18,998 research outputs found

    Efficient enumeration of solutions produced by closure operations

    Full text link
    In this paper we address the problem of generating all elements obtained by the saturation of an initial set by some operations. More precisely, we prove that we can generate the closure of a boolean relation (a set of boolean vectors) by polymorphisms with a polynomial delay. Therefore we can compute with polynomial delay the closure of a family of sets by any set of "set operations": union, intersection, symmetric difference, subsets, supersets …\dots). To do so, we study the MembershipFMembership_{\mathcal{F}} problem: for a set of operations F\mathcal{F}, decide whether an element belongs to the closure by F\mathcal{F} of a family of elements. In the boolean case, we prove that MembershipFMembership_{\mathcal{F}} is in P for any set of boolean operations F\mathcal{F}. When the input vectors are over a domain larger than two elements, we prove that the generic enumeration method fails, since MembershipFMembership_{\mathcal{F}} is NP-hard for some F\mathcal{F}. We also study the problem of generating minimal or maximal elements of closures and prove that some of them are related to well known enumeration problems such as the enumeration of the circuits of a matroid or the enumeration of maximal independent sets of a hypergraph. This article improves on previous works of the same authors.Comment: 30 pages, 1 figure. Long version of the article arXiv:1509.05623 of the same name which appeared in STACS 2016. Final version for DMTCS journa

    Random trees between two walls: Exact partition function

    Full text link
    We derive the exact partition function for a discrete model of random trees embedded in a one-dimensional space. These trees have vertices labeled by integers representing their position in the target space, with the SOS constraint that adjacent vertices have labels differing by +1 or -1. A non-trivial partition function is obtained whenever the target space is bounded by walls. We concentrate on the two cases where the target space is (i) the half-line bounded by a wall at the origin or (ii) a segment bounded by two walls at a finite distance. The general solution has a soliton-like structure involving elliptic functions. We derive the corresponding continuum scaling limit which takes the remarkable form of the Weierstrass p-function with constrained periods. These results are used to analyze the probability for an evolving population spreading in one dimension to attain the boundary of a given domain with the geometry of the target (i) or (ii). They also translate, via suitable bijections, into generating functions for bounded planar graphs.Comment: 25 pages, 7 figures, tex, harvmac, epsf; accepted version; main modifications in Sect. 5-6 and conclusio

    On 3-dimensional lattice walks confined to the positive octant

    Full text link
    Many recent papers deal with the enumeration of 2-dimensional walks with prescribed steps confined to the positive quadrant. The classification is now complete for walks with steps in {0,±1}2\{0, \pm 1\}^2: the generating function is D-finite if and only if a certain group associated with the step set is finite. We explore in this paper the analogous problem for 3-dimensional walks confined to the positive octant. The first difficulty is their number: there are 11074225 non-trivial and non-equivalent step sets in {0,±1}3\{0, \pm 1\}^3 (instead of 79 in the quadrant case). We focus on the 35548 that have at most six steps. We apply to them a combined approach, first experimental and then rigorous. On the experimental side, we try to guess differential equations. We also try to determine if the associated group is finite. The largest finite groups that we find have order 48 -- the larger ones have order at least 200 and we believe them to be infinite. No differential equation has been detected in those cases. On the rigorous side, we apply three main techniques to prove D-finiteness. The algebraic kernel method, applied earlier to quadrant walks, works in many cases. Certain, more challenging, cases turn out to have a special Hadamard structure, which allows us to solve them via a reduction to problems of smaller dimension. Finally, for two special cases, we had to resort to computer algebra proofs. We prove with these techniques all the guessed differential equations. This leaves us with exactly 19 very intriguing step sets for which the group is finite, but the nature of the generating function still unclear.Comment: Final version, to appear in Annals of Combinatorics. 36 page

    Enumeration of chord diagrams on many intervals and their non-orientable analogs

    Get PDF
    Two types of connected chord diagrams with chord endpoints lying in a collection of ordered and oriented real segments are considered here: the real segments may contain additional bivalent vertices in one model but not in the other. In the former case, we record in a generating function the number of fatgraph boundary cycles containing a fixed number of bivalent vertices while in the latter, we instead record the number of boundary cycles of each fixed length. Second order, non-linear, algebraic partial differential equations are derived which are satisfied by these generating functions in each case giving efficient enumerative schemes. Moreover, these generating functions provide multi-parameter families of solutions to the KP hierarchy. For each model, there is furthermore a non-orientable analog, and each such model likewise has its own associated differential equation. The enumerative problems we solve are interpreted in terms of certain polygon gluings. As specific applications, we discuss models of several interacting RNA molecules. We also study a matrix integral which computes numbers of chord diagrams in both orientable and non-orientable cases in the model with bivalent vertices, and the large-N limit is computed using techniques of free probability.Comment: 23 pages, 7 figures; revised and extended versio
    • …
    corecore