notice that S is a solution
to Colourful Components such that |S| = 6m+ 4m = 10m.
Let S be a solution to Colourful Components on G such that |S| =
10m. Since the vertices of the variable cycles are coloured alternatively
with co and ce, the set S must contain half of the edges of each variable
cycle, thus S contains at least

∑
1≤i≤n 4mi/2 = 6m edges from the variable

cycles. Independently on which type of clause gadget has been used in
Construction 4.2, we show how many edges S must contain for each clause

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 77

gadget. Choose a clause Cj and consider its clause gadget. It is clear that
if S contains at most 2 edges from the clause gadget or between the clause
gadget and its variable cycles, then G− S is not colourful. If S contains 3

such edges, then at least 2 additional edges from the variable cycles must
belong to S, otherwise there would exist a connected component in G− S

that contains vertices of at least two different variable cycles. However, it is
impossible that S contains 5 edges per clause gadget or |S| > 10m. Finally,
if S contains exactly 4 such edges, then necessarily S contains the edges
between the clause gadget and two of the variable cycles, otherwise G− S

would not be colourful. Thus, since |S| = 10m, the set S contains exactly
4m edges between variable cycles and clause gadgets, and all edges in S are
either from variable cycles or between variable cycles and clause gadgets.
Let β be an assignment of φ described as follows. We consider that the edges
in S have been removed from G. For each variable x and each clause Cj

containing the literal x, if the edge {x1
j , x

2
j} belongs to S, then set x := False

in β. Otherwise, if the edge {x2
j , x

3
j} belongs to S, and therefore {x1

j , x
2
j}

does not, then set x := True in β. To prove that β is a satisfying assignment
of φ, note that if a variable cycle of a variable x is connected to the clause
gadget of a clause Cj, then Cj is satisfied by x. Suppose the opposite, and
assume, without loss of generality, that x appears as a positive literal in
φ but is set to False in β. This means that the edge {x1

j , x
2
j} belongs to

S, hence has been removed from G. Therefore, the edge {x2
j , x

3
j} belongs

to G, since we suppose that the edges in the variable cycles are removed
alternately. Then, x1

j and x3
j belong to the same colourful component, but

c(x1
j) = c(x3

j), a contradiction. We conclude that β is a satisfying assignment
of φ. �

4.4. Conclusion
The NP-completeness of the problems on 2-caterpillars with unbounded degree
demonstrates the inherent complexity of the problems. We prove that both
problems remain NP-complete on quaternary 2-caterpillars, ternary 3-caterpillars
and binary 4-caterpillars, where both the maximum degree and the hair length
are bounded by small constants. Nevertheless, our linear-time algorithm for both
problems on general 1-caterpillars, with unbounded degree, generalises the class of
paths and cycles, and beats the complexity of the previous best known algorithm

CHAPTER 4. COLOURFUL COMPONENTS PROBLEMS 78

for paths. In order to complete the dichotomy on k-caterpillars, three questions
remain: What is the complexity of the problems on binary 3-caterpillars, binary
2-caterpillars and ternary 2-caterpillars.

We also prove that Colourful Components is NP-complete on 5-coloured
planar graphs with maximum degree 4 and on 12-coloured planar graphs with
maximum degree 3. A natural question is to ask whether the problem remains
NP-complete when the number of colours is decreased but the maximum degree is
3 or 4.

Chapter 5
Scheduling of Dial-A-Ride Problems with

Soft Time Constraints

Outline
5.1 Introduction . 80
5.2 Problem statement . 81

5.2.1 Remarks on the model . 83
5.3 Complexity study . 86

5.3.1 Scheduling with soft ride time constraints 86
5.3.2 Scheduling with hard ride time constraints 89

5.4 Bounded maximum ride time . 90
5.5 First pickups then deliveries . 98
5.6 Conclusion . 104

The Dial-a-Ride problem may contain various constraints for pickup-delivery
requests, such as time windows and ride time constraints. For a tour, given as
a sequence of pickup and delivery stops, there exist polynomial time algorithms
to find a schedule respecting these constraints (provided that there exists one).
However, if no feasible schedule exists, a natural question is to find a schedule
minimising constraint violations. We model a generic fixed-sequence scheduling
problem, allowing lateness and ride time violations with linear penalty functions
and prove its APX-hardness. Then, we propose several polynomial-time algorithms
for restricted types of instances.

Some of the results presented in this chapter appear in the following paper:

v J. Chlebíková, C. Dallard and N. Paulsen, ‘Complexity of scheduling for
DARP with soft ride times’, in International Conference on Algorithms and
Complexity, Springer, 2019, pp. 149–160. doi: 10.1007/978-3-030-17402-
6_13.

A journal version containing our latest results is under construction.

79

https://doi.org/10.1007/978-3-030-17402-6_13
https://doi.org/10.1007/978-3-030-17402-6_13

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 80

5.1. Introduction
The Dial-A-Ride Problem (DARP) is a well studied variant of the Vehicle Routing
Problem. The general idea of the DARP is the design of routes and schedules for a
fleet of vehicles serving customers with pickup and delivery requests. The DARP,
with its various restrictions, serves as a model for many real-world problems in
logistics, for instance, passenger transportation and pickup-delivery of perishable
goods. For detailed reviews of DARPs, we refer the readers to [30, 54].

The study of the Dial-A-Ride Problem can be split into three main subproblems:
the clustering of the requests into tours, the routing of the stops within each
tour into a sequence, and the scheduling of the stops inside the tours [34]. These
subproblems are the source of major research topics in operation research, each of
them intensively studied. To get a better understanding of the inherent complexity
of the problems, and eventually obtain faster algorithms, many restricted models
have been studied.

In this chapter, we focus on the scheduling subproblem, where the input of the
problem is a tour with fixed sequence of stops, a set of pickup-delivery requests,
and time constraints with their corresponding penalty functions. Each pickup-
delivery request is represented by two stops, the first one as a pickup and the
second one as a delivery. The visit of each stop has to be performed within a
given time window. Furthermore, the time between the scheduled pickup and
delivery of a same request is bounded by a given maximum ride time.

Time window and ride time constraints are naturally arising when scheduling
pickups and deliveries. When both constraints must be respected in the solution,
there exist efficient algorithms [44, 81]. However, in all these approaches, ride time
and time window constraints are hard in the sense that a solution must respect
all the constraints.

In case there is no feasible schedule, one may look for a schedule “close” to a
feasible one with minimal penalties. Therefore, variants of the problem with soft
constraints, in which the violation of constraints is allowed but penalised, have been
introduced. Depending on the type of constraints and their corresponding penalty
functions, various results can be obtained. For instance, when the only constraints
are time windows for the stops, Dumas, Soumis and Desrosiers [39] proposed a
linear programming approach for convex penalty functions with a linear time
complexity, but their algorithm does not incorporate ride time constraints. We
refer the reader to [85] for a recent survey on scheduling (timing) problems given
a fixed sequence of stops (tasks). To the best of our knowledge, the complexity of
the problem with soft ride time constraints was previously unknown.

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 81

We propose a systematic study of the complexity of the problem when allowing
time window and ride time constraints violations with linear non-decreasing
penalty functions.

5.2. Problem statement
For 4 ∈ {≤, <,≥, >}, and X a well ordered set, let X4x := {y ∈ X : y4 x} and
X[i] be the i-th smallest element of X. We consider that all times are natural
numbers.

We are given a sequence S = (1, 2, . . . , 2n), n ∈ N, of 2n stops in the order in
which their visits must be scheduled (in case of no ambiguity s ∈ S also represents
an positive integer).

Each stop s ∈ S is associated with a pair of times (as, bs), 0 ≤ as ≤ bs,
representing a time window in which a visit of the stop s should take place (we
talk about time window constraint). Without loss of generality we suppose that
a1 = 0.

Furthermore, we have a set P of n requests representing the pairs (p, d) of
stops from S, p < d, where p is a pickup and d is a delivery stop. Each request
(p, d) has a time constraint rp,d (rp,d ≥ 0) on the maximum ride time (we talk
about ride time constraint): a visit at stop d should be scheduled at most rp,d

time units after the visit at stop p. Each stop s serves exactly one request (either
as a pickup or as a delivery stop) and all times are represented as non-negative
integers.

As it has been mentioned in Section 5.1, it is not always possible to schedule
the visits for all stops (in a given order) with respect to their time windows and
ride time constraints. Therefore we introduce the model in which the lateness and
ride time constraints can be violated at a cost (soft constraints). In our model,
the penalty functions are linear and non-decreasing.

In order to model soft constraints, each stop s ∈ S is associated with a penalty
function σL

s : N→ Q, mapping visit times which are later than the time window
bounds to a non-negative penalty. The function σL

s (x) is such that σL
s (x) = 0

for x ≤ bs and otherwise σL
s (x) = αL

s · (x − bs) + βL
s , for given αL

s , β
L
s ∈ Q≥0.

Also, each request (p, d) ∈ P is associated with a penalty function σRT
p,d : N→ Q,

mapping ride times exceeding the given maximum ride times to a non-negative
penalty. The function σRT

p,d is such that σRT
p,d (x) = 0 for x ≤ rp,d and otherwise

σRT
p,d (x) = αp,d · (x− rp,d) + βp,d, for given αp,d, βp,d ∈ Q≥0.

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 82

Note that there is no penalty function for scheduling a stop earlier than the
opening time of its time window, as our model does not allow this case. However,
we show in Lemma 5.1 that earliness at stops can be expressed with a linear
number of ride time constraints. Hence, we can assume that for each stop s ∈ S,
if s is visited at time x, then x ≥ as. When we say “soft time window” we imply
that the stop can be scheduled later than the time window, but not earlier.

A schedule t = (t1, . . . , t2n) is a sequence of visit times for all the stops in S
(in the given order), where we say that t schedules a stop s ∈ S at time ts. We
say that a schedule t is feasible if and only if for all stops s ∈ S, ts ≥ as and for
any s ∈ S<2n, ts ≤ ts+1. Obviously, each time window and ride time constraint
is either violated or satisfied by a schedule t. The cost c(t) of a schedule t is the
sum of the penalties of violated constraints:

c(t) =
∑
s∈S

σL
s (ts) +

∑
(p,d)∈P

σRT
p,d (td − tp) . (5.1)

When we solve the Min Pickup-Delivery Scheduling problem, we look
for a feasible schedule t with a minimum cost.

Min Pickup-Delivery Scheduling (Min PDS)

Input: An instance I of Min PDS.
Output: A feasible schedule t of I such that c(t) is minimum.

Overview of the results.
We investigate how penalisation of the time window and ride time constraints
contributes to the computational complexity of the problem. We show that an
essential factor for the complexity are soft ride time constraints. In Section 5.2.1,
we give some remarks on our model. An overview of complexity results is shown
in Table 5.1. We prove the NP-hardness of Min Pickup-Delivery Scheduling
even with hard time window constraints in Section 5.3.1. On the other hand,
we show that the problem can be solved in polynomial time in case of hard
ride time constraints in Section 5.3.2. Further underlining the role of ride time
constraints, in Section 5.4, we give a parameterized algorithm that solves Min
Pickup-Delivery Scheduling in polynomial time if all maximum ride time
are bounded by a constant. Finally, in Section 5.5, we show that some structural
properties in the sequence of the stops can be exploited to find a polynomial-time
algorithm. Namely, we present an O(n4) time algorithm when all pickups precede
all the deliveries in the sequence.

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 83

Ride time constraints Time window constraints
Hard Soft

Hard O(n) [44] O(n) [Theorem 5.3]
0, βp,d = 0 O(n) ← O(n) [Proposition 5.1]
Soft, bounded values P ← P [Theorem 5.4]
Soft, unbounded values NP-hard, APX-hard → NP-hard, APX-hard

Theorems 5.1 and 5.2

Table 5.1: Overview of complexity results classified by constraints. Arrows mean
results are inferred.

5.2.1. Remarks on the model

Express earliness through ride time constraints.
As we mentioned earlier, our model does not allow earliness at stops. However,
we show that this is not restrictive.

Lemma 5.1
An instance I with 2n stops where earliness is allowed can be modified into
an instance I ′ with 6n stops where earliness is not allowed such that, for
any feasible schedule t of I, there exists a feasible schedule t′ of I ′ with
c(t′) = c(t).

Proof. We denote by σE
s the linear non-decreasing penalty function

associated with the earliness at stop s.
First, let B := maxs∈S bs. Choose a stop s ∈ S. We create two new stops sp

and sd, insert sp in S just before s and append sd at the end of S. We set
asp := 0, bsp := bs, asd := B and bsd := B. The penalty function associated
with the lateness at stop sp is σL

sp(x) = 0 (since the stop s is already penalised
for lateness). The function σL

sd
(x) can also be set to 0. Then, we create the

request (sp, sd), which we add to P, and we set rsp,sd := B − as. We set
the penalty function of the ride time constraint as follows: σRT

sp,sd
(x) := 0 if

x ≤ rsp,sd and otherwise σRT
sp,sd

(x) := σE
s (B − x). Lastly, we modify the time

window of the stop s and set as := 0. Obviously, the stops sd can always be
scheduled at time B, thus the earliness at stop s is now penalised by the
penalty function of the ride time constraint of the request (sp, sd). When
applied to all 2n original stops, the resulting instance contains 6n stops. �

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 84

Driving times, (un)loading times.
In favour of simplicity, our model neglects times needed to travel between stops
as well as loading or unloading times. We emphasise that this is not restrictive,
since we focus on the scheduling of fixed sequences. In the following, we show
that incorporating these times into an extended problem definition is not more
expressive. Suppose X is an instance of the extended Min PDS, where for
each stop s ∈ S we are additionally given a driving time Γs to reach stop s + 1

(assume d2n = 0 for the last stop) and (un)loading time vs at stop s. Further, a
schedule for X is only feasible if for s ∈ S<2n it holds the strengthened inequality
ts + vs + ds ≤ ts+1. Lastly, lateness penalties and ride time penalties factor in the
visiting times, such that the cost ĉ(t) of a schedule t of X is defined as

ĉ(t) :=
∑
s∈S

σL
s (ts + vs) +

∑
(p,d)∈P

σRT
p,d (td + vd − tp) .

Lemma 5.2
Let X be an instance of the extended Min PDS and IX its corresponding
instance of Min PDS. Then there exists an one-to-one cost-preserving
mapping between the schedules of X and IX . Furthermore, IX can be
constructed in linear time.

Proof. For a stop ` ∈ S denote Γ` :=
∑

s<`(ds + vs). Define an instance
IX of Min PDS with the same sequence S of the stops, the same set of
requests, and the same penalty function coefficients as X. For all s ∈ S set
time windows as a′s := as − Γs and b′s := bs − Γs − vs. The maximal ride
times are defined as r′p,d := rp,d−Γd+Γp−vd for all (p, d) ∈ P. Note that all
adjustments of this kind can be performed in a single preprocessing pass over
the extended instance X in linear time. We prove that there is a one-to-one
correspondence between schedules of X and IX . For t a schedule of X, let
f(t) map to a schedule t′ = f(t) of IX such that for s ∈ S, t′s = ts−Γs. Note
that f is bijective.
First, we show that t is feasible for X exactly when t′ is feasible for IX . For
s ∈ S we have ts ≥ as ⇔ ts − Γs ≥ as − Γs ⇔ t′s ≥ a′s; for s ∈ S<2n we have

ts + vs + ds ≤ ts+1

⇐⇒ ts − Γs = ts + vs + ds − Γs+1 ≤ ts+1 − Γs+1

⇐⇒ t′s ≤ t′s+1 .

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 85

Now, we show that the penalty cost of t for X equals the penalty cost of t′

for IX . We have

ĉ(t) =
∑
s∈S

σL
s (ts + vs) +

∑
(p,d)∈P

σRT
p,d (td + vd − tp)

=
∑
s∈S

ts+vs>bs

αs(ts + vs − bs) + βs +
∑

(p,d)∈P
td+vd−tp>rp,d

αp,d(td + vd − tp − rp,d) + βp,d

=
∑
s∈S

t′s>b′s

αs(t′s − b′s) + βs +
∑

(p,d)∈P
t′d−t′p>r′p,d

αp,d(t′d − t′p − r′p,d) + βp,d (5.2)

=
∑
s∈S

σL
s (t′s) +

∑
(p,d)∈P

σRT
p,d (t′d − t′p) = c(t)

To verify Eq. (5.2), note that ts + vs − bs = t′s − b′s and td + vd − tp − rp,d =

t′d − t′p − r′p,d hold. These can be applied to the penalty function arguments
as well as the sum ranges. �

Waiting times.
Constraints ws on the waiting times, i.e. maximum times to wait between two
consecutive stops s and s + 1 (as in [44]), are omitted in our model since they
can be expressed by ride time constraints. Assume that, for a stop s ∈ S<2n, the
constraint ts + ws ≥ ts+1 is given for any schedule t, ws ≥ 0. Simply insert two
additional stops: the stop p immediately before s and the stop d immediately after
s + 1 into S and add a request (p, d) to P with rp,d = ws. Replacing all waiting
time constraints leads to an equivalent instance with at most 6n − 2 ∈ O(n)

requests.

Increasing time windows opening times.
As earliness is not allowed in our model, we expect that any instance of 2n stops
has as ≤ as+1 for all s ∈ S<2n. If for a stop s, s ∈ S<2n, we have as > as+1, for
any feasible schedule t it holds ts ≥ as and ts+1 ≥ ts and therefore ts+1 < as

cannot hold for any feasible scheduling. We can therefore preprocess the instance
in such a way that for all s ∈ S<2n, as+1 := max{as, as+1}. Notice that due to
this property and the fact that the last stop 2n is a delivery stop, it always exists
an optimal schedule t∗ such that t∗2n = a2n.

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 86

As soon as possible deliveries.
All deliveries can be scheduled at a time as soon as possible without increasing
costs. Let d be a delivery of a request (p, d) ∈ P and t a feasible schedule. We
define a schedule t′ with t′s := ts for all stops s ∈ S \ {d} and t′d := max{ad, td−1}.
Clearly, t′ is feasible. Obviously, t′d can only decrease the lateness at d as well as
the ride time for (p, d) ∈ P with no changes in scheduling of the other stops.

5.3. Complexity study

5.3.1. Scheduling with soft ride time constraints

First, we study the variant of Min Pickup-Delivery Scheduling in which
ride time constraints may be violated in return for a penalty (soft constraints),
but the time windows must be respected (hard constraints). We show that the
problem is NP-hard and APX-hard even in case of restricted time windows and
very circumscribed penalty functions. The proof is based on a reduction from the
Maximum Dicut problem which is known to be NP-hard and APX-hard when
restricted to directed acyclic graphs (DAG) [48, 63].

First, we show that hard time window constraints can be expressed as soft
time window constraints with “big penalty”.

Remark 5.1. The idea is to set the penalties for lateness at each stop to such
values that any optimal schedule must respect the time windows. Let I be an
instance of Min PDS with hard time windows. As mentioned in Section 5.2.1,
there exists an optimal schedule t of I such that t2n = a2n. Therefore, the
actual maximum ride time of each request is bounded by the value a2n. Let
M = max(p,d)∈P σ

RT
p,d (a2n). Then the instance I can be transformed into an instance

I ′ of Min PDS with soft time windows by setting αs = 0 and βs = nM + 1 for
all s ∈ S (hence σL

s (x) = nM + 1 for x > bs). The cost of any schedule respecting
time window constraints is at most nM , and hence there always exists a schedule
of I ′ with cost strictly less than nM + 1.

A directed cut (A,B) of a directed graph G = (V,E) is a partition of V into
two subsets A, B. Its size s(A,B) := |{(u, v) ∈ E | u ∈ A, v ∈ B}| is the number
of outgoing arcs from A to B. The Maximum Dicut problem is defined as follows:

Maximum Dicut

Input: A directed graph G = (V,E).
Task: Find a directed cut (A,B) of maximum size in G.

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 87

Construction 5.1
Let G = (V,E) be a connected directed acylic graph with |V | = n and
|E| = m. Since G is a DAG, the vertices of G can be labelled by 1, 2, . . . , n

in a topological ordering in such a way that for any arc (u, v) ∈ E it holds
lab(u) < lab(v), where lab(z) represents the number used for labelling the
vertex z [82].
We show how the graph G can be transformed into an instance I of Min PDS.
The sequence of stops for I is defined as the concatenation S := S1S2 . . . Sn,
where each Sv represents a gadget of stops for each vertex v ∈ V . Let
v ∈ V be fixed, then the gadget Sv contains the stop sve for each arc e

of G incident to v, that is, e = (v, u) or e = (u, v) for u ∈ V . The stops
within the gadget Sv are ordered in such a way that all stops belonging to
outgoing arcs precede all stops belonging to ingoing arcs. Note that S has
2m stops. For each vertex v ∈ V the time windows of all stops s ∈ Sv are
set to as := lab(v)− 1 and bs := lab(v). The requests correspond to the arcs
in G, hence P = {(sue , sve) : e = (u, v) ∈ E} and for each (p, d) ∈ P the ride
time is set to be rp,d = ad − bp. Due to the specific numbering of vertices
and sizes of windows, the stop p always precedes the stop d and rp,d ≥ 0

for all (p, d) ∈ P. Setting the penalty coefficients αp,d = 0 and βp,d = 1,
the cost of a schedule corresponds to the number of violated ride time
constraints. Using Remark 5.1, let M = max(p,d)∈P σ

RT
p,d (a2n) and set αs = 0

and βs = mM + 1 for all s ∈ S. Note that M = 1, and thus a schedule
violating a time window constraint has cost at least m+ 1. Obviously, the
transformation from G to the instance I can be done in polynomial time.
An example of this transformation from a DAG to an instance of Min PDS
with hard time constraints is depicted in Fig. 5.1.

Obviously, Construction 5.1 can be done in polynomial time.

Theorem 5.1
Min PDS is NP-hard, even with hard time window constraints.

Proof. Let G = (V,E) be a connected DAG such that |V | = n, |E| = m,
and let I be the instance of Min PDS obtained through Construction 5.1.
We show that G has a directed cut (A,B) of size at least (m − k) if and
only if there exists a schedule t of I with cost at most k, for any k ∈ N.

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 88

1 2

3 4

e1,2

e3,4

e2,3
e1,3

0 1 2 3 4

s1e1,2
s1e1,3

s2e2,3
s2e1,2

s3e3,4
s3e1,3
s3e2,3

s4e3,4

r1,2 = 0

r1,3 = 1

r2,3 = 0

r3,4 = 0

Figure 5.1: A DAG (left) transformed into an instance of PDS (right). Coloured
boxes are time windows of length 1. Note there are two stops for every arc of G
and the stops are grouped in gadgets for each vertex of G.

Note that a schedule violating a time window constraint has cost m+1, and
therefore both problems become trivial for k ≥ m + 1. Thus, we suppose
that k ≤ m, and hence no time window can be violated in the schedule.
⇒ Suppose there exists a directed cut (A,B) in G of size at least (m− k).
Define a schedule t such that for every vertex v ∈ A and every stop s ∈ Sv we
set ts := bs and for all other stops ts := as. Clearly, t is a feasible schedule.
Each arc (u, v) ∈ E corresponds to the unique (p, d) ∈ P with p ∈ Su and
d ∈ Sv. If u ∈ A and v ∈ B, then td − tp = ad − bp ≤ rp,d, hence the ride
time constraint is respected. As we suppose s(A,B) ≥ m− k, the previous
holds for at least (m− k) requests. With |P| = m, it implies t violates at
most k ride time constraints, and hence that t has cost k.
⇐ Now suppose there exists a schedule t for I with cost at most k, that is,
violating at most k ride time constraints. For each vertex v ∈ V , let s[v]

be the first delivery stop in Sv and if there is no such stop, then s[v] be
the last pickup stop in Sv. This allows us to define a partition of V in the
following way: for each vertex v ∈ V , if ts[v] = bs[v] then v ∈ A, otherwise
v ∈ B. Choose a (p, d) ∈ P and let u, v ∈ V be such vertices that p is from
the gadget Su and d is from Sv. If t satisfies the ride time constraint of (p, d),
then by the definition of I it must hold tp = bp and td = ad. Since p is from
the gadget Su and t is feasible, ts[v] ≥ bp and necessarily bs[u] = bp, hence
ts[u] = bs[u]. Analogously, ts[v] = as[v]. Therefore, u ∈ A and v ∈ B. As we
suppose that in the schedule t at most k ride time constraints are violated,
then at least |P| − k = m − k are satisfied. Since each satisfied ride time
constraint leads to a distinct arc going from A to B, s(A,B) ≥ m− k. �

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 89

Theorem 5.2
Min Pickup-Delivery Scheduling is APX-hard, even with hard time
window constraints.

Proof. We prove that the reduction defined in Theorem 5.1 is in fact an
L-reduction (see Definition 1.14) from Maximum Dicut to Min PDS. Let I
be an instance of Maximum Dicut on a DAG G = (V,E) with m edges and
construct the instance I ′ of Min PDS from G as in Theorem 5.1. We know
that any optimal solution of Maximum Dicut contains at least m

4
edges

[3]. Thus, OPT (I) ≥ m
4

, which implies that OPT (I ′) = m − OPT (I) ≤
4 · OPT (I) − OPT (I) = 3 · OPT (I). Also, |OPT (I) − (m − k)| = |(m −
OPT (I ′))− (m−k)| = |OPT (I ′)−k|. Since Maximum Dicut is APX-hard
even when restricted on DAGs [63], the result follows. �

5.3.2. Scheduling with hard ride time constraints

Now, we study the variant of Min Pickup-Delivery Scheduling in which the
ride time constraints must be respected (hard constraints), while time windows
may be violated in return for penalty (soft constraints). We prove it can be solved
in linear time, despite the NP-hardness of Min Pickup-Delivery Scheduling
with soft ride time constraints, as shown in Section 5.3.1.

As it was mentioned in Section 5.2, we consider a model in which lateness
is the only possible way to violate a time window restriction. When both ride
times and time window constraints are hard, a linear time algorithm was proposed
by Firat and Woeginger in [44]. It has also been adapted to handle additional
minimum ride time constraints in [52]. We show how the same approach can be
used to minimise lateness penalties.

Our idea, similar to the one used in [44, 52], is to formulate a difference
constraint system (DCS) with variables of the schedule and interpret it as a graph
in which the existence of negative weight cycles is equivalent to infeasibility of the
DCS. In these papers, it is shown how to apply the single-source shortest path
algorithm for interval graphs presented in [7] to test the existence of negative weight
cycles in linear time. In case of feasible instances, a solution can be extracted
in linear time as well. We point out that this approach will lead to a schedule
visiting every stop as late as possible: the scheduled time of each stop is chosen
by the length of a shortest path from the start vertex. This path corresponds to a

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 90

chain of difference equations and can be seen as the tightest upper bound on the
timing value. Since the shortest path lengths are upper bounds this implies that
no feasible schedule can visit any of the stops later.

Theorem 5.3
Min Pickup-Delivery Scheduling can be solved in linear time if the
ride time constraints are hard.

Proof. For a given instance I of Min PDS consider the bijection f on
S such that f(x) = 2n − x + 1. Define the backward instance I ′ with the
same sequence of stops and with requests P′ := {(f(d), f(p)) : (p, d) ∈ P}.
The time windows are defined by a′s := 0 and b′s := a2n − af(s) for all
s ∈ S. The ride time constraints are r′f(d),f(p) := rp,d. Notice that a
feasible schedule of I ′ always exists, e.g. (0, · · · , 0) is a feasible solution.
However, solving the instance I ′ with Firat and Woeginger’s algorithm [44]
yields a feasible schedule t′ of I ′ such that every stop is scheduled as late
as possible to be still feasible. We can translate t′ to a schedule t of I by
setting ts := a2n− t′f(s) for all s ∈ S. Then t may violate lateness constraints
of I, but we will show that it is feasible for I. Firstly, for s ∈ S, we get
ts = a2n − t′f(s) ≥ a2n − b′f(s) = a2n − a2n + as = as. When s ∈ S<2n, we get
ts = a2n − t′f(s) = a2n − t′2n−s+1 ≤ a2n − t′2n−s = a2n − t′f(s+1) = ts+1. Lastly,
for (p, d) ∈ P, we have td − tp = t′f(p) − t′f(d) ≤ r′f(p),f(d) = rp,d. Therefore
t is a feasible schedule for I. As it was noted earlier, t′ visits every stop
‘as late as possible’ to be still feasible. Since all lateness penalties are non-
decreasing, t is an optimal schedule for I. �

5.4. Bounded maximum ride time
The Min Pickup-Delivery Scheduling problem is NP-hard as it follows from
Section 5.3.1. In this section we show that some restrictions on the parameters of
the problem improve the complexity of the problem.

We suppose that µ ∈ N is a fixed constant. Let µ-Min Pickup-Delivery
Scheduling (µ-Min PDS) be the restriction of the Min Pickup-Delivery
Scheduling problem to the instances with the maximum ride time bounded by µ,
that is, rp,d ≤ µ for all (p, d) ∈ P. In the following we propose a polynomial-time
algorithm for µ-Min PDS.

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 91

Given an instance of Min PDS, let W be the set of all time window bounds
for all stops, i.e. W =

⋃
s∈S{as, bs}. Firstly, we observe that the visit times of an

optimal solution can be chosen from a restricted set of time values. We define the
set

W̃ := (
⋃
w∈W

[w − nµ,w + nµ])≥a1,≤a2n .

We say that a schedule t is defined in W̃ if and only if ts ∈ W̃ for all s ∈ S. Note
that W̃ =W in case of 0−Min PDS.

Our goal is to show that it is possible to “shift” the visit times in a schedule
without increasing its cost until the schedule is defined in W̃ . For this purpose we
define a so called closure of each stop. The closure is a subset of stops for which
the timings will be adjusted together.

Definition 5.1
Let I be an instance of Min PDS and t be a feasible schedule of I. For a
stop s ∈ S the closure Gt

s is the minimal subset of S fulfilling the following:

(a) s ∈ Gt
s,

(b) if x ∈ Gt
s and y ∈ S with tx = ty, then y ∈ Gt

s,

(c) for each (p, d) ∈ P such that td − tp ≤ rp,d and {p, d} ∩ Gt
s 6= ∅ then

all stops x ∈ S with p ≤ x ≤ d must be in Gt
s.

Now, we show that we can modify the visit times of all stops included in a
closure without violating any new ride time constraints.

Lemma 5.3
Let t be a feasible schedule of an instance I of Min PDS and ` ∈ S be a
stop with closure Gt

`. For a fixed δ ∈ {−1, 1} let t′ be a schedule such that
t′s = ts + δ for all s ∈ Gt

s and t′s = ts for all s ∈ S \ Gt
s. Then:

(i) t′ satisfies all ride time constraints satisfied by t, and

(ii) for all stops s ∈ S<2n it holds t′s ≤ t′s+1.

Proof. (i) As it follows from Definition 5.1(c), for all (p, d) ∈ P with
td − tp ≤ rp,d, either both p and d are contained in Gt

` or neither of them.
If p, d 6∈ Gt

` then t′d − t′p = td − tp ≤ rp,d. If p, d ∈ Gt
` then t′d − t′p =

td + δ − tp − δ = td − tp ≤ rp,d. Hence in both cases t′ respects the ride time
constraints.

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 92

(ii) Fix s ∈ S<2n. Since t is feasible it holds ts ≤ ts+1. By δ ∈ {−1, 1},
t′s > t′s+1 would imply ts = ts+1 and {s, s+ 1} ∩ Gt

` = 1, which conflicts with
the Definition 5.1 (b). �

Using Lemma 5.3 we can shift all visit times of stops in a closure until one of
the stops reaches a time window border. As it follows from the following lemma,
this implies that all stops in the closures are close to this border and thus in W̃ .

Lemma 5.4
Let t be a feasible schedule of an instance I of µ-Min PDS and let s ∈ S.
If Gt

s contains at least two stops, say x, y, and the stop x precedes y, i.e.
x < y, then:

(i) if the stop y immediately follows the stop x, i.e. y = x + 1, then
ty ≤ tx + µ, and

(ii) ty ≤ tx + nµ.

Proof. (i) Let y = x+ 1. By the definition of Gt
s, either tx = ty, in which

case (i) follows, or there exists p, d ∈ Gt
s such that (p, d) ∈ P, td − tp ≤ rp,d,

and p ≤ x < y ≤ d. By the feasibility of t we have tp ≤ tx and ty ≤ td and
td − tp ≤ rp,d ≤ µ. Therefore, ty ≤ td ≤ tp + µ ≤ tx + µ.
(ii) If all stops in Gts are scheduled at the same time, the claim obviously holds.
Otherwise, we consider the partition of Gt

s into nonempty sets G1, . . . , Gk

such that: for all Gi ∈ Gt
s and all x, y ∈ Gi, it holds tx = ty, and we denote

this time by t(Gi); for all Gi, Gj ∈ Gt
s, if i < j, then t(Gi) < t(Gj). Due to

the properties of Gt
s, for each i < k there exists i < j ≤ k such that there

is a (p, d) ∈ P with p ∈ Gi, d ∈ Gj, and t(Gj) ≤ t(Gi) + rp,d ≤ t(Gi) + µ.
This leads to the observation, that for all i < k we have t(Gi+1) ≤ t(Gi) + µ.
Thus, we get t(Gk) ≤ t(G1) + kµ. We note that since for each i < k there is
a pickup stop in Gi, it is k ≤ n+1 and thus t(Gk) ≤ t(G1) + nµ. Obviously
tx ≥ t(G1) and ty ≤ t(Gk) which completes the proof. �

Theorem 5.4
For a given instance of µ-Min PDS there is an optimal schedule t defined
in W̃ .

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 93

Proof. Assume the statement does not hold, then for every optimal
schedule t of I there is a stop ` ∈ S such that t` 6∈ W̃ . Let t∗ be an optimal
schedule maximising ` ∈ S such that t∗s ∈ W̃ for all s < ` and from all such
schedulings t∗` have the maximum value.
Let G := Gt∗

` be the closure of the stop `. If there is g ∈ G with t∗g ∈ W , then,
by Lemma 5.4 (ii), |t∗` − t∗g| ≤ nµ, and therefore t∗` ∈ W̃ , which contradicts
the choice of `. Thus, for all g ∈ G, necessarily t∗g 6∈ W and since t∗ is feasible
we have t∗g > ag.
Now, define a schedule t− and set t−s := t∗s − 1 for s ∈ G and t−s := t∗s
otherwise. Note that t− is feasible since for all g ∈ G it holds t∗g > ag. Let
L∗

t := {s ∈ S : t∗s > bs} be the set containing all stops of S in which t∗ violates
the lateness constraint. Similarly, let R∗

t :=
{
(p, d) ∈ P : t∗d − t∗p > rp,d

}
be

the set of all requests from P for which t∗ violates the ride time constraints.
According to Lemma 5.3, Rt− ⊆ Rt∗ and for each stop s we have t−s ≤ t−s+1.
Let L := Lt∗ ∩ G, R1 := {(p, d) ∈ Rt∗ : p 6∈ G, d ∈ G} and R2 := {(p, d) ∈
Rt∗ : p ∈ G, d 6∈ G}. Then,

c(t−) = c(t∗) +
∑
x∈R2

αx −
∑
x∈R1

αx −
∑

x∈Rt∗\Rt−

βx −
∑
s∈L

αs −
∑

s∈Lt∗\Lt−

βs

By the optimality of t∗ and feasibility of t− we have c(t−) ≥ c(t∗), yielding∑
x∈R2

αx ≥
∑
s∈L

αs +
∑
x∈R1

αx (5.3)

Now, define the schedule t+ such that t+s := t∗s+1 for each s ∈ G and t+s := t∗s
otherwise. According to Lemma 5.3 (ii), t+ is feasible. Since t∗g 6= bg ∈ W for
any g ∈ G, all lateness constraints satisfied in t∗ are satisfied in t+ as well.
Moreover, Lemma 5.3 (i) guarantees that all ride time constraints satisfied
in t∗ are satisfied in t+. Therefore, we have

c(t+) ≤ c(t∗) +
∑
x∈R1

αx +
∑
s∈L

αs −
∑
x∈R2

αx

by (5.3)
≤ c(t∗) ,

which implies that t+ is also optimal. Furthermore, for all stops s ∈ S such
that s < minG it holds t+s = t∗s ∈ W̃ . Now, due to the choice of t∗ and `, we
have t+` 6∈ W̃ . However, t+` > t∗` , which contradicts the choice of t∗ regarding
the maximum value of t∗` . �

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 94

Our next goal is to show how we can compute an optimal schedule in polynomial
time, using the fact that we know that at least one optimal schedule is defined in
W̃ , as proved in Theorem 5.4.

We define Js := {(p, d) ∈ P : p ≤ s and s < d} as the set of loaded requests
after the stop s ∈ S, and its size load(s) := |Js|

Definition 5.2
For a given schedule t of an instance of µ-Min PDS and a stop ` ∈ S we
define the partial cost c̃(t, `) of t up to the stop ` ∈ S as

c̃(t, `) :=
∑
s∈S≤`

σL
s (ts) +

∑
(p,d)∈J`

σRT
p,d (t` − tp) +

∑
(p,d)∈P
d≤`

σRT
p,d (td − tp) .

In the following lemma we prove some observations regarding the partial cost
function.

Lemma 5.5
For a given schedule t of the instance µ-Min PDS and the stop ` ∈ S the
following hold

(i) c̃(t, 1) = σL
1 (t1);

(ii) c̃(t, `+ 1) = c̃(t, `) + σL
`+1(t`+1) +

∑
(p,d)∈J`

f `
p,d(t)

with f `
p,d(t) :=

{
αp,d(t`+1 − t`), if t` − tp > rp,d

σRT
p,d (t`+1 − tp), if t` − tp ≤ rp,d

,

(iii) c̃(t, 2n) = c(t),

Proof. (i) and (iii) follow directly from Definition 5.2.
Regarding (ii), we note that for ` ∈ S<2n it is J`+1 = J` ∪ {(` + 1, d)} if
(`+1) is a pickup stop and (`+1, d) ∈ P, or J`+1 = J` \{(p, `+1)} if (l+1)

is a delivery stop, (p, `+ 1) ∈ P. Therefore,∑
(p,d)∈J`+1

σRT
p,d (t`+1 − tp) =

∑
(p,d)∈J`

σRT
p,d (t`+1 − tp) + σRT

`+1,d(t`+1 − t`+1)

=
∑

(p,d)∈J`

σRT
p,d (t`+1 − tp)

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 95

or ∑
(p,d)∈J`+1

σRT
p,d (t`+1 − tp) =

∑
(p,d)∈J`

σRT
p,d (t`+1 − tp)− σRT

p,`+1(t`+1 − tp) .

Thus

c̃(t, `+ 1) =
∑

s∈S≤`+1

σL
s (ts) +

∑
(p,d)∈J`+1

σRT
p,d (t`+1 − tp) +

∑
(p,d)∈P
d≤`+1

σRT
p,d (td − tp)

=
∑

s∈S≤`+1

σL
s (ts) +

∑
(p,d)∈J`

σRT
p,d (t`+1 − tp) +

∑
(p,d)∈P
d≤`

σRT
p,d (td − tp)

= c̃(t, `) + σL
`+1(t`+1) +

∑
(p,d)∈J`

(σRT
p,d (t`+1 − tp)− σRT

p,d (t` − tp)) .

For (p, d) ∈ J` we have σRT
p,d (t`−tp) = 0 if t`−tp ≤ rp,d, otherwise σRT

p,d (t`+1−
tp)−σRT

p,d (t`− tp) = αp,d(t`+1− tp)+βp,d−αp,d(t`− tp)−βp,d = αp,d(t`+1− t`).
Thus ∑

(p,d)∈J`

(σRT
p,d (t`+1 − tp)− σRT

p,d (t` − tp)) =
∑

(p,d)∈J`

f `
p,d(t) ,

which concludes the proof. �

Let I be an instance of µ-Min PDS. For each stop l, l = 1, 2, . . . , 2n we define
so called l-labels to capture the structure of ‘similar’ schedules for I. The labels
enable to restrict the number of schedules for I in each step and therefore to use
the idea of dynamic programming.

As it follows from Theorem 5.4, we can focus on schedules defined in W̃ only.
For a schedule t defined in W̃ and ` ∈ S, the `-label of t is defined as

Label`(t) =
(
t`, s0, s1, . . . , sµ, c̃(t, `)

)
,

where sm := min{s ∈ S such that ts ≥ t` − m}, i.e. sm is the first stop of the
schedule t visited at or after time (t` −m) for any m, 0 ≤ m ≤ µ.

Note that every schedule has one such label for each ` ∈ S, but a label may
describe more (different) schedules. We say that a label L ∈ W̃ × Sµ+1 ×Q+ is a
feasible `-label if there exists a feasible schedule t for I with Label`(t) = L.

In the following lemma we prove that in each stop there is a restriction on the
number of labels to consider to find an optimal schedule.

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 96

Lemma 5.6: Domination rule
Let I be an instance of µ-Min PDS and the stop ` ∈ S be fixed. Let
L1 =

(
τ, s0, s1, . . . , sµ, c̃1

)
and L2 =

(
τ, s0, s1, . . . , sµ, c̃2

)
be feasible `-labels

with c̃1 ≤ c̃2. Then there is a feasible schedule t with Label`(t) = L1 such
that c(t) ≤ c(t′) for any feasible schedule t′ with Label`(t′) = L2. We say
that the label L1 dominates the label L2.

Proof. Let t2 be a feasible schedule with Label`(t2) = L2 which minimises
c(t2). Let t1 be a feasible schedule with Label`(t1) = L1. Let t be the
schedule defined as ts := t1s for s ∈ S<` and ts := t2s for s ∈ S≥`. By this
definition (and t` = t2` = τ = t1`), Label`(t) = L1.
Now we show inductively that c̃(t, i) ≤ c̃(t2, i) for all i, ` ≤ i ≤ 2n. The case
i = ` holds due to c̃1 ≤ c̃2. For the induction step we assume c̃(t, i) ≤ c̃(t2, i)
holds for every i, ` ≤ i < 2n and now we show also validity for i+ 1. Using
Lemma 5.5 (ii) we have

c̃(t, i+ 1) = c̃(t, i) + σL
i+1(ti+1) +

∑
(p,d)∈Ji

f i
p,d(t) .

By the definition of t we have ti = t2i and ti+1 = t2i+1. Clearly σL
i+1(ti+1) =

σL
i+1(t2i+1). Next, we show f i

p,d(t) = f i
p,d(t2) for all (p, d) ∈ Ji. Let (p, d) ∈ Ji.

• If p ≥ sµ we show that tp = t2p. For contradiction we suppose tp 6= t2p
and without loss of generality tp > t2p. If m := t` − tp, then following
the schedule t it must hold sm ≤ p, but following the schedule t2 also
sm > p, a contradiction. Since t and t2 schedule such stop p at the
same time, f i

p,d(t) = f i
p,d(t2).

• If p < sµ, it means tp < t` − µ ≤ ti − rp,d and this leads to f i
p,d(t) =

αp,d(ti+1 − ti). The same arguments ensure f i
p,d(t2) = αp,d(t2i+1 − t2i).

Due to ti = t2i and ti+1 = t2i+1 we conclude f i
p,d(t) = f i

p,d(t2).

Together with the induction hypothesis we can see that c̃(t, i+1) ≤ c̃(t2, i+1)

and together with Lemma 5.5 (iii), the case i = 2n concludes the proof. �

Now, according to Lemma 5.6, we can give an upper bound on the number of
non-dominated labels for any fixed stop l ∈ S. There are at most |W̃| possibilities
for the first item of the label, hence O(µ · n2) if µ > 0 (in case µ = 0 only O(n)),
and O(n) choices for each of the next (µ+ 1) items of the label.

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 97

Remark 5.2. For each instance of µ-Min PDS and a stop ` ∈ S the number of
non-dominated `-labels is bounded by O(µ · nµ+3) if µ > 0 and by O(n2) if µ = 0.

This leads to the following results:

Theorem 5.5
An instance of µ-Min PDS with µ > 0 can be solved in time O(µ2 · nµ ·
poly(n)).

Proof. Starting with the initial labels
(
τ, 1, . . . , 1, σL

1 (τ)
)

for each τ ∈
W̃≥a1 we have all the labels for the first stop for any feasible schedule defined
on W̃ , by Lemma 5.5 (i). The labels for the stop ` ∈ S>1 can be calculated
from the labels of the stop (`−1). For a non-dominated label (τ, s0, . . . , sµ, c̃)
of the stop (`− 1) (there are O(µ · nµ+3) such labels) do the following: for
every possible visit time τ ′ ∈ W̃≥τ at the stop ` (there are O(µ · n2) such
possible time visits), generate a new label:

• the first item of the label is τ ′;

• the s∗ items are defined in the following way: (τ ′ − τ) items have the
value ` (truncate to at most µ + 1 items), if (τ ′ − τ) < µ + 1, then
start to add the items s0, . . . , sµ from the previous (l − 1)-label until
there are (µ+ 1) s∗-items,

• the new cost can be calculated in a linear time from the given label
using Lemma 5.5 (ii).

Overall each new label is generated in time O(n). Any label at the stop 2n

minimising the last item of the label (cost) represents only optimal schedules
by Lemma 5.5 (iii). �

Corollary 5.5.1

An instance of 0−Min PDS can be solved in time O(n5).

Proof. The result follows from the proof of Theorem 5.5 considering
W̃ =W and the fact that the number of non-dominated labels per stop is
bounded by O(n2). �

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 98

We consider another specific case, when the goal is to minimise the sum of the
lateness penalties and the sum of the ride times. This implies that µ = 0. Since
driving times are excluded from instances of our model (see Section 5.2.1), all ride
times can be seen as excess ride times (excess ride times are defined as the actual
ride time minus the driving time). The problem can be solved with the algorithm
of Dumas et al. [39] in linear time, as proved below. The ride times can also be
minimised in a weighted manner, using αp,d ≥ 0 for (p, d) ∈ P. The waiting time
before a stop s ∈ S>1 is then simply weighted by

∑
(p,d)∈Js−1

αp,d.

Proposition 5.1
Minimising lateness penalties and sum of the ride times can be done in
linear time.

Proof. Let I be an instance of Min PDS. The cost of a schedule t of I
minimising the sum of the lateness penalties and the sum of the ride times is

c(t) =
∑
s∈S

σL
s (ts) +

∑
(p,d)∈P

(td − tp) . (5.4)

There is no dependence with the maximum ride time, so we can set σRT
p,d (l) = l,

for all (p, d) ∈ P, thus Eqs. (5.1) and (5.4) are equivalent. Notice that this
is a special case of µ-Min PDS where µ = rp,d = 0, αp,d = 1 and βp,d = 0

for all request (p, d) ∈ P. We point out that, since the maximum ride times
are zero, the cost of a waiting time is directly dependent on the number of
requests affected by it, which is exactly the load of the vehicle. Then for a
schedule t, we have∑

(p,d)∈P

(td − tp) =
∑

s∈S<2n

load(s) · (ts+1 − ts) . (5.5)

This new formulation can be seen as penalised waiting times, hence the
problem can be solved with the algorithm of Dumas, Soumis and Desrosiers
[39] in linear time. �

5.5. First pickups then deliveries
In this section we study a class of polynomial-time solvable instance of Min
Pickup-Delivery Scheduling. We introduce First Pickup Then Deliveries
(FPTD) instances in which all the stops 1, . . . , n are pickup stops, and the

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 99

stops n + 1, . . . , 2n are delivery stops. We show that Min Pickup-Delivery
Scheduling can be solved in polynomial time in the class of FPTD instances
despite the NP-hardness of the problem (Section 5.3.1).

Firstly, we prove that for each stop we can reduce the set of potential scheduling
times to a subset polynomial in size. Each time in this subset is calculated from
the time windows and maximum ride time values of the given instance.

Definition 5.3
Let t be a schedule of an instance I of Min PDS and X ⊆ S. We say that
X is extended if for all s, s′ ∈ S, if s ∈ X and ts = ts′ then s′ ∈ X.
If X is extended, then we define t(X) := {ts : s ∈ X} as the set of different
visit times for the stops in X by t. We also define two altered schedules tX+

and tX− by setting, for all s ∈ S, tX+
s = ts + 1 and tX−

s = max{as, ts − 1}
if ts ∈ t(X), and tX+

s = tX−
s = ts otherwise. Note that if t is a feasible

schedule, then both tX+ and tX− are feasible schedules. We write ts+ and
ts− as shorthands for tX+ and tX−, with X = {x ∈ S : tx = ts}.

Lemma 5.7
Let I be an FPTD instance, t a feasible schedule for I, and s ≤ n a pickup
stop with ts < tn+1. Then, the schedule ts+ does not violate a ride time
constraint respected by t.

The previous lemma is straightforward, as no pickups are scheduled earlier
and no deliveries are scheduled later in ts+ compared to t.

Lemma 5.8
Let I be an instance of Min PDS, t be a schedule of I, and X ⊆ S be
extended and such that ts > as for all s ∈ X. If 2c(t) < c(tX−) + c(tX+)

then tX− or tX+ must violate a constraint satisfied by t.

Proof. To prove a contradiction, we suppose that tX− and tX+ only violate
a subset of the constraints violated in t and that 2c(t) < c(tX−) + c(tX+).
We define the following sets:

• XL := {x ∈ X : tx > bx},

• XP := {(p, d) ∈ P : p ∈ X, d /∈ X, td − tp > rp,d},

• XD := {(p, d) ∈ P : d ∈ X, p /∈ X, td − tp > rp,d}.

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 100

Let
∆ :=

∑
x∈XL

αL
x −

∑
(p,d)∈XP

αRT
p,d +

∑
(p,d)∈XD

αRT
p,d .

Since we suppose that tX− and tX+ only violate subsets of constraints
compared to t, we have c(tX−) ≤ c(t)−∆ (note that this makes use of ts > as

for all s ∈ X since otherwise tX−
s = ts) and c(tX+) ≤ c(t) +∆. By summing

these inequalities, we obtain 2c(t) ≥ c(tX−) + c(tX+), a contradiction. �

Lemma 5.9
Let I be an FPTD instance with 2n stops. Then there exists an optimal
schedule t of I such that for each s ∈ S:

• if ts < tn, then ts ∈ Bs(tn) such that
Bs(tn) :=

(
{bs′ : s′ ∈ S, s ≤ s′ ≤ n}<tn ∪⋃

(p,d)∈P, p≤s

{
max{tn, ad} − rp,d

})
≥as

;

• if ts = tn, then

ts ∈ C := {an}∪
⋃

(p,d)∈P

{
{bp, ad−rp,d}∪

⋃
(p′,d′)∈P

{bp+rp′,d′ , ad−rp,d+rp′,d′}
}
;

• if ts > tn, then ts = as.

Proof. We consider an optimal schedule t of an FPTD instance I. Among
all optimal schedules of I, t is chosen

(a) to minimise
∑

(p,d)∈P td, the sum of the delivery times, and such that

(b) for all s ∈ S≤n with ts < tn+1, any feasible schedule t′ with t′s > ts has
c(t′) > c(t).

In the following we show that the schedule t has the requested properties.
Due to assumptions about our model discussed in Section 5.2.1, we obviously
have t2n = a2n and following (a) the schedule must use ‘as soon as possible
delivery’ strategy, i.e. ts = max{tn, as}, for every s ∈ S>n.
Let s ∈ S. Notice that both ts− and ts+ are feasible schedules. Since t is
optimal, obviously c(ts−) ≥ c(t). We discuss separately the different options
how ts, tn, and tn+1 can be related and make a conclusion in each case.
Firstly, we assume ts < tn, thus ts < tn ≤ tn+1. Consider the following:

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 101

• if ts+ violates a constraint satisfied in t, then according to Lemma 5.7,
it must be a time window constraint and thus there is a stop s′ ∈ S≥s

with bs′ = ts, hence ts ∈ {bs′ : s′ ∈ S, s ≤ s′ ≤ n}<tn,≥as ⊆ Bs(tn);

• if ts− violates a constraint satisfied in t, then it must be a ride time
constraint, and there is a stop p ∈ S, (p, d) ∈ P, such that td − rp,d =

tp = ts, hence ts ∈
⋃

(p,d)∈P, p≤s

{
max{tn, ad} − rp,d

}
≥as
⊆ Bs(tn).

Secondly, assume that ts = tn = tn+1. Let K such that {s} ∪ {p : (p, d) ∈
P, tp = td− rp,d, td = ts} ⊆ K and extend it if necessary. If t` = a` = tn for
` ∈ K, we also have tn = an ∈ C. If on the other hand tp = ap < tn for some
p ∈ K, then p is a pickup. By (b) c(tp+) > c(t), which means there is a
stop ` ≥ p with t` = tp and t` ≥ b`. Also t` = tp = ap ≤ a` ≤ b`, concluding
t` = b`. Then tn = b` + rp,d ∈ C. On the other hand, when all ` ∈ K have
t` > a`, we can make use of Lemma 5.8. By (a) and (n + 1) ∈ K, it must
hold c(tK−) > c(t). Further, by optimality of t, c(t) ≤ c(tK+), and according
to Lemma 5.8 a constraint satisfied in t is violated by tK− or tK+:

• If tK− violates a constraint satisfied in t, then it must be a maximal
ride time constraint of a request (p, d) ∈ P with p ∈ K, d 6∈ K.
Therefore, td > tn and by (a) it is td = ad and tp = ad − rp,d. Further,
by definition of K, either tn = tp or tn = tp+ rp′,d′ for some (p′, d′) ∈ P.
We conclude ts = tn ∈ C.

• If tK+ violates a constraint satisfied in t we can see that it cannot
be a ride time constraint, since for all (p, d) ∈ P with d ∈ K and
td = tp + rp,d, also p ∈ K. Therefore, it is a time window constraint
with ts = b` for an ` ∈ S or ts = bp + rp,d for a (p, d) ∈ P, and thus
ts ∈ C.

Thirdly, assume ts = tn < tn+1, then s a is pickup stop. Obviously, tn < an+1

due to (a) td = ad for every delivery d ∈ S>n. If ts = a` for some ` ≤ n, then
by an ≥ a` and feasibility of t it is ts = an ∈ C. Otherwise it follows from
Lemma 5.8 that ts− or ts+ violates a constraint satisfied in t:

• if ts+ violates a constraint satisfied in t, then according to Lemma 5.7,
it must be a time window constraint with tn = bn, and hence ts ∈ C;

• if ts− violates a constraint satisfied in t, then it must be a ride time
constraint with ts = tn = ad − rp,d, (p, d) ∈ P, and hence ts ∈ C.

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 102

Finally, assume that ts > tn. Then the stop s must be a delivery stop,
i.e. s ∈ S>n and the deliveries being scheduled using ‘as soon as possible’
strategy according to (a) ts = as. �

According to Lemma 5.9, there is an optimal schedule t with tn ∈ C, and |C|
is quadratic in the instance size. Moreover, when tn is fixed, each stop s ∈ S<n

with ts < tn belongs to Bs(tn), which is linear in size. Obviously, when tn is fixed,
one can schedule all deliveries d ∈ S>n at td := max{tn, ad}. In the following, we
show how an optimal schedule for a fixed tn can be efficiently calculated.

Let p ∈ S≤n be a pickup stop and (p, d) ∈ P its corresponding request. We
define the function σk

p as the partial cost of scheduling p when tn = k such that if
p is scheduled at l, then σk

p(l) = σL
p (l) + σRT

p,d (max{k, ad} − l). In order to define
a recursive equation for calculating the cost of the optimal schedule, we define for
each pickup stop s ∈ S≤n the function T k

s : N→ N:

T k
s (j) :=

{
max (Bs(k) ∪ {k})≤j if (Bs(k) ∪ {k})≤j 6= ∅,
−1 otherwise.

The call of T k
s (j) yields the largest time of the set Bs(k) ∪ {k} which is smaller

than j, or returns −1 if there is no such time. Thus, given tn = k and a bound j

on the visit time for the pickup s, we are able to iterate over the candidate times
for s in Bs(k) ∪ {k}.
Thereby, we can define a recursion table calculating the minimum cost of a schedule
t when the value of tn is fixed.

Lemma 5.10
Let I be an FPTD instance, k ∈ C, t a minimum cost schedule of I such
that tn = k. Then, c(t) = C[n, k] +

∑
d∈S>n

σL
d (max{k, ad}) with

C[i, j] =

min

 C[i− 1, T k
i−1(j)] + σk

i (j),

C[i, T k
i (j − 1)]

 if i ≥ 1, j ≥ ai,

0 if i = 0,

∞ otherwise.

(5.6)

Proof. We consider that t schedules the deliveries as soon as pos-
sible, i.e. td = max{k, ad}, for all d ∈ S>n. We have c(t) =∑

s∈S σ
L
s (ts)+

∑
(p,d)∈P σ

RT
p,d (td− tp). Here, we can write c(t) =

∑
s∈S σ

L
s (ts)+

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 103

∑
(p,d)∈P σ

RT
(p,d)(max{k, ad} − tp). Thus, by rewriting the sum, we obtain

c(t) =
∑

(p,d)∈P

[σL
p (tp) + σRT

p,d (max{k, ad} − tp)] +
∑

d∈S>n

σL
d (max{k, ad}) ,

so we need to prove that

C[n,m] =
∑

(p,d)∈P

[σL
p (tp) + σRT

p,d (max{k, ad} − tp)] =
∑

p∈S≤n

σk
p(tp) .

It is easy to notice that C[i, j] = 0 + σk
1(T

k
1 (j1)) + · · · + σk

i (T
k
i (j)) =∑i

l=1 σ
k
l (T

k
l (jl)) with 0 ≤ j1 ≤ j2 ≤ · · · ≤ j. Moreover, we can assume

that T k
l (jl) ≥ al for l ≤ i, otherwise C[i, jl] = ∞, which cannot be a min-

imum. So the equation only considers times which respect the feasibility of a
corresponding schedule. Hence, C[n, k] = c(t)−

∑
d∈S>n σ

L
d (max{k, ad}). �

Finally, to find the cost of an optimal schedule, we have to compute the value
C[n, k] for each k ∈ C. Algorithm 3 uses dynamic programming to compute this
calue in O(n4) time.

Algorithm 3: Dynamic programming algorithm for FPTD instances.
Input: I, an FPTD instance.
Output: an optimal schedule of I.

1 best :=∞;
2 C∗ := two-dimensional array;
3 for k ∈ C do // O(n2)
4 Compute C[n, k] with Eq. (5.6) and save the values in C; // O(n2)
5 score := C[n, k] +

∑
d∈S>n

σL
d (max{k, ad});

6 if score < best then
7 C∗ ← C;
8 best← score;

9 backtrack C∗ to get t and set td := max{tn, ad}, ∀d ∈ S>n; // O(n)
10 return t;

Theorem 5.6
An FPTD instance I with 2n stops can be solved in O(n4).

Proof. According to Lemma 5.10, Eq. (5.6) calculates the cost of an op-
timal schedule. The proof shows that each time used by Eq. (5.6) to compute
C[n, k] can be used to create a feasible schedule. Then, by backtracking

CHAPTER 5. SCHEDULING OF DIAL-A-RIDE PROBLEMS 104

the computed table C∗, one can obtain an optimal schedule of I in linear
time. Compute C[n, k] for a fixed k takes O(nm) for m = maxs∈S |Bs(k)|.
Since |Bs(k)| = O(n) for all s ∈ S, independently of k, one can calculate the
optimal schedule for a fixed tn = k in O(n2). This step has to be done for
each k in C, thus O(n2) times. Hence the O(n4) time complexity. �

5.6. Conclusion
We study a new model of the Dial-A-Ride Problem for the scheduling of fixed
sequences with several time constraints typical in the Pickup-and-Delivery scenario.
We highlight the key role of soft ride time constraints in the combinatorial
complexity of the problem, as they induce the NP-hardness of the problem.
Then, we prove that if the ride times are bounded by a constant, we can obtain a
polynomial-time algorithm. Finally, we show that instances of the problem with a
special structure can be solved efficiently, independently of the timing constraints.
We believe that this result can be generalised whenever the number of times a
pickup is followed by a delivery in the sequence is bounded.

All our polynomial-time algorithms for restricted instances make use of the
fact that earliness at stops can be translated into a linear number of ride time
constraints. Therefore, we can take advantage of increasing time windows opening
times and as soon as possible deliveries properties. It may be interesting to exploit
these properties in already existing algorithms and heuristics for DARP with ride
time constraints.

Future research may consider other types of time constraints and more complex
penalty functions in restricted instances.

Chapter 6
Conclusion

Outline
6.1 Deciding if a 2-PDS partition exists 106
6.2 PDS of maximum size . 106
6.3 Colourful components problems 107
6.4 Scheduling with soft time constraints 108

“Play is the highest form of research.”

Albert Einstein

Motivated by real life challenges and pure research curiosity, we have studied
several problems. In this chapter, we recall these problems, review our different
results and propose some directions for future research.

105

CHAPTER 6. CONCLUSION 106

6.1. Deciding if a 2-PDS partition exists
In Chapter 2, we defined the notion of proportional density, a new paradigm in
graph theory that combines local and global properties of the graph within a same
inequation. We focused on the problem of finding a 2-PDS partition in a graph,
that is, a partition of the graph into two proportionally dense subgraphs. Previous
research proposed polynomial-time algorithms to find a 2-PDS partition in several
classes of graphs, such as trees and graphs with maximum degree 3. However, the
existence of graphs without a 2-PDS partition was unknown and our goal was to
settle this question, originally asked in [10]. With a computer based approach,
we have been able to find small counterexamples and, from their properties and
structural similitudes, we defined an infinite family of graphs without a 2-PDS
partition. We noticed that all other graphs we generated up to 10 vertices have
at least one connected 2-PDS partition, and hence decided to generate all the
connected graphs with 11 vertices to check whether they all admit a 2-PDS
partition, and if it is connected. We obtained graphs that have a disconnected
2-PDS partition but not a connected one, and we described an infinite family
of such graphs. These results answer our original question and more, but the
complexity of deciding if a graph admits a (connected) 2-PDS partition remains
unknown. Our infinite families are a good start for finding structural properties
of graphs to ensure that they admit, or not, a (connected) 2-PDS partition.

6.2. PDS of maximum size
The notions of proportional density and proportionally dense subgraph were used
again in Chapter 3 to define the Max PDS problem, which consists in finding
a PDS of maximum size. The problem is motivated by the concept of 2-PDS
partition, though dropping the requirement that all the vertices are in a PDS.

We proved several hardness results for Max PDS, such as its APX-hardness
on split graphs and NP-hardness on bipartite graphs. We also show that deciding
if a PDS is inclusion-wise maximal is coNP-complete, even on bipartite graphs.

We gave a polynomial-time 2·(∆−1)+1
∆

-approximation algorithm, with ∆ the
maximum degee of the graph, proving at the same time that the problem is
APX-complete. This algorithm always returns a PDS of size dn

2
e or dn

2
e + 1,

which implies that all graphs have a PDS of one of these sizes. However, the
returned PDS is not necessarily connected and it would be interesting to look for
approximation algorithms returning a connected subgraph.

CHAPTER 6. CONCLUSION 107

Then, we considered the problem on Hamiltonian cubic graphs and proved
that all Hamiltonian cubic graphs except two have a PDS of size b2n+1

3
c, which is

an upper bound on the size of a PDS in a cubic graph. Moreover, such a PDS
can be found in linear time if a Hamiltonian cycle is given as an additional input.
We conjecture that every cubic graph (apart from our two exceptions) has a PDS
of size b2n+1

3
c. We also propose a stronger conjecture stating that for any positive

integer d, there exists t such that every connected d-regular graphs with at least t
vertices has a PDS of size b (∆−1)·n+1

∆
c.

6.3. Colourful components problems
In Chapter 4, we considered two graph partitioning problems on vertex-coloured
graphs, namely Colourful Components and Colourful Partition. These
problems are motivated by comparative genomics, but are also very close to
well studied graph problems such as Graph Motif, Multicut and Multi-
Multiway Cut.

The first part of our contributions is related to the complexity of the problems
on k-caterpillars. In particular, we proved that both problems are NP-complete
on binary 4-caterpillars, on ternary 3-caterpillars and on quaternary 2-caterpillars.
These results answer an open question raised in [18] regarding the complexity
of the problems on trees with maximum degree at most 5. Yet, we were able
to give a linear-time algorithm that solves the problem on 1-caterpillars without
restricition on the maximum degree and even if the backbone induces a cycle.
While the fact that the problem is polynomial-time solvable on 1-caterpillars is
not surprising, it is however very interesting to obtain a linear time complexity.
Besides, our algorithm is an improvement from the previously known quadratic-
time algorithm on paths [36] and applies to a much wider class of graphs. Note that
only three open cases remain to obtain a complete dichotomy on k-caterpillars: the
complexity on binary 3-caterpillars, binary 2-caterpillars and ternary 2-caterpillars.

We then considered the complexity of Colourful Components in planar
graphs with small degree. It was proved in [17] that the problem is NP-complete
on 3-coloured graphs with maximum degree 6. Using the same kind of reduction,
we were able to prove that the problem remains NP-hard on 5-coloured planar
graphs with maximum degree 4 and on 12-coloured planar graphs with maximum
degree 3. Our results answer an open question from [18] about the complexity
of Colourful Components in `-coloured graphs with maximum degree 5, for
some constant `. This hardness result is as good as possible with regard to the
maximum degree since the problem becomes polynomial-time solvable on graphs

CHAPTER 6. CONCLUSION 108

with maximum degree 2 (disjoint union of paths and cycles). One interesting
question is whether the problem remains NP-complete when the number of colours
is decreased but the maximum degree is 3 or 4.

6.4. Scheduling with soft time constraints
In Chapter 5, we studied a scheduling problem in the context of Dial-A-Ride
problems with fixed route and soft time constraints. An instance is a fixed
sequence of stops and a set of requests, associated with time window and ride
time constraints. Our model does not allow earliness at stops, and hence each
stop is given a time window constraint associated with one penalty function for
scheduling the stop late. Each request, i.e. an ordered pair of stops representing
the pickup and the delivery, is associated with a ride time constraint and a penalty
function. The penalty functions are linear and non-decreasing. The goal is to find
a schedule of minimum cost, with regard to the constraints.

An interesting first result is that the earliness at stops can be rewritten in terms
of ride time constraints. This observation allows us to transform our instances
into instances where the earliness at a stop is not allowed, and in turn provides
us with useful properties on the instance that we can exploit to design efficient
algorithms.

To the best of our knowledge, the complexity of the problem was not known
when allowing soft ride time constraints. We showed that the problem is NP-hard
even when the time window constraints are hard, that is, when only the ride
time constraints can be violated. Then, we proposed several polynomial-time
algorithms for restricted types of instances. First, we showed that the problem is
polynomial-time solvable whenever the ride time constraints are hard, highlighting
their importance in the complexity of the problem. Then, we gave a parameterized
algorithm for instances with bounded maximum ride time. We also showed that
minimising lateness penalties and sum of the ride times can be done in linear
time. Finally, we proved that the underlying structure of some instances can
be exploited to obtain efficient algorithms. In this regard, we showed that if all
pickups precede all deliveries, then the problem can be solved with a dynamic-
programming algorithm. This last result gives hope for a parameterized algorithm
for instances in which the number of pickups followed by a delivery is bounded.

Future research may try to develop efficient algorithms for non-linear penalty
functions, and eventually consider the approximation of the problem.

Bibliography

[1] A. Adamaszek and A. Popa, ‘Algorithmic and hardness results for the
colorful components problems’, Algorithmica, vol. 73, no. 2, pp. 371–388,
2015. doi: 10.1007/s00453-014-9926-0.

[2] P. Alimonti and V. Kann, ‘Some APX-completeness results for cubic graphs’,
Theoretical Computer Science, vol. 237, no. 1, pp. 123–134, 2000. doi:
10.1016/S0304-3975(98)00158-3.

[3] N. Alon, B. Bollobás, A. Gyárfás, J. Lehel and A. Scott, ‘Maximum directed
cuts in acyclic digraphs’, Journal of Graph Theory, vol. 55, no. 1, pp. 1–13,
2007. doi: 10.1002/jgt.20215.

[4] M. H. Alsuwaiyel, Algorithms: Design Techniques And Analysis (Revised
Edition). World Scientific, 2016, vol. 14. doi: 10.1142/9804.

[5] R. Andersen and K. Chellapilla, ‘Finding dense subgraphs with size bounds’,
in International Workshop on Algorithms and Models for the Web-Graph,
Springer, 2009, pp. 25–37. doi: 10.1007/978-3-540-95995-3_3.

[6] Y. Asahiro, R. Hassin and K. Iwama, ‘Complexity of finding dense sub-
graphs’, Discrete Applied Mathematics, vol. 121, no. 1-3, pp. 15–26, 2002.
doi: 10.1016/S0166-218X(01)00243-8.

[7] M. J. Atallah, D. Z. Chen and D. T. Lee, ‘An optimal algorithm for shortest
paths on weighted interval and circular-arc graphs, with applications’, Al-
gorithmica, vol. 14, no. 5, pp. 429–441, 1995. doi: 10.1007/BF01192049.

[8] G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P. Crescenzi
and V. Kann, Complexity and Approximation: Combinatorial Optimization
Problems and Their Approximability Properties, 1st. Berlin, Heidelberg:
Springer-Verlag, 1999, isbn: 3540654313.

[9] A. Avidor and M. Langberg, ‘The multi-multiway cut problem’, Theoretical
Computer Science, vol. 377, no. 1-3, pp. 35–42, 2007. doi: 10.1016/j.tcs.
2007.02.026.

[10] C. Bazgan, J. Chlebíková and T. Pontoizeau, ‘Structural and algorithmic
properties of 2-community structures’, Algorithmica, vol. 80, no. 6, pp. 1890–
1908, 2018. doi: 10.1007/s00453-017-0283-7.

109

https://doi.org/10.1007/s00453-014-9926-0
https://doi.org/10.1016/S0304-3975(98)00158-3
https://doi.org/10.1002/jgt.20215
https://doi.org/10.1142/9804
https://doi.org/10.1007/978-3-540-95995-3_3
https://doi.org/10.1016/S0166-218X(01)00243-8
https://doi.org/10.1007/BF01192049
https://doi.org/10.1016/j.tcs.2007.02.026
https://doi.org/10.1016/j.tcs.2007.02.026
https://doi.org/10.1007/s00453-017-0283-7

BIBLIOGRAPHY 110

[11] C. Bazgan, J. Chlebíková and C. Dallard, ‘Graphs without a partition
into two proportionally dense subgraphs’, arXiv e-prints, Submitted to
Information Processing Letters, 2018. arXiv: 1806.10963 [cs.DM].

[12] C. Bazgan, J. Chlebíková, C. Dallard and T. Pontoizeau, ‘Proportionally
dense subgraph of maximum size: complexity and approximation’, arXiv
e-prints, Accepted for publication in Discrete Applied Mathematics, 2019.
doi: 10.1016/j.dam.2019.07.010. arXiv: 1903.06579 [cs.CC].

[13] C. Bazgan, Z. Tuza and D. Vanderpooten, ‘The satisfactory partition prob-
lem’, Discrete Applied Mathematics, vol. 154, no. 8, pp. 1236–1245, 2006.
doi: 10.1016/j.dam.2005.10.014.

[14] P. Beame, S. Cook, J. Edmonds, R. Impagliazzo and T. Pitassi, ‘The
relative complexity of NP search problems’, Journal of Computer and System
Sciences, vol. 57, no. 1, pp. 3–19, 1998. doi: 10.1006/jcss.1998.1575.

[15] J. A. Bondy, U. S. R. Murty et al., Graph theory with applications. Macmillan
London, 1976, vol. 290. doi: 10.1007/978-1-349-03521-2.

[16] N. Bousquet, J. Daligault and S. Thomassé, ‘Multicut is FPT’, in Proceedings
of the forty-third annual ACM symposium on Theory of computing, ACM,
2011, pp. 459–468. doi: 10.1137/140961808.

[17] S. Bruckner, F. Hüffner, C. Komusiewicz, R. Niedermeier, S. Thiel and J.
Uhlmann, ‘Partitioning into colorful components by minimum edge deletions’,
in Annual Symposium on Combinatorial Pattern Matching, Springer, 2012,
pp. 56–69. doi: 10.1007/978-3-642-31265-6_5.

[18] L. Bulteau, K. K. Dabrowski, G. Fertin, M. Johnson, D. Paulusma and S.
Vialette, ‘Finding a Small Number of Colourful Components’, in 30th Annual
Symposium on Combinatorial Pattern Matching (CPM 2019), N. Pisanti
and S. P. Pissis, Eds., ser. Leibniz International Proceedings in Informatics
(LIPIcs), vol. 128, Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2019, 20:1–20:14, isbn: 978-3-95977-103-0. doi: 10.4230/
LIPIcs.CPM.2019.20. [Online]. Available: http://drops.dagstuhl.de/
opus/volltexte/2019/10491.

[19] J. Buresh-Oppenheim and T. Morioka, ‘Relativized NP search problems and
propositional proof systems’, in Proceedings. 19th IEEE Annual Conference
on Computational Complexity, 2004., IEEE, 2004, pp. 54–67. doi: 10.1109/
CCC.2004.1313795.

https://arxiv.org/abs/1806.10963
https://doi.org/10.1016/j.dam.2019.07.010
https://arxiv.org/abs/1903.06579
https://doi.org/10.1016/j.dam.2005.10.014
https://doi.org/10.1006/jcss.1998.1575
https://doi.org/10.1007/978-1-349-03521-2
https://doi.org/10.1137/140961808
https://doi.org/10.1007/978-3-642-31265-6_5
https://doi.org/10.4230/LIPIcs.CPM.2019.20
https://doi.org/10.4230/LIPIcs.CPM.2019.20
http://drops.dagstuhl.de/opus/volltexte/2019/10491
http://drops.dagstuhl.de/opus/volltexte/2019/10491
https://doi.org/10.1109/CCC.2004.1313795
https://doi.org/10.1109/CCC.2004.1313795

BIBLIOGRAPHY 111

[20] P. Buser, ‘Cubic graphs and the first eigenvalue of a riemann surface’,
Mathematische Zeitschrift, vol. 162, no. 1, pp. 87–99, 1978, issn: 1432-
1823. doi: 10.1007/BF01437826. [Online]. Available: https://doi.org/
10.1007/BF01437826.

[21] P. Buser, ‘On the bipartition of graphs’, Discrete applied mathematics, vol. 9,
no. 1, pp. 105–109, 1984. doi: 10.1016/0166-218X(84)90093-3.

[22] M. Chlebík and J. Chlebíková, ‘Complexity of approximating bounded
variants of optimization problems’, Theoretical Computer Science, vol. 354,
pp. 320–338, 2006. doi: 10.1016/j.tcs.2005.11.029.

[23] J. Chlebíková, ‘Approximating the maximally balanced connected partition
problem in graphs’, Information Processing Letters, vol. 60, no. 5, pp. 225–
230, 1996. doi: 10.1016/S0020-0190(96)00175-5.

[24] J. Chlebíková and C. Dallard, ‘Towards a complexity dichotomy for colourful
components problems on k-caterpillars and small-degree planar graphs’,
in International Workshop on Combinatorial Algorithms, Springer, 2019,
pp. 136–147. doi: 10.1007/978-3-030-25005-8_12.

[25] J. Chlebíková, C. Dallard and N. Paulsen, ‘Complexity of scheduling for
DARP with soft ride times’, in International Conference on Algorithms and
Complexity, Springer, 2019, pp. 149–160. doi: 10.1007/978-3-030-17402-
6_13.

[26] B. Chor, M. Fellows and D. Juedes, ‘Linear kernels in linear time, or how
to save k colors in O(n2) steps’, in International Workshop on Graph-
Theoretic Concepts in Computer Science, Springer, 2004, pp. 257–269. doi:
10.1007/978-3-540-30559-0_22.

[27] H. P. Christos and K. Steiglitz, ‘Combinatorial optimization: Algorithms
and complexity’, Prentice Hall Inc., 1982.

[28] S. Cook, ‘The P versus NP problem’, The millennium prize problems, pp. 87–
104, 2000.

[29] S. A. Cook, ‘The complexity of theorem-proving procedures’, in Proceedings
of the third annual ACM symposium on Theory of computing, ACM, 1971,
pp. 151–158. doi: 10.1145/800157.805047.

[30] J.-F. Cordeau and G. Laporte, ‘The dial-a-ride problem (DARP): Variants,
modeling issues and algorithms’, Quarterly Journal of the Belgian, French
and Italian Operations Research Societies, vol. 1, no. 2, pp. 89–101, 2003.
doi: 10.1007/s10288-002-0009-8.

https://doi.org/10.1007/BF01437826
https://doi.org/10.1007/BF01437826
https://doi.org/10.1007/BF01437826
https://doi.org/10.1016/0166-218X(84)90093-3
https://doi.org/10.1016/j.tcs.2005.11.029
https://doi.org/10.1016/S0020-0190(96)00175-5
https://doi.org/10.1007/978-3-030-25005-8_12
https://doi.org/10.1007/978-3-030-17402-6_13
https://doi.org/10.1007/978-3-030-17402-6_13
https://doi.org/10.1007/978-3-540-30559-0_22
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/s10288-002-0009-8

BIBLIOGRAPHY 112

[31] P. Crescenzi, ‘A short guide to approximation preserving reductions’, in
Proceedings of Computational Complexity. Twelfth Annual IEEE Conference,
IEEE, 1997, pp. 262–273. doi: 10.1109/CCC.1997.612321.

[32] M. Cygan, F. V. Fomin, . Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk and S. Saurabh, Parameterized algorithms. Springer, 2015. doi:
10.1007/978-3-319-21275-3.

[33] M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk and S. Saurabh, ‘Min-
imum bisection is fixed-parameter tractable’, SIAM Journal on Computing,
vol. 48, no. 2, pp. 417–450, 2019. doi: 10.1137/140988553.

[34] J. Desrosiers, Y. Dumas, M. M. Solomon and F. Soumis, ‘Time constrained
routing and scheduling’, Handbooks in operations research and management
science, vol. 8, pp. 35–139, 1995.

[35] I. Dinur and S. Safra, ‘On the hardness of approximating minimum vertex
cover’, Annals of Mathematics, pp. 439–485, 2005.

[36] R. Dondi and F. Sikora, ‘Parameterized complexity and approximation
issues for the colorful components problems’, Theoretical Computer Science,
vol. 739, pp. 1–12, 2018, issn: 0304-3975. doi: 10.1016/j.tcs.2018.04.
044.

[37] R. G. Downey and M. R. Fellows, ‘Fixed-parameter tractability and com-
pleteness II: On completeness for W[1]’, Theoretical Computer Science,
vol. 141, no. 1-2, pp. 109–131, 1995. doi: 10.1016/0304-3975(94)00097-3.

[38] R. G. Downey and M. R. Fellows, Parameterized complexity. Springer Science
& Business Media, 2012. doi: 10.1016/S1571-0661(04)00301-9.

[39] Y. Dumas, F. Soumis and J. Desrosiers, ‘Optimizing the schedule for a
fixed vehicle path with convex inconvenience costs’, Transportation Science,
vol. 24, no. 2, pp. 145–152, 1990.

[40] V. Estivill-Castro and M. Parsa, ‘On connected two communities’, in Pro-
ceedings of the 36th Australasian Computer Science Conference (ACSC),
2013, pp. 23–30.

[41] U. Feige and R. Krauthgamer, ‘A polylogarithmic approximation of the
minimum bisection’, SIAM Journal on Computing, vol. 31, no. 4, pp. 1090–
1118, 2002. doi: 10.1137/050640904.

[42] U. Feige, D. Peleg and G. Kortsarz, ‘The dense k-subgraph problem’, Al-
gorithmica, vol. 29, no. 3, pp. 410–421, 2001. doi: 10.1007/s004530010050.

https://doi.org/10.1109/CCC.1997.612321
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/140988553
https://doi.org/10.1016/j.tcs.2018.04.044
https://doi.org/10.1016/j.tcs.2018.04.044
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1016/S1571-0661(04)00301-9
https://doi.org/10.1137/050640904
https://doi.org/10.1007/s004530010050

BIBLIOGRAPHY 113

[43] M. R. Fellows, G. Fertin, D. Hermelin and S. Vialette, ‘Upper and lower
bounds for finding connected motifs in vertex-colored graphs’, Journal of
Computer and System Sciences, vol. 77, no. 4, pp. 799–811, 2011. doi:
10.1016/j.jcss.2010.07.003.

[44] M. Firat and G. J. Woeginger, ‘Analysis of the dial-a-ride problem of
Hunsaker and Savelsbergh’, Operations Research Letters, vol. 39, no. 1,
pp. 32–35, 2011. doi: 10.1016/j.orl.2010.11.004.

[45] R. W. Floyd, ‘Nondeterministic algorithms’, Journal of the ACM (JACM),
vol. 14, no. 4, pp. 636–644, 1967. doi: 10.1145/321420.321422.

[46] J. Flum and M. Grohe, Parameterized complexity theory. Springer Science
& Business Media, 2006.

[47] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[48] M. Gatto, R. Jacob, L. Peeters and A. Schöbel, ‘The computational complex-
ity of delay management’, in International Workshop on Graph-Theoretic
Concepts in Computer Science, Springer, 2005, pp. 227–238. doi: 10.1007/
11604686_20.

[49] M. U. Gerber and D. Kobler, ‘Algorithmic approach to the satisfactory
graph partitioning problem’, European Journal of Operational Research,
vol. 125, no. 2, pp. 283–291, 2000. doi: 10.1016/S0377-2217(99)00459-2.

[50] M. Gerber and D. Kobler, ‘Partitioning a graph to satisfy all vertices’, Swiss
Federal Institute of Technology, Lausanne, 1998.

[51] A. V. Goldberg, ‘Finding a maximum density subgraph’, EECS Department,
University of California, Berkeley, Tech. Rep. UCB/CSD-84-171, 1984.

[52] T. Gschwind, ‘Route feasibility testing and forward time slack for the
synchronized pickup and delivery problem’, Citeseer, Tech. Rep., 2015. doi:
10.1007/s00291-018-0544-0.

[53] G. He, J. Liu and C. Zhao, ‘Approximation algorithms for some graph
partitioning problems’, in Graph Algorithms And Applications 2, World
Scientific, 2004, pp. 21–31. doi: 10.1142/9789812794741_0002.

[54] S. C. Ho, W. Szeto, Y.-H. Kuo, J. M. Leung, M. Petering and T. W. Tou, ‘A
survey of dial-a-ride problems: Literature review and recent developments’,
Transportation Research Part B: Methodological, 2018. doi: 10.1016/j.trb.
2018.02.001.

https://doi.org/10.1016/j.jcss.2010.07.003
https://doi.org/10.1016/j.orl.2010.11.004
https://doi.org/10.1145/321420.321422
https://doi.org/10.1007/11604686_20
https://doi.org/10.1007/11604686_20
https://doi.org/10.1016/S0377-2217(99)00459-2
https://doi.org/10.1007/s00291-018-0544-0
https://doi.org/10.1142/9789812794741_0002
https://doi.org/10.1016/j.trb.2018.02.001
https://doi.org/10.1016/j.trb.2018.02.001

BIBLIOGRAPHY 114

[55] W.-L. Hsu and K.-H. Tsai, ‘Linear time algorithms on circular-arc graphs’,
Information Processing Letters, vol. 40, no. 3, pp. 123–129, 1991. doi:
10.1016/0020-0190(91)90165-E.

[56] L. T. Q. Hung, M. M. Syso, M. L. Weaver and D. B. West, ‘Bandwidth and
density for block graphs’, Discrete Math., vol. 189, no. 1-3, pp. 163–176,
1998, issn: 0012-365X.

[57] R. M. Karp, ‘Reducibility among combinatorial problems’, in Complexity of
computer computations, Springer, 1972, pp. 85–103. doi: 10.1007/978-1-
4684-2001-2_9.

[58] S. Khot, ‘On the power of unique 2-prover 1-round games’, in Proceedings
of the thiry-fourth annual ACM symposium on Theory of computing, ACM,
2002, pp. 767–775. doi: 10.1109/CCC.2002.1004334.

[59] S. Khot and O. Regev, ‘Vertex cover might be hard to approximate to within
2−ε’, Journal of Computer and System Sciences, vol. 74, no. 3, pp. 335–349,
2008.

[60] S. Khuller and B. Saha, ‘On finding dense subgraphs’, in 36th International
Colloquium on Automata, Languages and Programming (ICALP), ser. LNCS,
Springer-Verlag, vol. 5555, 2009, pp. 597–608. doi: 10.1007/978-3-642-
02927-1_50.

[61] P. Kristiansen, S. M. Hedetniemi and S. T. Hedetniemi, ‘Alliances in
graphs’, Journal of Combinatorial Mathematics and Combinatorial Com-
puting, vol. 48, pp. 157–177, 2004.

[62] R. E. Ladner, ‘On the structure of polynomial time reducibility’, Journal of
the ACM (JACM), vol. 22, no. 1, pp. 155–171, 1975. doi: 10.1145/321864.
321877.

[63] M. Lampis, G. Kaouri and V. Mitsou, ‘On the algorithmic effectiveness of
digraph decompositions and complexity measures’, Discrete Optimization,
vol. 8, no. 1, pp. 129–138, 2011. doi: 10.1016/j.disopt.2010.03.010.

[64] D. Lichtenstein, ‘Planar formulae and their uses’, SIAM Journal on Com-
puting, vol. 11, no. 2, pp. 329–343, 1982. doi: 10.1137/0211025.

[65] D. Lokshantov, M. Vatshelle and Y. Villanger, ‘Independent set in P5-free
graphs in polynomial time’, in Proceedings of the twenty-fifth annual ACM-
SIAM symposium on Discrete algorithms, Society for Industrial and Applied
Mathematics, 2014, pp. 570–581. doi: 10.1137/1.9781611973402.43.

https://doi.org/10.1016/0020-0190(91)90165-E
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1109/CCC.2002.1004334
https://doi.org/10.1007/978-3-642-02927-1_50
https://doi.org/10.1007/978-3-642-02927-1_50
https://doi.org/10.1145/321864.321877
https://doi.org/10.1145/321864.321877
https://doi.org/10.1016/j.disopt.2010.03.010
https://doi.org/10.1137/0211025
https://doi.org/10.1137/1.9781611973402.43

BIBLIOGRAPHY 115

[66] L. Lovász, ‘Graph minor theory’, Bulletin of the American Mathematical
Society, vol. 43, no. 1, pp. 75–86, 2006. doi: 10.1090/S0273-0979-05-
01088-8.

[67] D. Marx and I. Razgon, ‘Fixed-parameter tractability of multicut paramet-
erized by the size of the cutset’, SIAM Journal on Computing, vol. 43, no. 2,
pp. 355–388, 2014. doi: 10.1137/110855247.

[68] D. W. Matula and F. Shahrokhi, ‘Sparsest cuts and bottlenecks in graphs’,
Discrete Applied Mathematics, vol. 27, no. 1-2, pp. 113–123, 1990. doi:
10.1016/0166-218X(90)90133-W.

[69] B. D. McKay and A. Piperno, ‘Practical graph isomorphism, ii’, Journal
of Symbolic Computation, vol. 60, pp. 94–112, 2014. doi: 10.1016/j.jsc.
2013.09.003.

[70] N. Megiddo and C. H. Papadimitriou, ‘On total functions, existence theorems
and computational complexity’, Theoretical Computer Science, vol. 81, no. 2,
pp. 317–324, 1991. doi: 10.1016/0304-3975(91)90200-L.

[71] N. Misra, ‘On the parameterized complexity of colorful components and
related problems’, in International Workshop on Combinatorial Algorithms,
Springer, 2018, pp. 237–249. doi: 10.1007/978-3-319-94667-2_20.

[72] B. Mohar, ‘Isoperimetric numbers of graphs’, Journal of combinatorial
theory, Series B, vol. 47, no. 3, pp. 274–291, 1989. doi: 10.1016/0095-
8956(89)90029-4.

[73] M. Olsen, ‘A general view on computing communities’, Mathematical Social
Sciences, vol. 66, no. 3, pp. 331–336, 2013. doi: 10.1016/j.mathsocsci.
2013.07.002.

[74] C. H. Papadimitriou, ‘On inefficient proofs of existence and complexity
classes’, in Annals of Discrete Mathematics, vol. 51, Elsevier, 1992, pp. 245–
250. doi: 10.1016/S0167-5060(08)70637-X.

[75] C. H. Papadimitriou, ‘On the complexity of the parity argument and other
inefficient proofs of existence’, Journal of Computer and system Sciences,
vol. 48, no. 3, pp. 498–532, 1994. doi: 10.1016/S0022-0000(05)80063-7.

[76] C. H. Papadimitriou, Computational complexity. John Wiley and Sons Ltd.,
2003.

https://doi.org/10.1090/S0273-0979-05-01088-8
https://doi.org/10.1090/S0273-0979-05-01088-8
https://doi.org/10.1137/110855247
https://doi.org/10.1016/0166-218X(90)90133-W
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1007/978-3-319-94667-2_20
https://doi.org/10.1016/0095-8956(89)90029-4
https://doi.org/10.1016/0095-8956(89)90029-4
https://doi.org/10.1016/j.mathsocsci.2013.07.002
https://doi.org/10.1016/j.mathsocsci.2013.07.002
https://doi.org/10.1016/S0167-5060(08)70637-X
https://doi.org/10.1016/S0022-0000(05)80063-7

BIBLIOGRAPHY 116

[77] H. Räcke, ‘Optimal hierarchical decompositions for congestion minimization
in networks’, in Proceedings of the fortieth annual ACM symposium on
Theory of computing, ACM, 2008, pp. 255–264. doi: 10.1145/1374376.
1374415.

[78] R. W. Robinson and N. C. Wormald, ‘Almost all cubic graphs are hamilto-
nian’, Random Structures & Algorithms, vol. 3, no. 2, pp. 117–125, 1992.
doi: 10.1002/rsa.3240030202.

[79] J. A. Rodríguez-Velázquez, I. G. Yero and J. M. Sigarreta, ‘Defensive k-
alliances in graphs’, Applied Mathematics Letters, vol. 22, no. 1, pp. 96–100,
2009. doi: 10.1016/j.aml.2008.02.012.

[80] K. H. Shafique and R. D. Dutton, ‘On satisfactory partitioning of graphs’,
Congressus Numerantium, pp. 183–194, 2002.

[81] J. Tang, Y. Kong, H. Lau and A. W. Ip, ‘A note on efficient feasibility
testing for dial-a-ride problems’, Operations Research Letters, vol. 38, no. 5,
pp. 405–407, 2010. doi: 10.1016/j.orl.2010.05.002.

[82] R. E. Tarjan, ‘Edge-disjoint spanning trees and depth-first search’, Acta
Informatica, vol. 6, no. 2, pp. 171–185, 1976, issn: 1432-0525. doi: 10.1007/
BF00268499.

[83] S. Tippenhauer and W. Muzler, ‘On planar 3-SAT and its variants’, Fachbereich
Mathematik und Informatik der Freien Universitat Berlin, 2016.

[84] V. V. Vazirani, Approximation Algorithms. Berlin, Heidelberg: Springer-
Verlag, 2001, isbn: 3-540-65367-8. doi: 10.1007/978-3-662-04565-7.

[85] T. Vidal, T. G. Crainic, M. Gendreau and C. Prins, ‘Timing problems and
algorithms: Time decisions for sequences of activities’, Networks, vol. 65,
no. 2, pp. 102–128, 2015. doi: 10.1002/net.21587.

[86] D. Wagner and F. Wagner, ‘Between min cut and graph bisection’, in
International Symposium on Mathematical Foundations of Computer Science,
Springer, 1993, pp. 744–750. doi: 10.1007/3-540-57182-5_65.

[87] D. B. West et al., Introduction to graph theory. Prentice hall Upper Saddle
River, NJ, 1996, vol. 2.

[88] C. Zheng, K. Swenson, E. Lyons and D. Sankoff, ‘OMG! Orthologs in mul-
tiple genomes–competing graph-theoretical formulations’, in International
Workshop on Algorithms in Bioinformatics, Springer, 2011, pp. 364–375.
doi: 10.1007/978-3-642-23038-7_30.

https://doi.org/10.1145/1374376.1374415
https://doi.org/10.1145/1374376.1374415
https://doi.org/10.1002/rsa.3240030202
https://doi.org/10.1016/j.aml.2008.02.012
https://doi.org/10.1016/j.orl.2010.05.002
https://doi.org/10.1007/BF00268499
https://doi.org/10.1007/BF00268499
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1002/net.21587
https://doi.org/10.1007/3-540-57182-5_65
https://doi.org/10.1007/978-3-642-23038-7_30

Certificate of Ethics Review

Project Title: Doctoral thesis

Name: Clément Dallard User ID: 832753 Application Date: 25-Apr-2019 16:42 ER Number: ETHIC-2019-479

You must download your certificate, print a copy and keep it as a record of this review.

It is your responsibility to adhere to the University Ethics Policy and any Department/School or professional guidelines in the conduct of your study including
relevant guidelines regarding health and safety of researchers and University Health and Safety Policy.

It is also your responsibility to follow University guidance on Data Protection Policy:

General guidance for all data protection issues
University Data Protection Policy

You are reminded that as a University of Portsmouth Researcher you are bound by the UKRIO Code of Practice for Research; any breach of this code
could lead to action being taken following the University's Procedure for the Investigation of Allegations of Misconduct in Research.

Any changes in the answers to the questions reflecting the design, management or conduct of the research over the course of the project must be notified to
the Faculty Ethics Committee. Any changes that affect the answers given in the questionnaire, not reported to the Faculty Ethics Committee,
will invalidate this certificate.

This ethical review should not be used to infer any comment on the academic merits or methodology of the project. If you have not already done so, you
are advised to develop a clear protocol/proposal and ensure that it is independently reviewed by peers or others of appropriate standing. A favourable
ethical opinion should not be perceived as permission to proceed with the research; there might be other matters of governance which require further
consideration including the agreement of any organisation hosting the research.

(A1) Please briefly describe your project:: Doctoral thesis, titled "Graph partitions with proportional density and colouring constraints".
(A2) What faculty do you belong to?: Technology
(A3) I am sure that my project requires ethical review by my Faculty Ethics Committee because it includes at least one material ethical issue.: No
(A5) Has your project already been externally reviewed?: No
(B1) Is the study likely to involve human participants?: No
(B2) Are you certain that your project will not involve human subjects or participants?: Yes
(C6) Is there any risk to the health & safety of the researcher or members of the research team beyond those that have already been risk assessed?: No
(D2) Are there risks of damage to physical and/or ecological environmental features?: No
(D4) Are there risks of damage to features of historical or cultural heritage (e.g. impacts of study techniques, taking of samples)?: No
(E1) Will the study involve the investigator and/or any participants in activities that could be considered contentious, unacceptable, or illegal, or in any other
way harmful to the reputation of the University of Portsmouth?: No
(E2) Are there any potentially socially or culturally sensitive issues involved? (e.g. sexual, political, legal/criminal or financial): No
(F1) Does the project involve animals in any way?: No
(F2) Could the research outputs potentially be harmful to third parties?: No
(G1) Please confirm that you have read the University Ethics Policy and have considered the implications for your project.: Confirmed
(G2) Please confirm that you have read the UK RIO Code of Practice for Research and will conduct your project in accordance with it.: Confirmed
(G3) The University is committed to The Concordat to Support Research Integrity.: Confirmed
(G4) Submitting false or incorrect information is a breach of the University Ethics Policy and may be considered as misconduct and be subject to
disciplinary action. Please confirm you understand this and agree that the information you have entered is correct.: Confirmed

Page 1 of 1

UPR16 – April 2018

FORM UPR16
Research Ethics Review Checklist

Please include this completed form as an appendix to your thesis (see the
Research Degrees Operational Handbook for more information

Postgraduate Research Student (PGRS) Information

Student ID:

UP832753

PGRS Name:

Clement Dallard

Department:

School of Computing

First Supervisor:

Janka Chlebikova

Start Date:
(or progression date for Prof Doc students)

October 2016

Study Mode and Route:

Part-time

Full-time

MPhil

PhD

MD

Professional Doctorate

Title of Thesis:

Graph partitions with proportional density and colouring constraints

Thesis Word Count:
(excluding ancillary data)

33503

If you are unsure about any of the following, please contact the local representative on your Faculty Ethics Committee
for advice. Please note that it is your responsibility to follow the University’s Ethics Policy and any relevant University,
academic or professional guidelines in the conduct of your study

Although the Ethics Committee may have given your study a favourable opinion, the final responsibility for the ethical
conduct of this work lies with the researcher(s).

UKRIO Finished Research Checklist:
(If you would like to know more about the checklist, please see your Faculty or Departmental Ethics Committee rep or see the online
version of the full checklist at: http://www.ukrio.org/what-we-do/code-of-practice-for-research/)

a) Have all of your research and findings been reported accurately, honestly and
within a reasonable time frame?

YES
NO

b) Have all contributions to knowledge been acknowledged?

YES
NO

c) Have you complied with all agreements relating to intellectual property, publication
and authorship?

YES
NO

d) Has your research data been retained in a secure and accessible form and will it
remain so for the required duration?

YES
NO

e) Does your research comply with all legal, ethical, and contractual requirements?

YES
NO

Candidate Statement:

I have considered the ethical dimensions of the above named research project, and have successfully
obtained the necessary ethical approval(s)

Ethical review number(s) from Faculty Ethics Committee (or from
NRES/SCREC):

ETHIC-2019-479

If you have not submitted your work for ethical review, and/or you have answered ‘No’ to one or more of
questions a) to e), please explain below why this is so:

Signed (PGRS):

Date: 17/07/19

	Preliminaries
	Graphs: notations and definitions
	Computational complexity
	Algorithms
	Decision problems, ¶ and NP
	Optimisation problems, PO and NPO
	Dealing with the complexity
	Restriction of the problem on special types of instances
	Approximation and inapproximability
	Parameterized complexity

	Overview of the thesis

	2-PDS Partition
	Introduction
	Proportional density and PDS's
	Infinite classes of graphs
	Graphs without a 2-PDS partition
	Graphs without a connected 2-PDS partition

	Conclusion and further work

	Max Proportionally Dense Subgraph
	Introduction
	Notations and definitions
	Hardness results
	Split graphs
	Bipartite graphs

	Approximation of Maximum PDS
	Hamiltonian cubic graphs
	Conclusion and open problems

	Colourful Components Problems
	Introduction
	Complexity on k-caterpillars
	NP-complete cases
	The easy case

	Colourful Components on planar graphs
	Conclusion

	Scheduling of Dial-A-Ride Problems
	Introduction
	Problem statement
	Remarks on the model

	Complexity study
	Scheduling with soft ride time constraints
	Scheduling with hard ride time constraints

	Bounded maximum ride time
	First pickups then deliveries
	Conclusion

	Conclusion
	Deciding if a 2-PDS partition exists
	PDS of maximum size
	Colourful components problems
	Scheduling with soft time constraints

