5,832 research outputs found

    Visual identification by signature tracking

    Get PDF
    We propose a new camera-based biometric: visual signature identification. We discuss the importance of the parameterization of the signatures in order to achieve good classification results, independently of variations in the position of the camera with respect to the writing surface. We show that affine arc-length parameterization performs better than conventional time and Euclidean arc-length ones. We find that the system verification performance is better than 4 percent error on skilled forgeries and 1 percent error on random forgeries, and that its recognition performance is better than 1 percent error rate, comparable to the best camera-based biometrics

    Offline Handwritten Signature Verification - Literature Review

    Full text link
    The area of Handwritten Signature Verification has been broadly researched in the last decades, but remains an open research problem. The objective of signature verification systems is to discriminate if a given signature is genuine (produced by the claimed individual), or a forgery (produced by an impostor). This has demonstrated to be a challenging task, in particular in the offline (static) scenario, that uses images of scanned signatures, where the dynamic information about the signing process is not available. Many advancements have been proposed in the literature in the last 5-10 years, most notably the application of Deep Learning methods to learn feature representations from signature images. In this paper, we present how the problem has been handled in the past few decades, analyze the recent advancements in the field, and the potential directions for future research.Comment: Accepted to the International Conference on Image Processing Theory, Tools and Applications (IPTA 2017

    Multiple generation of Bengali static signatures

    Get PDF
    Handwritten signature datasets are really necessary for the purpose of developing and training automatic signature verification systems. It is desired that all samples in a signature dataset should exhibit both inter-personal and intra-personal variability. A possibility to model this reality seems to be obtained through the synthesis of signatures. In this paper we propose a method based on motor equivalence model theory to generate static Bengali signatures. This theory divides the human action to write mainly into cognitive and motor levels. Due to difference between scripts, we have redesigned our previous synthesizer [1,2], which generates static Western signatures. The experiments assess whether this method can approach the intra and inter-personal variability of the Bengali-100 Static Signature DB from a performance-based validation. The similarities reported in the experimental results proof the ability of the synthesizer to generate signature images in this script

    Feature Representation for Online Signature Verification

    Full text link
    Biometrics systems have been used in a wide range of applications and have improved people authentication. Signature verification is one of the most common biometric methods with techniques that employ various specifications of a signature. Recently, deep learning has achieved great success in many fields, such as image, sounds and text processing. In this paper, deep learning method has been used for feature extraction and feature selection.Comment: 10 pages, 10 figures, Submitted to IEEE Transactions on Information Forensics and Securit

    Generation of enhanced synthetic off-line signatures based on real on-line data

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. M. Díaz-Cabrera, M. Gómez-Barrero, A. Morales, M. A. Ferrer, J. Galbally, "Generation of Enhanced Synthetic Off-Line Signatures Based on Real On-Line Data" in 14th International Conference on Frontiers in Handwriting Recognition (ICFHR), Heraklion (Greece), 2014, 482 - 487One of the main challenges of off-line signature verification is the absence of large databases. A possible alternative to overcome this problem is the generation of fully synthetic signature databases, not subject to legal or privacy concerns. In this paper we propose several approaches to the synthesis of off-line enhanced signatures from real dynamic information. These synthetic samples show a performance very similar to the one offered by real signatures, even increasing their discriminative power under the skilled forgeries scenario, one of the biggest challenges of handwriting recognition. Furthermore, the feasibility of synthetically increasing the enrolment sets is analysed, showing promising results.This work has been partially supported by projects: MICINN TEC2012-38630-C04-02, Contexts (S2009/TIC-1485) from CAM, Bio-Shield (TEC2012-34881) from Spanish MINECO, TABULA RASA (FP7-ICT-257289) and BEAT (FP7-SEC-284989) from EU, and Cátedra UAM-Telefónica

    High-throughput, quantitative analyses of genetic interactions in E. coli.

    Get PDF
    Large-scale genetic interaction studies provide the basis for defining gene function and pathway architecture. Recent advances in the ability to generate double mutants en masse in Saccharomyces cerevisiae have dramatically accelerated the acquisition of genetic interaction information and the biological inferences that follow. Here we describe a method based on F factor-driven conjugation, which allows for high-throughput generation of double mutants in Escherichia coli. This method, termed genetic interaction analysis technology for E. coli (GIANT-coli), permits us to systematically generate and array double-mutant cells on solid media in high-density arrays. We show that colony size provides a robust and quantitative output of cellular fitness and that GIANT-coli can recapitulate known synthetic interactions and identify previously unidentified negative (synthetic sickness or lethality) and positive (suppressive or epistatic) relationships. Finally, we describe a complementary strategy for genome-wide suppressor-mutant identification. Together, these methods permit rapid, large-scale genetic interaction studies in E. coli
    corecore