1,287 research outputs found

    MoodyLyrics: A Sentiment Annotated Lyrics Dataset

    Get PDF
    Music emotion recognition and recommendations today are changing the way people find and listen to their preferred musical tracks. Emotion recognition of songs is mostly based on feature extraction and learning from available datasets. In this work we take a different approach utilizing content words of lyrics and their valence and arousal norms in affect lexicons only. We use this method to annotate each song with one of the four emotion categories of Russell's model, and also to construct MoodyLyrics, a large dataset of lyrics that will be available for public use. For evaluation we utilized another lyrics dataset as ground truth and achieved an accuracy of 74.25 %. Our results confirm that valence is a better discriminator of mood than arousal. The results also prove that music mood recognition or annotation can be achieved with good accuracy even without subjective human feedback or user tags, when they are not available

    Crowdsourcing Emotions in Music Domain

    Get PDF
    An important source of intelligence for music emotion recognition today comes from user-provided community tags about songs or artists. Recent crowdsourcing approaches such as harvesting social tags, design of collaborative games and web services or the use of Mechanical Turk, are becoming popular in the literature. They provide a cheap, quick and efficient method, contrary to professional labeling of songs which is expensive and does not scale for creating large datasets. In this paper we discuss the viability of various crowdsourcing instruments providing examples from research works. We also share our own experience, illustrating the steps we followed using tags collected from Last.fm for the creation of two music mood datasets which are rendered public. While processing affect tags of Last.fm, we observed that they tend to be biased towards positive emotions; the resulting dataset thus contain more positive songs than negative ones

    Ten years of MIREX: reflections, challenges and opportunities

    Get PDF
    The Music Information Retrieval Evaluation eXchange (MIREX) has been run annually since 2005, with the October 2014 plenary marking its tenth iteration. By 2013, MIREX has evaluated approximately 2000 individual music information retrieval (MIR) algorithms for a wide range of tasks over 37 different test collections. MIREX has involved researchers from over 29 different contrives with a median of 109 individual participants per year. This pater summarizes the history of MIREX form its earliest planning meeting in 2001 to the present. It reflects upon the administrative, financial, and technological challenges MIREX has faced and describes how those challenges have been surmounted. We propose new funding models, a distributed evaluation framework, and more holistic user experience evaluation tasks-some evolutionary, some revolutionary-for the continued success of MIREX. We hope that this paper will inspire MIR community members to contribute their ideas so MIREX can have many more successful years to come

    Affective Music Information Retrieval

    Full text link
    Much of the appeal of music lies in its power to convey emotions/moods and to evoke them in listeners. In consequence, the past decade witnessed a growing interest in modeling emotions from musical signals in the music information retrieval (MIR) community. In this article, we present a novel generative approach to music emotion modeling, with a specific focus on the valence-arousal (VA) dimension model of emotion. The presented generative model, called \emph{acoustic emotion Gaussians} (AEG), better accounts for the subjectivity of emotion perception by the use of probability distributions. Specifically, it learns from the emotion annotations of multiple subjects a Gaussian mixture model in the VA space with prior constraints on the corresponding acoustic features of the training music pieces. Such a computational framework is technically sound, capable of learning in an online fashion, and thus applicable to a variety of applications, including user-independent (general) and user-dependent (personalized) emotion recognition and emotion-based music retrieval. We report evaluations of the aforementioned applications of AEG on a larger-scale emotion-annotated corpora, AMG1608, to demonstrate the effectiveness of AEG and to showcase how evaluations are conducted for research on emotion-based MIR. Directions of future work are also discussed.Comment: 40 pages, 18 figures, 5 tables, author versio

    The italian music superdiversity: Geography, emotion and language: one resource to find them, one resource to rule them all

    Get PDF
    Globalization can lead to a growing standardization of musical contents. Using a cross-service multi-level dataset we investigate the actual Italian music scene. The investigation highlights the musical Italian superdiversity both individually analyzing the geographical and lexical dimensions and combining them. Using different kinds of features over the geographical dimension leads to two similar, comparable and coherent results, confirming the strong and essential correlation between melodies and lyrics. The profiles identified are markedly distinct one from another with respect to sentiment, lexicon, and melodic features. Through a novel application of a sentiment spreading algorithm and songs’ melodic features, we are able to highlight discriminant characteristics that violate the standard regional political boundaries, reconfiguring them following the actual musical communicative practices

    Truth Is a Lie: Crowd Truth and the Seven Myths of Human Annotation

    Get PDF
    Big data is having a disruptive impact across the sciences. Human annotation of semantic interpretation tasks is a critical part of big data semantics, but it is based on an antiquated ideal of a single correct truth that needs to be similarly disrupted. We expose seven myths about human annotation, most of which derive from that antiquated ideal of truth, and dispell these myths with examples from our research. We propose a new theory of truth, crowd truth, that is based on the intuition that human interpretation is subjective, and that measuring annotations on the same objects of interpretation (in our examples, sentences) across a crowd will provide a useful representation of their subjectivity and the range of reasonable interpretations

    Detecting, Modeling, and Predicting User Temporal Intention

    Get PDF
    The content of social media has grown exponentially in the recent years and its role has evolved from narrating life events to actually shaping them. Unfortunately, content posted and shared in social networks is vulnerable and prone to loss or change, rendering the context associated with it (a tweet, post, status, or others) meaningless. There is an inherent value in maintaining the consistency of such social records as in some cases they take over the task of being the first draft of history as collections of these social posts narrate the pulse of the street during historic events, protest, riots, elections, war, disasters, and others as shown in this work. The user sharing the resource has an implicit temporal intent: either the state of the resource at the time of sharing, or the current state of the resource at the time of the reader \clicking . In this research, we propose a model to detect and predict the user\u27s temporal intention of the author upon sharing content in the social network and of the reader upon resolving this content. To build this model, we first examine the three aspects of the problem: the resource, time, and the user. For the resource we start by analyzing the content on the live web and its persistence. We noticed that a portion of the resources shared in social media disappear, and with further analysis we unraveled a relationship between this disappearance and time. We lose around 11% of the resources after one year of sharing and a steady 7% every following year. With this, we turn to the public archives and our analysis reveals that not all posted resources are archived and even they were an average 8% per year disappears from the archives and in some cases the archived content is heavily damaged. These observations prove that in regards to archives resources are not well-enough populated to consistently and reliably reconstruct the missing resource as it existed at the time of sharing. To analyze the concept of time we devised several experiments to estimate the creation date of the shared resources. We developed Carbon Date, a tool which successfully estimated the correct creation dates for 76% of the test sets. Since the resources\u27 creation we wanted to measure if and how they change with time. We conducted a longitudinal study on a data set of very recently-published tweet-resource pairs and recording observations hourly. We found that after just one hour, ~4% of the resources have changed by ≥30% while after a day the change rate slowed to be ~12% of the resources changed by ≥40%. In regards to the third and final component of the problem we conducted user behavioral analysis experiments and built a data set of 1,124 instances manually assigned by test subjects. Temporal intention proved to be a difficult concept for average users to understand. We developed our Temporal Intention Relevancy Model (TIRM) to transform the highly subjective temporal intention problem into the more easily understood idea of relevancy between a tweet and the resource it links to, and change of the resource through time. On our collected data set TIRM produced a significant 90.27% success rate. Furthermore, we extended TIRM and used it to build a time-based model to predict temporal intention change or steadiness at the time of posting with 77% accuracy. We built a service API around this model to provide predictions and a few prototypes. Future tools could implement TIRM to assist users in pushing copies of shared resources into public web archives to ensure the integrity of the historical record. Additional tools could be used to assist the mining of the existing social media corpus by derefrencing the intended version of the shared resource based on the intention strength and the time between the tweeting and mining

    Video2Commonsense: Generating Commonsense Descriptions to Enrich Video Captioning

    Full text link
    Captioning is a crucial and challenging task for video understanding. In videos that involve active agents such as humans, the agent's actions can bring about myriad changes in the scene. These changes can be observable, such as movements, manipulations, and transformations of the objects in the scene -- these are reflected in conventional video captioning. However, unlike images, actions in videos are also inherently linked to social and commonsense aspects such as intentions (why the action is taking place), attributes (such as who is doing the action, on whom, where, using what etc.) and effects (how the world changes due to the action, the effect of the action on other agents). Thus for video understanding, such as when captioning videos or when answering question about videos, one must have an understanding of these commonsense aspects. We present the first work on generating \textit{commonsense} captions directly from videos, in order to describe latent aspects such as intentions, attributes, and effects. We present a new dataset "Video-to-Commonsense (V2C)" that contains 9k videos of human agents performing various actions, annotated with 3 types of commonsense descriptions. Additionally we explore the use of open-ended video-based commonsense question answering (V2C-QA) as a way to enrich our captions. We finetune our commonsense generation models on the V2C-QA task where we ask questions about the latent aspects in the video. Both the generation task and the QA task can be used to enrich video captions

    Modeling and predicting emotion in music

    Get PDF
    With the explosion of vast and easily-accessible digital music libraries over the past decade, there has been a rapid expansion of research towards automated systems for searching and organizing music and related data. Online retailers now offer vast collections of music, spanning tens of millions of songs, available for immediate download. While these online stores present a drastically different dynamic than the record stores of the past, consumers still arrive with the same requests recommendation of music that is similar to their tastes; for both recommendation and curation, the vast digital music libraries of today necessarily require powerful automated tools.The medium of music has evolved speci cally for the expression of emotions, and it is natural for us to organize music in terms of its emotional associations. But while such organization is a natural process for humans, quantifying it empirically proves to be a very difficult task. Myriad features, such as harmony, timbre, interpretation, and lyrics affect emotion, and the mood of a piece may also change over its duration. Furthermore, in developing automated systems to organize music in terms of emotional content, we are faced with a problem that oftentimes lacks a well-defined answer; there may be considerable disagreement regarding the perception and interpretation of the emotions of a song or even ambiguity within the piece itself.Automatic identi cation of musical mood is a topic still in its early stages, though it has received increasing attention in recent years. Such work offers potential not just to revolutionize how we buy and listen to our music, but to provide deeper insight into the understanding of human emotions in general. This work seeks to relate core concepts from psychology to that of signal processing to understand how to extract information relevant to musical emotion from an acoustic signal. The methods discussed here survey existing features using psychology studies and develop new features using basis functions learned directly from magnitude spectra. Furthermore, this work presents a wide breadth of approaches in developing functional mappings between acoustic data and emotion space parameters. Using these models, a framework is constructed for content-based modeling and prediction of musical emotion.Ph.D., Electrical Engineering -- Drexel University, 201
    corecore