4 research outputs found

    Generation of Folded Terrains from Simple Vector Maps

    Get PDF
    International audienceWhile several terrain generation methods focused on plausible watersheds, the fact that most mountains should not be isolated but rather be part of wider scale mountain ranges was seldom considered. In this work, we present the first procedural method that generates folded terrains from simple user input, in the form of some sparse peak distribution on a vector map. The key idea is to infer possible continental plates from this distribution and to use simplified plate tectonics to generate relevant terrain folds. The resulting terrain with large-scale folds, computed in real-time, can be further refined using standard erosion simulation. This leads to detailed terrains with plausible mountain ranges that match the peak distributions and main rivers specified on simple vector maps

    Quantifiable isovist and graph-based measures for automatic evaluation of different area types in virtual terrain generation

    Get PDF
    © 2013 IEEE. This article describes a set of proposed measures for characterizing areas within a virtual terrain in terms of their attributes and their relationships with other areas for incorporating game designers\u27 intent in gameplay requirement-based terrain generation. Examples of such gameplay elements include vantage point, strongholds, chokepoints and hidden areas. Our measures are constructed on characteristics of an isovist, that is, the volume of visible space at a local area and the connectivity of areas within the terrain. The calculation of these measures is detailed, in particular we introduce two new ways to accurately and efficiently calculate the 3D isovist volume. Unlike previous research that has mainly focused on aesthetic-based terrain generation, the proposed measures address a gap in gameplay requirement-based terrain generation-the need for a flexible mechanism to automatically parameterise specified areas and their associated relationships, capturing semantic knowledge relating to high level user intent associated with specific gameplay elements within the virtual terrain. We demonstrate applications of using the measures in an evolutionary process to automatically generate terrains that include specific gameplay elements as defined by a game designer. This is significant as this shows that the measures can characterize different gameplay elements and allow gameplay elements consistent with the designers\u27 intents to be generated and positioned in a virtual terrain without the need to specify low-level details at a model or logic level, hence leading to higher productivity and lower cost

    Quantifiable isovist and graph-based measures for automatic evaluation of different area types in virtual terrain generation

    Get PDF
    © 2013 IEEE. This article describes a set of proposed measures for characterizing areas within a virtual terrain in terms of their attributes and their relationships with other areas for incorporating game designers\u27 intent in gameplay requirement-based terrain generation. Examples of such gameplay elements include vantage point, strongholds, chokepoints and hidden areas. Our measures are constructed on characteristics of an isovist, that is, the volume of visible space at a local area and the connectivity of areas within the terrain. The calculation of these measures is detailed, in particular we introduce two new ways to accurately and efficiently calculate the 3D isovist volume. Unlike previous research that has mainly focused on aesthetic-based terrain generation, the proposed measures address a gap in gameplay requirement-based terrain generation-the need for a flexible mechanism to automatically parameterise specified areas and their associated relationships, capturing semantic knowledge relating to high level user intent associated with specific gameplay elements within the virtual terrain. We demonstrate applications of using the measures in an evolutionary process to automatically generate terrains that include specific gameplay elements as defined by a game designer. This is significant as this shows that the measures can characterize different gameplay elements and allow gameplay elements consistent with the designers\u27 intents to be generated and positioned in a virtual terrain without the need to specify low-level details at a model or logic level, hence leading to higher productivity and lower cost

    Evolving gameplay elements into virtual terrains

    Get PDF
    With advancements in technology, consumers are expecting higher quality and more detailed video game content. This puts a strain on video game companies and their developers as they are required to manually design and create increasingly complex video game content. Procedural content generation can alleviate this burden by using technology to automatically generate video game content, effectively reducing development time and budget. This thesis presents a novel approach towards procedurally generating video game terrains that meet a set of gameplay requirements as specified by the user. This approach uses a genetic algorithm to evolve a set of modifications that, when applied to a user-specified terrain, incorporates the desired gameplay elements. This approach can aid developers by reducing time spent manually creating and editing video game terrains. An important aspect of this research involved designing a set of measures capable of characterising gameplay elements. A collection of isovist and graph-connectivity measures were discovered that can characterise different types of gameplay elements so that they can be automatically identified in a video game terrain. This set of measures may be useful in other procedural methods and related fields
    corecore