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Abstract
Modeling and Predicting Emotion in Music

Erik M. Schmidt
Youngmoo E. Kim, Ph.D.

With the explosion of vast and easily-accessible digital music libraries over the past decade, there

has been a rapid expansion of research towards automated systems for searching and organizing

music and related data. Online retailers now offer vast collections of music, spanning tens of mil-

lions of songs, available for immediate download. While these online stores present a drastically

different dynamic than the record stores of the past, consumers still arrive with the same requests–

recommendation of music that is similar to their tastes; for both recommendation and curation, the

vast digital music libraries of today necessarily require powerful automated tools.

The medium of music has evolved specifically for the expression of emotions, and it is natural for

us to organize music in terms of its emotional associations. But while such organization is a natural

process for humans, quantifying it empirically proves to be a very difficult task. Myriad features,

such as harmony, timbre, interpretation, and lyrics affect emotion, and the mood of a piece may also

change over its duration. Furthermore, in developing automated systems to organize music in terms

of emotional content, we are faced with a problem that oftentimes lacks a well-defined answer; there

may be considerable disagreement regarding the perception and interpretation of the emotions of a

song or even ambiguity within the piece itself.

Automatic identification of musical mood is a topic still in its early stages, though it has received

increasing attention in recent years. Such work offers potential not just to revolutionize how we buy

and listen to our music, but to provide deeper insight into the understanding of human emotions

in general. This work seeks to relate core concepts from psychology to that of signal processing to

understand how to extract information relevant to musical emotion from an acoustic signal. The

methods discussed here survey existing features using psychology studies and develop new features

using basis functions learned directly from magnitude spectra. Furthermore, this work presents a
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wide breadth of approaches in developing functional mappings between acoustic data and emotion

space parameters. Using these models, a framework is constructed for content-based modeling and

prediction of musical emotion.

Abstract
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Chapter 1: Introduction

With the explosion of vast and easily-accessible digital music libraries over the past decade, there has

been a rapid expansion of research towards automated systems for searching and organizing music

and related data. Along with the advent of portable music devices, such as the now ubiquitous Apple

iPod, and so called “smart phones” that double as media players, a vast percentage of consumers

are now carrying music libraries spanning thousands of songs in their pockets. Following the content

demands these devices have created, music retail has seen a revolution of its own, as the sale of

music has steadily moved away from the physical media of the past. Online retailers such as Amazon

and Apple’s iTunes Store now offer vast collections of music, spanning over fourteen million songs,

available for immediate download. While these online stores present a drastically different dynamic

than the record stores of the past, consumers still arrive with the same requests–recommendation

of music that is similar to their tastes. Oftentimes these are straightforward problems, such as

requesting music of a specific artist, genre, or style, but many times consumers pose more challenging

questions, such as music that reflects a specific mood or an artist that is similar to one they already

like. In the record stores of the past, which offered only a few hundred titles, a well educated salesman

could easily address most requests, however the vast digital music libraries of today necessarily

require powerful automated tools.

The field of Music Information Retrieval (Music-IR) consists of a multi-disciplinary community of

researchers from signal processing and machine learning backgrounds that seek to meet this demand

with tools driven entirely by computer-based audio analysis and machine learning [1]. While music

classification problems often seem straightforward when presented to humans, the development of

such computational systems is far from trivial, with machines typically presenting myriad difficulties

where humans find intuitive solutions. The first era of Music-IR research focused on problems of

concrete ground truth. These systems were developed to perform tasks such as automatic artist

identification, chord detection and cover song detection. Following reasonable progress in these areas,
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Music-IR has moved on to tasks involving a more ambiguous ground-truth representation. Such

tasks include loosely defined labels, such as musical genre (i.e. jazz, blues, rock), artist/album/song

similarity, and human perceptual labeling, such as emotion or expression. In developing automated

tools to organize music by its emotional content or mood, we are presented with a problem that

is not only difficult for machines to solve, but which also does not have a well-defined answer.

Such systems necessarily require human labeled observational data and are therefore only realizable

through supervised machine learning.

Music is oftentimes referred to as a “language of emotion,” [2] and it is natural for us to categorize

music in terms of its emotional associations. The potential impact of automatic systems for emotion-

based music retrieval is far-reaching, offering potential not just to revolutionize how we buy and

listen to our music, but to provide deeper insight into the understanding of human emotions. For

instance, a fully trained model capable of relating acoustic content to emotion space parameters

could potentially provide new insight into how human emotions are derived. At the same time, an

end user application of this work could be a simple, easy-to-use retrieval interface that could be

operated without any knowledge of the underlying system. Such a system could provide the ability

to simply request “happy songs” while feeling unpleasant sitting in traffic, or perhaps to request

songs that start out as “unpleasant” but over time become “happy.” While these goals are exciting,

music emotion recognition is a highly non-trivial problem with research still in the early stages. The

development of such content-based systems for musical emotion detection can be broken into three

main areas: collecting and analyzing human labels of emotion in music, developing signal processing

algorithms to extract informative acoustic feature data, and developing machine learning techniques

to facilitate machine understanding of such data [3].

1.0.1 Thesis Contributions

This dissertation has a wide breadth of contributions, spanning psychology, signal processing, and

machine learning. A variety of factors contribute to a person’s perception of musical mood, and

therefore some variation and disagreement between user ratings of the same content is expected.

Building this work on top of a psychology framework, human emotion responses to music are repre-

Chapter 1: Introduction
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Figure 1.1: An overall summary of music emotion recognition.

sented with a two-dimensional parametric representation using the arousal-valence (A-V) space, a

well-known representation of emotion in psychology research [4, 5]. The A-V space was developed to

provide a continuous range of human emotion, where valence reflects positive vs. negative emotions

and arousal indicates emotional intensity. The overall goal of this work should be seen as under-

standing human A-V responses to music through content-based (signal processing) techniques. The

main contributions of this work are as follows:

1. Collects multiple datasets spanning several genres of music, including a pop music database

collected via an online collaborative gaming approach [6], a pop music database crowdsourced

through Amazon’s Mechanical Turk (MTurk) [7, 8], and a database that consists entirely of

instrumental music.

2. Proposes a range of methods for representing arousal-valence disagreement in human responses

to music, including aggregating the data from multiple subjects to a single A-V point [6],

representing disagreement in collected data an A-V distribution [9, 10], and using emotion

space heatmaps that can represent arbitrary distributions and modes [11].

3. Develops multiple frameworks for acoustic feature identification, including those based on

perceptual evaluations of existing domains for a bottom-up style feature selection process [12],

as well as methods that learn sets of basis functions directly from magnitude spectra that are

informative to musical emotion [7, 13, 14].

Chapter 1: Introduction
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4. Develops multiple machine learning approaches for relating high-dimensional acoustic content

to low-dimensional A-V representations, including multi-class classification [6], direct A-V re-

gression using a variety of methods [6], regression methods for the automatic parameterization

of A-V Gaussian distributions [9, 10], and a final method using conditional random fields

(CRFs) that is capable of automatically parameterizing A-V heatmaps over time [11].

As the training of a supervised machine learning system requires human-labeled examples, an

online collaborative game called MoodSwings has been developed, which captures A-V labels dynam-

ically (over time) to reflect emotion changes in synchrony with music [15]. This method potentially

provides quantitative labels that are well-suited to computational methods, allowing the represen-

tation of disagreement in ratings as a stochastic distribution. Using initial data from the game, a

corpus was collected of 240, 15-second pop music clips, annotated at one second intervals. This work

also investigates the use of Amazon’s Mechanical Turk, an online platform for crowdsourcing, which

is used to collect a much more densely annotated data collection on the same audio clips. That

method validates the effectiveness of the game at collecting quality annotations, but also shows an

alternative way to collect data faster. Furthermore, in seeking audio examples that display larger

emotion-space dynamics, an additional audio corpus of 300, 30-second clips is constructed. These

examples are instrumental music, removing the influence of lyrics, and are hand selected to con-

tain dynamic A-V changes. Due to the success of MTurk on previous collections, it is employed to

annotate this final set as well.

In following with the non-trivial nature of the problem, no dominant acoustic feature has yet

emerged for representing musical emotion. Noting that there are many factors that contribute to

human perception of emotion, in developing digital signal processing algorithms to extract emotion-

related audio features, this work focuses on methods that combine multiple feature domains (e.g.

loudness, timbre, harmony). In addition, following the dynamic nature of music, the focus has been

restricted solely to time-varying features.

This work first provides perceptual studies using acoustic reconstructions of two of the most

common features used in Music Information Retrieval: mel-frequency cepstral coefficients (MFCCs)

Chapter 1: Introduction
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and the chromagram. The goal of these experiments is to quantitatively validate how informative

these features are to music emotion recognition as a motivation for their use. Furthermore, this work

also investigates how features could be selected through a bottom-up procedure using knowledge

of variance and invariance of acoustic features to musical parameters (e.g., key, mode, tempo).

However, while such an approach is promising, it is difficult to assign exact weight to specific musical

parameters, and these experiments indicate that there are other sources of information that are much

harder to quantify through music notation (e.g., musical expression). In the context of content-based

emotion prediction, this work evaluates multiple sets of acoustic features, including psychoacoustic

(mel-cepstrum and statistical frequency spectrum descriptors) and music-theoretic (estimated pitch

chroma) representations of the labeled audio. While these features demonstrate very reasonable

performance on a range of tasks, they do not fully solve the problem. In seeking to identify more

informative feature representations, this work proposes methods to learn representations of music

audio directly from magnitude spectra that are specifically optimized for the prediction of emotion.

In developing the proper machine learning approach for musical emotion recognition, this work

largely focuses on using short-time segments as a means to track emotional changes over time.

Human emotion responses to music are dynamic processes that evolve over time in synchrony with

the music, so the application of a single, unvarying mood label across an entire song belies this nature.

The initial experiments presented here demonstrate that not only does the emotional content change

over time, but also that a distribution of (as opposed to singular) ratings is appropriate for even short

time slices (down to one second). To perform the mapping from acoustic features to the A-V mood

space, a variety of methods for multi-variate regression of distribution parameters are explored, such

as multiple linear regression, partial least-squares regression, and support vector regression. The

results demonstrate the effectiveness of this system in predicting emotion distributions for 15 second

clips, as well as its ability to follow changes in A-V label distributions over time. In focusing further

on time-varying emotion prediction, this work develops a systems approach using linear dynamical

systems for modeling the evolution of emotion distributions, showing modest performance gains.

Furthermore, in looking to move beyond the modeling limitations of the A-V Gaussian distributions,

Chapter 1: Introduction
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an approach is developed using conditional random fields (CRFs), which are capable of modeling the

temporal evolution of A-V heatmaps, representing arbitrary emotion-space distributions and modes.

1.1 Overview

The following chapters will proceed as follows:

• Chapter 2 will discuss background in data collection, feature extraction, and overall systems for

the prediction of musical emotion. This survey spans psychology, signal processing, machine

learning, and music information retrieval.

• Chapter 3 will present the multiple datasets and collection methods used in this work.

• Chapter 4 provides perceptual experiments using existing acoustic representations and dis-

cusses the overall topic of feature selection.

• Chapter 5 will present methods for learning acoustic representations that are specifically op-

timized for the prediction of emotion.

• Chapter 6 presents machine learning methods for modeling and predicting A-V emotion.

• Chapters 7 - 9 present the experiments, which are broken up by the various datasets (MoodSwings

Lite, MoodSwings Turk, Instrumental Dataset, respectively).

• Chapter 10 provides overall conclusions and future directions.

• Appendix A provides explanations of the various acoustic representations used in this work.

• Appendices B - E present tutorial sections related to restricted Boltzman machines, support

vector machines, Kalman filtering, and conditional random fields.

Chapter 1: Introduction
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Chapter 2: Background

This chapter surveys the state of the art in content-based musical emotion recognition [15, 16]. The

first section is devoted to constructing a theoretical foundation for the understanding of human

emotions. Research in cognitive science and psychology is surveyed to develop a framework for

how emotion is defined, how emotion is quantified, and what considerations must be made when

collecting human emotion data. That section will also investigate psychology studies on music theory

and emotion. This chapter next discusses developing a framework for music emotion recognition in

general and the different components involved (e.g. human data collection, informative domains for

classification). In seeking to develop systems to collect music emotion data, many current systems

and approaches are surveyed with focus on online annotation games and Amazon’s Mechanical Turk.

Finally, the focus is narrowed to content-based audio analysis, and the last section discusses state

of the art work in content-based music emotion recognition.

2.1 Psychology Research on Emotion

Over the past half-century, there have been several important developments spanning multiple ap-

proaches for qualifying and quantifying emotions related to music. Such inquiry began well before

the widespread availability of music recordings as a means of clinically repeatable musical stimuli

(using musical scores), but recordings are the overwhelmingly dominant form of stimulus used in

modern research studies of emotion. Although scores can provide a wealth of relevant information,

score-reading ability is not universal, and the focus in this chapter and the overall work shall be

limited to music experienced through audition.

2.1.1 Perceptual Considerations

When performing any measurement of emotion, from direct biophysical indicators to qualitative

self-reports, one must also consider the source of emotion being measured. Many studies, using

categorical or scalar/vector measurements, indicate the important distinction between one’s percep-
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tion of the emotion(s) expressed by music and the emotion(s) induced by music [4, 17]. Both the

emotional response and its report are subject to confound. Early studies of psychological response

to environment, which considered the emotional weight of music both as a focal and distracting

stimulus, found affective response to music can also be sensitive to the environment and contexts of

listening [18]. Juslin and Luakka, in studying the distinctions between perceptions and inductions

of emotion, have demonstrated that both can can be subject to not only the social context of the

listening experience (such as audience and venue), but also personal motivation (e.g. music used for

relaxation, stimulation, etc.) [17]. The remainder of this chapter and the overall work will focus on

systems that attempt to discern the emotion expressed, rather than induced, by music.

2.1.2 Perception of Emotion Across Cultures

Cross-cultural studies of musical power suggest that there may be universal psychophysical and

emotional cues that transcend language and acculturation [19]. Comparisons of tonal characteristics

between Western 12-tone and Indian 24-tone music suggest certain universal mood-targeted melodic

cues [20]. In a recent ethnomusicology study of people with no exposure to Western music (or

culture), Mafa natives of Cameroon, categorized music examples into three categories of emotion in

the same way as Westerners [21].

2.1.3 Perception of Emotion and Music Theory

A musical piece is made up of a combination of different attributes such as key, mode, tempo,

instrumentation, etc. While none of these attributes fully describes a piece of music, each one

contributes to the listener’s perception of the piece. Much previous work has been dedicated to

what compositional attributes significantly determine emotion and which parameters are less relevant

[22, 23, 24]. Previous work has shown that while these parameters are not the sole contributors to

the emotion of the music [25], they do undoubtedly contain some information about the underlying

emotion. Information about which musical parameters are important in conveying specific emotions

can potentially aid in selecting informative acoustic representations for content-based prediction. For

Chapter 2: Background
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example, in Chapter 4 it will be investigated whether these compositional building blocks induce

changes in the acoustic feature domain.

Mode and tempo have been shown to consistently elicit a change in perceived emotion in user

studies. Mode is the selection of notes (scale) that form the basic tonal substance of a composition

and tempo is the speed of a composition [26]. Research shows that major modes tend to elicit

happier emotional responses, while the inverse is true for minor modes [24, 27, 28, 29]. Tempo

also determines a user’s perception of music, with higher tempi generally inducing stronger positive

emotions with higher emotional intensity [23, 24, 27, 28, 30].

2.1.4 Representations of Emotion

Music-IR systems tend to use either categorical descriptions or parametric models of emotion for

classification or recognition. Each representation is supported by a large body of psychology research.

Categorical Psychometrics

Categorical approaches involve finding and organizing some set of emotional descriptors (tags) based

on their relevance to some music in question. One of the earliest studies by Hevner, published in 1936,

initially used 66 adjectives, which were then arranged into 8 groups [22]. While the adjectives used

and their specific grouping and hierarchy have been scrutinized and even disputed, many categorical

studies conducted since Hevner’s indicate such tagging can be intuitive and consistent, regardless of

the listener’s musical training [31, 32].

In a recent sequence of music-listening studies, Zenter et al. reduced a set of 801 “general”

emotional terms into a subset metric of 146 terms specific to music mood rating. Their studies,

which involved rating music-specificity of words and testing words in lab and concert settings with

casual and genre-aficionado listeners, revealed that the interpretation of these mood words varies

between different genres of music [33].

The recent MIREX evaluations for automatic music mood classification have categorized songs

into one of five mood clusters, shown in Table 2.1. The five categories were derived by performing
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clustering on a co-occurrence matrix of mood labels for popular music from the All Music Guide

[34, 35].

Clusters Mood Adjectives

Cluster 1 passionate, rousing, confident, bois-
terous, rowdy

Cluster 2 rollicking, cheerful, fun, sweet, ami-
able/good natured

Cluster 3 literate, poignant, wistful, bitter-
sweet, autumnal, brooding

Cluster 4 humorous, silly, campy, quirky,
whimsical, witty, wry

Cluster 5 aggressive, fiery, tense/anxious, in-
tense, volatile, visceral

Table 2.1: Mood adjectives used in the MIREX Audio Mood Classification task [35].

Scalar/Dimensional Psychometrics

Other research suggests that mood can be scaled and measured by a continuum of descriptors or

simple multi-dimensional metrics. Seminal work by Russell and Thayer in studying dimensions of

arousal established a foundation upon which sets of mood descriptors may be organized into low-

dimensional models. Most noted is the two-dimensional valence-arousal (V-A) space (See Figure

2.1), where emotions exist on a plane along independent axes of arousal (intensity), ranging high-to-

low, and valence (an appraisal of polarity), ranging positive-to-negative [4, 5]. The validity of this

two-dimensional representation of emotions for a wide range of music has been confirmed in multiple

studies [31, 36, 37].

Two very interesting studies have validated the use of V-A by constructing a parametric space

via dimensionality reduction techniques from data that had been annotated with text-based labels.

Laurier et al. investigated a set of 100 emotion specific tag words (e.g. “scary,” “anxious,” “depress-

ing,” etc.) that had been applied to over 61,080 tracks [36]. A two-dimensional distance space was

created by the application of self organizing maps and was found to have dimensions corresponding

to valence and arousal. Furthermore, in a recent study Liebetrau et. al had listeners observe simple

major-major and minor-minor chord changes [37]. Participants applied text-based emotion descrip-

tions that they defined themselves, and a two-dimensional emotion space was constructed from this
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satisfied
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Figure 2.1: The Valence-Arousal space, labeled by Russell’s direct circular projection of adjec-
tives [4]. Includes semantic of projected third affect dimensions: “tension” [38], “kinetics”[39],
“dominance” [18].

data via multiple factor analysis. Again, the resulting dimensions were highly representative of V-A,

with one dimension explaining the mode of the pair and the degree of harmony between the chords

(valence), and the other explaining tempo (arousal).

Some studies have expanded this approach to develop three-dimensional spatial metrics for com-

parative analysis of musical excerpts, although the semantic nature of the third dimension is subject

to speculation and disagreement [40]. Other investigations of the V-A model itself suggest evidence

for separate channels of arousal (as originally proposed by Thayer) that are not elements of valence

[41].

A related, but categorical, assessment tool for self-reported affect is the Positive and Negative

Affect Schedule (PANAS), which asserts that all discrete emotions (and their associated labels) exist

as incidences of positive or negative affect, similar to valence [42, 43]. In this case, however, positive

and negative are treated as separate categories as opposed to the parametric approach of V-A.

2.2 Framework for Emotion Recognition

Emotion recognition can be viewed as a multiclass-multilabel classification or regression problem,

where we try to annotate each music piece with a set of emotions. A music piece might be an entire
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song, a section of a song (e.g. chorus, verse), a fixed-length clip (e.g. 30-second song snipet), or a

short-term segment (e.g. 1 second).

Emotion is represented as either a single multi-dimensional vector or a time-series of vectors over

a semantic space of emotions. That is, each dimension of a vector represents a single emotion (e.g.

angry) or a bi-polar pair of emotions (e.g. positive/negative). The value of a dimension encodes the

strength-of-semantic-association between the piece and the emotion. This is sometimes represented

with a binary label to denote the presence or absence of the emotion, but more often represented

as a real-valued score (e.g. Likert scale value, probability estimate). Emotion is represented as a

time-series of vectors if, for example, the goal is to track changes in emotional content over the

duration of a piece.

The values of the emotion vector for a music piece can be estimated in a number of ways using

various forms of data (Figure 2.2). The direct method is to ask human listeners to evaluate the

relevance of an emotion for a piece (see Section 2.3). This can be done, for example, using a survey,

a social tagging mechanism, or an annotation game. It is also possible to analyze forms of contextual

meta-data in text form. This may include text-mining web-documents (e.g. artist biographies, album

reviews) or a large collection of social tags (referred to as a tag cloud), and analyzing lyrics using

natural language processing (e.g. sentiment analysis) [44, 45]. Finally, it is also possible to analyze

the audio content using both signal processing and supervised machine learning to automatically

annotate music pieces with emotions (see Section 2.4.2). Content-based methods can also be used to

analyze other related forms of multimedia data such as music videos and promotional photographs

[46].

2.3 Human Annotation

A survey is a straightforward technique for collecting information about emotional content in music.

All Music Guide has devoted considerable amounts of money, time and human resources to annotate

their music databases with high-quality emotion tags. As such, they are unlikely to fully share this

data with the Music-IR research community. To remedy this problem, Turnbull et al. collected

the CAL500 data set of annotated music [47]. This data set contains one song from 500 unique
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Figure 2.2: Overall model of emotion classification systems [15].

artists, each of which has been manually annotated by a minimum of three non-expert reviewers

using a vocabulary of 174 tags, of which 18 relate to different emotions. Trohidis et al. have also

created a publicly available data set consisting of 593 songs, each of which has been annotated using

6 emotions by 3 expert listeners [48].

A second approach to directly collecting emotion annotations from human listeners involves social

tagging. For example, Last.fm is a music discovery website that allows users to contribute social

tags through a text box in their audio player interface. By the beginning of 2007, their large base of

20 million monthly users had built up an unstructured vocabulary of 960,000 free-text tags and used

it to annotate millions of songs [49]. Unlike AMG, Last.fm makes much of this data available to the

public through their public APIs. While this data is a useful resource for the Music-IR community,

Lamere and Celma point out that there are a number of problems with social tags: sparsity due to

the cold-start problem and popularity bias, ad-hoc labeling techniques, multiple spellings of tags,

malicious tagging, etc. [50].

2.3.1 Annotation Games

Traditional methods of data collection, such as the hiring of subjects, can be flawed, since labeling

tasks are time-consuming, tedious, and expensive [51]. Recently, a significant amount of attention

has been placed on the use of collaborative online games to collect such ground truth labels for

difficult problems, so-called “Games With a Purpose.” Several such games have been proposed for
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the collection of music data, such as MajorMiner [52], Listen Game [53], and TagATune [54]. These

implementations have primarily focused on the collection of descriptive labels for a relatively short

audio clip.

Herd It combines multiple types of music annotation games, including valence-arousal annotation

of clips, descriptive labeling, and music trivia [55].

2.3.2 Mechanical Turk

Mechanical Turk (MTurk) is an an online service provided by Amazon to collect human judgements.

Using MTurk’s Human Intelligence Tasks (HITs), it is possible to obtain human judgements on

almost any task for a small amount of compensation. These tasks are open to anyone on the web

and therefore provide the ability to collect large amounts of data over a short period of time.

Who are MTurk Workers

A recent study on the demographics of MTurk workers has indicated that respondents tend to be

reasonably well educated and located in the United States more than any other country [56]. The

study found that 62.8% of respondents had a bachelor’s degree or higher. Respondents were located

in 66 countries, with the highest percentages in the US at 46.8% and India at 34%. Among US

respondents, the majority were women (70%), and 65% had a household income below $60,000.

MTurk in Music-IR

The natural language processing (NLP) [57] and machine vision [58, 59] communities have utilized

MTurk extensively, but machine listening and Music-IR have been slow to adopt its use. Lee

found crowdsourcing music similarity judgments on MTurk to be less time-consuming than collecting

data from experts in the research community [60]. The experiment cost $130.90 and produced

6,732 similarity judgements, less than $0.02 per rating. HITs were rejected if workers rated songs

too quickly or failed to assign high similarity to identical songs. While nearly half of all HITs

were rejected, the dataset was obtained an order of magnitude more quickly than their previous

attempts. Comparing the datasets yields a Pearson’s correlation coefficient of 0.495, consistent

with previous NLP work involving MTurk [57]. As the previous data collection was assembled for
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MIREX, Lee returned the submitted systems using MTurk data as ground truth and found no

significant alterations to the outcome, scoring a 5.7% difference on the Friedman test.

Mandel et al. employed MTurk for collecting free form tags to study relationships between audio

tags and content [61]. The group collected 2,100 unique tags across 925 clips, for a reported cost

of approximately $100. To ensure data quality, they rejected a HIT if any tag had more than 25

characters, if less than 5 tags were provided, or if less than half of tags were contained in a dictionary

of commonly applied tags (Last.fm). All HITs by a particular worker were rejected if the worker

used too small a vocabulary, if they used more than 15% “stop words” (e.g., “music” or “nice”), or

if half of their individual HITs were rejected for other reasons. The authors then trained a support

vector machine (SVM) classifier for content-based autotagging. With smoothed labels, the MTurk

version increased performance to 63.4% versus 63.09% with MajorMiner.

2.4 Content-Based Audio Analysis

Clearly, many human assessments of musical mood are derived from the audio itself; after all, tags

are most often generated by people listening to the music. Contextual information for a music piece

may be incomplete or missing entirely (e.g., for newly composed music). Given the rapid expansion

of digital music libraries, including commercial databases with millions of songs, it is clear that

manual annotation methods will not efficiently scale. Thus, the appeal of content-based systems is

obvious, and the recognition of emotions from audio has been a longstanding goal for the Music-IR

research community (the corresponding MIREX task focused on systems driven by music audio).

2.4.1 Acoustic Features

Emotions can be influenced by such attributes as tempo, timbre, harmony, and loudness (to name

only a few), and much prior work in Music-IR has been directed towards the development of infor-

mative acoustic features. Although some research has focused on searching for the most informative

features for emotion classification, no dominant single feature has emerged. An overview of the most

common acoustic features used for mood recognition is given in Table 2.2.
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Type Features

Dynamics RMS energy
Timbre MFCCs, spectral shape, spectral

contrast
Harmony Roughness, harmonic change, key

clarity, majorness
Register Chromagram, chroma centroid and

deviation
Rhythm Rhythm strength, regularity,

tempo, beat histograms
Articulation Event density, attack slope, attack

time

Table 2.2: Common acoustic feature types for emotion classification.

In searching for the most informative emotion and expressive features to extract from audio,

Mion and De Poli investigated a system for feature selection and demonstrated it on an initial

set of single-dimensional features, including intensity and spectral shape, as well as several music-

theoretic features [39]. Their system used sequential feature selection (SFS), followed by principal

component analysis (PCA) on the subset to identify and remove redundant feature dimensions.

The focus of their research, however, was monophonic instrument classification across nine classes

spanning emotion and expression, as opposed to musical mixtures. Of the 17 tested features, the

most informative overall were found to be roughness, notes per second, attack time, and peak sound

level.

MacDorman et al. examined the ability of multiple acoustic features (sonogram, spectral his-

togram, periodicity histogram, fluctuation pattern, and mel-frequency cepstral coefficients–MFCCs

[62, 63]) to predict pleasure and arousal ratings of music excerpts. They found all of these features

to be better at predicting arousal than pleasure, and the best prediction results were obtained when

all five features were used together [64].

Eerola et al., the developers of the open-source feature extraction code, MIRtoolbox [65], have

developed a specific subset of informative audio features for emotion. These features are aggregated

from a wide range of domains including dynamics, timbre, harmony, register, rhythm, and artic-

ulation [38]. Other recent approaches have adopted a generalized approach to feature extraction,
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compiling multiple feature sets (resulting in high dimensional spaces) and employing dimensionality

reduction techniques [66, 67]. Regardless of feature fusion or dimensionality reduction methods, the

most successful systems combine multiple acoustic feature types.

Feature Learning

An alternative method to extract features is to learn a basis from the collected data. Feature learning

has only recently gained attention in the machine listening community and has yet to be applied to

music emotion recognition. Lee et al. was the first to apply deep belief networks to acoustic signals,

employing an unsupervised convolutional approach [68]. Their system employed PCA to provide

a dimensionality reduced representation of the magnitude spectrum as the input to the DBN and

showed slight improvement over MFCCs for speaker, gender, and phoneme detection.

Hamel and Eck applied deep belief networks (DBNs) to the problems of musical genre identifica-

tion and autotagging [69]. Their approach used raw magnitude spectra as the input to their DBNs,

which were constructed from three layers, employing fifty units at each layer. The system was trained

using a greedy-wise pre-training and fine-tuned on a genre classification dataset, consisting of 1000

30-second clips. The system took 104 hours to train and as a result was not cross-validated. On the

genre classification problem, the learned features achieved a classification accuracy of 0.843, which

was an increase over MFCCs at 0.790. The learned model was also applied to inform an autotagging

algorithm, which scored 0.73 in terms of mean accuracy, a slight improvement over MFCCs at 0.70.

2.4.2 Audio-Based Musical Mood Detection Systems

Audio content-based methods for emotion recognition use either a categorical or parametric model

of emotion. The former results in a classification task and the latter in a regression task, with all

recent systems employing one of these methods.

Categorical Emotion Classification

In one of the first publications on this topic, Li and Ogihara used acoustic features related to timbre,

rhythm, and pitch to train support vector machines (SVMs) to classify music into one of 13 mood
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categories [70]. Using a hand-labeled library of 499 music clips (30-seconds each) from a variety of

genres spanning ambient, classical, fusion, and jazz, they achieved an accuracy of 45%.

Lu et al. pursued mood detection and tracking using a similar variety of acoustic features

including intensity, timbre, and rhythm [66]. Their classifier used Gaussian Mixture Models (GMMs)

for the four principal mood quadrants on the V-A representation. The system was trained using a

set of 800 classical music clips (from a data set of 250 pieces), each 20 seconds in duration, hand

labeled to one of the 4 quadrants. Their system achieved an overall accuracy of 85%, although it

is also unclear how the multiple clips extracted from the same recording were distributed between

training and testing sets.

Proposing a guided scheme for music recommendation, Mandel et al. developed active learning

systems, an approach that can provide recommendations based upon any musical context defined

by the user [71]. To perform a playlist retrieval, the user presents the system with a set of “seed

songs,” or songs representing the class of playlist desired. The system uses this data, combined with

verification data from the user, to construct a binary SVM classifier using MFCC features. When

tested on 72 distinct moods from AMG labels, the system achieved a peak performance of 45.2%.

Skowronek et al. developed binary classifiers for each of 12 non-exclusive mood categories using

a data set of 1059 song excerpts. Using features based on temporal modulation, tempo and rhythm,

chroma and key information, and occurrences of percussive sound events, they trained quadratic

discriminant functions for each mood, with accuracy ranging from 77% (carefree-playful) to 91%

(calming-soothing) depending on the category [72].

Vaizman et al. investigated the use of the dynamic texture mixture (DTM) model for the

representation of short-time audio features in an emotion classification problem [73]. In their work

they consider each audio excerpt to contain a static emotion, which is chosen from one of four

categories. The dataset consists of 72 audio excerpts, each of about 30 seconds. Using the DTM

model, they consider their short-time features to be the output of a mixture of linear dynamical

systems. By using such an approach they are able to take into account the dynamic evolution of

the features required to produce a specific emotion. Their best performing approach obtains 0.8692
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AROC, though it would be beneficial to see how their DTM representation compares in terms of

performance to other methods such as standard Gaussian mixtures.

As mentioned in Chapter 1, MIREX first included audio music mood classification as a task in

2007 [35]. In 2007, Tzanetakis achieved the highest percentage correct (61.5%), using only MFCC,

and spectral shape, centroid, and rolloff features with an SVM classifier [74]. The highest performing

system in 2008 by Peeters demonstrated some improvement (63.7%) by introducing a much larger

feature corpus including, MFCCs, Spectral Crest/Spectral Flatness, as well as a variety of chroma

based measurements [75]. The system uses a GMM approach to classification, but first employs

Inertia Ratio Maximization with Feature Space Projection (IRMFSP) to select the most informative

40 features for each task (in this case mood), and performs Linear Discriminant Analysis (LDA)

for dimensionality reduction. In 2009, Cao and Li submitted a system that was a top performer

in several categories, including mood classification (65.7%) [76]. Their system employs a “super

vector” of low-level acoustic features and employs a Gaussian Super Vector followed by Support

Vector Machine (GSV-SVM). It’s worth noting that the best performers in each of the three years

of the evaluation were general systems designed to perform multiple MIREX tasks.

Parametric Emotion Regression

Recent work in music emotion prediction from audio has suggested that parametric regression ap-

proaches can outperform labeled classifications using equivalent features. Targeting the prediction

of V-A coordinates from audio, Yang et al. introduced the use of regression for mapping high-

dimensional acoustic features to the two-dimensional space [67]. Support vector regression (SVR)

[77] and a variety of ensemble boosting algorithms, including AdaBoost.RT [78], were applied to the

regression problem, and one ground-truth V-A label was collected for each of 195 music clips. As this

work focused primarily on labeling and regression techniques, features were extracted using publicly

available extraction tools, such as PsySound [79] and Marsyas [80], totaling 114 feature dimensions.

To reduce the data to a tractable number of dimensions, PCA was applied prior to regression. This

system achieves an R2 (coefficient of determination) score of 0.58 for arousal and 0.28 for valence.

Chapter 2: Background



20

Han et al. began their investigation with a quantized representation of the V-A space and

employed SVMs for classification [81]. Citing unsatisfactory results (obtaining 33% accuracy in an

11-class problem), they moved to regression-based approaches. Han reformulated the problem using

regression, mapping the projected results into the original mood categories, employing SVR and

Gaussian Mixture Model (GMM) regression methods. Using 11 quantized categories with GMM

regression, they obtain a peak performance of 95% correct classification.

Eerola et al. introduced the use of a three-dimensional emotion model for labeling music, fully

committing themselves to regression [38]. In their work, they investigated multiple regression ap-

proaches, including Partial Least-Squares (PLS) regression, an approach that considers correlation

between label dimensions. They achieve R2 performance of 0.72, 0.85, and 0.79 for valence, activity,

and tension, respectively, using PLS and also report peak R2 prediction rates for 5 basic emotion

classes (angry, scary, happy, sad, and tender) as ranging from 0.58 to 0.74.

Madsen et al. propose a very interesting approach, developing a system that is trained on ranking

data, but is capable of making V-A predictions in the testing phase. By operating on ranking data,

they are able to perform highly controlled human data collection experiments. Their experiments

simply ask subjects to rate pairs of songs as to which song is higher in terms of valence and arousal.

The downside is that full evaluation of the system requires ranking on all pair combinations and

thus the dataset is limited in size. Their current set contains 20 songs, and therefore 190 unique

pairings. With the complete training set (90% of all data) they obtain valence and arousal error of

0.13 and 0.14, respectively [82].

2.4.3 Emotion Recognition Over Time

As few other Music-IR tasks are subject to dynamic (time varying) “ground truth,” it can be

argued that accounting for the time varying nature of music is perhaps more important for emotion

recognition than most other tasks. Because of this variation, systems relying on a single mood

label to refer to an entire song or lengthy clip are subject to high classification uncertainty. Lu

et al. pursued mood tracking across the four principal V-A quadrants, detecting mood changes at
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1 second resolution. They report precision and recall for mood boundary detection at 84.1% and

81.5%, respectively, on a corpus of 9 movements from classical works [66].
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Chapter 3: Data Collection

The ambiguous nature of musical emotion (mood) presents an interesting difficulty in collecting

ground truth data. As discussed in Section 2.1.4, a variety of representations are used for mood-

specific labels when collecting music corpora. For example, the two most ubiquitous collections use

categorical representations curtailed by experts (i.e., Allmusic.com) and unstructured user-generated

tags (i.e., Last.fm). While these approaches efficiently provide data for large collections, they are

not well-suited for reflecting variations in the emotional content as the music changes. Throughout

this work emotion will be represented using the parametric arousal-valence (A-V) orientation of

the valence and arousal dimensions discussed in Section 2.1.4. Valence indicates positive versus

negative emotion and arousal indicates emotional intensity [4]. This method potentially lends itself

well to capturing labels dynamically (over time) to reflect emotion changes in synchrony with music

and also provides quantitative labels that are well-suited to computational methods for parameter

estimation.

This chapter will first present MoodSwings [15, 83], an online collaborative activity designed

to collect second-by-second A-V labels on a large database of music. From the MoodSwings data,

a corpus is constructed for supervised machine learning. This corpus, referred to as MoodSwings

Lite [6], is a reduced set of the overall MoodSwings database. In forming MoodSwings Lite, this

chapter will also discuss the aggregation of data from multiple subjects to form A-V “ground truth”

representations. Next, the chapter turns to Amazon’s Mechanical Turk (MTurk) as another potential

method for collecting new data (see Section 2.3.2). MTurk is investigated in seeking to address

questions that have been raised about potential biases in the labels due to the collaborative nature

of the game, and in looking for a method to collect data more quickly. The MoodSwings Turk [8]

database is presented, which is reannotated to provide a denser data collection (i.e., more human

annotations per clip) and to provide a means of analysis between the two data collection methods.
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The last part of the chapter presents an entirely new corpus using instrumental data, which is hand

selected to contain dynamic emotion transitions and is annotated with Mechanical Turk.

3.1 MoodSwings

Inspired by other successful Music-IR annotation games (Section 2.3.1), MoodSwings is a game for

online collaborative emotion-based music annotation. The game board (Figure 3.1) is based on the

two dimensional A-V model for human emotions. During gameplay, players are randomly paired

across the internet to complete matches consisting of five 30-second music clips. The objective of

the game is for players to achieve agreement of their valence-arousal labels over time, where closer

distance between labels represents more agreement. The closer their labels are at any given time,

the higher the points awarded, and their points will accumulate with agreement over the 30-second

clip. Since agreement is necessary to score points, players are discouraged from making nonsensical

labels. As an additional incentive for proactive and independent labeling, bonus points are awarded

to the player who first reaches a particular location, making it impossible to outscore an opponent

by simply following their cursor. This will ultimately provide labels at 1-second intervals of music

across the entire database.

Figure 3.1: The MoodSwings gameboard.
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3.1.1 Summary of Data Collection

The song clips used in MoodSwings are drawn from the “uspop2002” database [84], and overall the

game has collected over 150,000 individual A-V labels spanning more than 1,000 songs. A contour

map showing the distribution of the collected data can be seen in Figure 3.2. Since the database

consists entirely of popular music, the labels collected to date display an expected bias towards

high-valence and high-arousal values. Although inclusion of this bias could be useful for optimizing

classification performance, it is not as helpful for learning a mapping from acoustic features that

provides coverage of the entire emotion space, which is an issue that must be addressed to form a

corpus for supervised machine learning.
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Figure 3.2: A contour plot showing the distribution of the MoodSwings labels [15].

Shown in Figure 3.3 is example song data from “American Pie” by Don McLean. In this transition

between the first chorus and the second verse, there is a clear change in both intensity and emotion.

In the song itself, this can be identified in the changes in instrumentation and increased tempo.

3.2 MoodSwings Lite Corpus

As a result of the high-valence, high-arousal trend, a reduced dataset consisting of 15-second music

clips from 240 songs selected was developed. These clips were selected using the initial labels collected

through the game to approximate an even distribution between the four primary quadrants of the
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Figure 3.3: Progression of arousal-valence labels over an example clip. The ellipses represent
the standard deviation across different players [15].

A-V space. These clips were then subjected to intense focus within the game in order to form a

corpus, referred to here as MoodSwings Lite, with significantly more labels per song clip. The overall

distribution of this label collection is shown as a contour map in Figure 3.4.
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Figure 3.4: A contour plot showing the distribution of all MoodSwings Lite A-V labels.

Shown in Figure 3.5 is the data collected over a single 15-second clip. Each gray dot represents

the annotation applied by a MoodSwings player. Clearly, all players agree on the general area of the

A-V space that the clip lies in, but there is certainly a significant amount of variance or disagreement.
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As all of these ratings are equally valid answers, it is very important to consider how the data is

aggregated across multiple subjects and how disagreement could be represented.
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Figure 3.5: Data collected from MoodSwings over a 15-second clip.

3.2.1 Classification Corpus

The first representation investigated is for a simple 4-quadrant mood classification problem. In this

representation, a single class label for each clip was obtained by quantizing the mean of all A-V labels

collected across the duration of the clip. This simplification, while necessary for the classification

task, will be seen as a potential source of error and is indicative of the inherent problems of focusing

on singular mood classes, which is discussed in Chapter 7. Although the MoodSwings Lite corpus was

used as the basis for classification, the original (uniform) distribution across the quadrants shifted

slightly as more labels were collected for each individual clip. The final distribution of “ground

truth” class labels is given in Table 3.1.

Class No. Arousal Valence No. of Examples

1 high high 70
2 low high 51
3 low low 59
4 high low 64

Table 3.1: Quadrant-based class assignments of all MoodSwings Lite music clips.
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3.2.2 Emotion Regression Corpus

Given the continuous nature of the collected A-V labels and the myriad problems produced by

discrete emotional classes, this section discusses the development of a corpus for emotion regression.

In emotion regression, which will be discussed in Chapter 7, multiple methods will be investigated

for mapping acoustic features into the A-V space. Two versions of the corpus are constructed: one

with static emotion labels, and the other with time varying sequences. The first version views the

15-second clip as a single example, just as was done with the classification corpus (Figure 3.6, left).

The goal of the regression problem is to then predict one A-V coordinate for the clip. In the second

version, the corpus is viewed as a sequence of 15 values, taking into account the variation in emotion

over the clip (Figure 3.6, right). In those problems, the goal will be to analyze and predict the

evolution of emotion over time.

Figure 3.6: Modeling emotion space ground truth as a single A-V value. Left plot: modeling
the clip as a single example. Right plot: modeling the clip as a sequence of fifteen examples
(markers become darker as time advances). Both plots display the collected from MoodSwings
(gray •) and the ground truth representation (red •).

3.2.3 Emotion Distribution Regression Corpus

While the regression corpus takes into account multiple opinions when determining the aggregated

emotion label, disagreement by nature is a stochastic distribution. For these examples, instead of

oversimplifying the ground truth into a single point, a single bivariate Gaussian distribution will
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be used to represent the data. This assumption allows the representation of a reasonable degree

of disagreement in emotion, and potentially provides a more realistic (and accurate) reflection of

the perceived emotions conveyed by a song. Shown in Figure 3.7 is a graphical depiction of this

representation. Just as in the single point corpus, here distributions are estimated on both the entire

15-second clip (Figure 3.7, left) and independently at each time step (Figure 3.7, right).

Figure 3.7: Modeling emotion space ground truth as a stochastic distribution. Left plot:
modeling the clip as a single example. Right plot: modeling the clip as a sequence of fifteen
examples (markers become darker as time advances). Both plots display the collected from
MoodSwings (gray •) and the ground truth representation (red).

3.3 MoodSwings Turk Corpus

Throughout the process of completing this work, many questions arose about the two-player structure

of MoodSwings and whether or not it induced biases in the collected annotations as a result. The

MoodSwings Turk dataset discussed here is a reannotation of the MoodSwings Lite dataset with

Amazon’s Mechanical Turk (MTurk) service (see Section 2.3.2). The MTurk Human Intelligence

Task (HIT) is completed by single annotators over the internet, who are compensated for their time.

In addition to investigating biases in MoodSwings, it is also wished to explore MTurk as a means

for quickly collecting data.
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3.3.1 Mechanical Turk Data Collection

As in MoodSwings, the task collects per-second labels, but no partner is present and no points are

awarded. Workers are given detailed instructions describing the A-V space before they begin. In the

activity, they navigate to a website that hosts the task and label 11 randomly-chosen clips. The first

clip is a practice round and is omitted from the analysis. The third and ninth are identical clips,

randomly chosen from a set of 10 “verification clips,” which are evaluated to identify unsatisfactory

work. Workers are given a 6-digit verification code to enter on the MTurk website as proof of

completion which, if successful, will earn workers $0.25 per HIT.

The system collected 4,064 label sequences after two stages of filtering: first evaluating verification

clip labels and then removing labeling sessions of workers who kept the cursor at the origin for too

long or consistently provided the same rating (e.g., consistently labeled all clips as angry throughout

a game). It is assumed that the relatively small number of workers who did not move after 15

seconds misunderstood the task, and thus their data was filtered out. Table 3.2 shows statistics of

the collected per-clip annotations in the dataset, before and after filtering.

Unfiltered Verification Stage 2
Metric Dataset Filtering Filtering

Mean 49.79 18.20 16.93
St. Dev. 4.328 2.480 2.690
Max 72 24 23
Min 39 8 7

Table 3.2: Number of MTurk worker annotations for each clip before and after filtering.

3.3.2 MoodSwings Analysis with MTurk Data

We compute Pearson’s product-moment correlation between the datasets from MoodSwings and

MTurk for each dimension. Pearson’s correlation between random variables X and Y is defined as:

ρ =
cov(X,Y )

σXσY
. (3.1)

To account for discrepancies between the number of annotations for each clip, per-second sample

means are treated as observations. The results, 0.712 for Arousal and 0.846 for Valence, show more
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Figure 3.8: A-V distribution of data shown as a contour map. MoodSwings (left) and MTurk
(right).

correlation between the two datasets than Lee’s comparison of a MTurk-collected dataset to similarly

crowdsourced data [60]. High correlation provides evidence that annotators’ judgments are unlikely

to be affected by collaborating with a partner during MoodSwings.

Figure 3.8 shows contour maps for the datasets collected with MoodSwings and MTurk. Both

datasets have similar densities in the quadrant centers, though the MTurk dataset has higher densi-

ties along the space’s extremities, which could be attributed to a larger sample. The MTurk dataset

also contains small peaks throughout the distribution, whereas the MoodSwings set has more con-

sistent clusters. It is difficult to pinpoint a cause for this difference, but multiple small peaks in the

MTurk distribution may suggest that workers remain indecisive about their mood ratings throughout

the duration of a clip. In MoodSwings it was found that it takes 7-8 seconds on average for players

to reach 85% of the total distance from the origin to their final mood labels [83]. By contrast, it took

MTurk workers 10-12 seconds to reach the same distance percentage. Faster convergence towards

a mood decision in the game could imply that collaboration encourages annotators to re-evaluate

their ratings earlier in the clips, perhaps improving the quality of collected data.
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3.3.3 Label Sequence Statistical Analysis

In looking to ultimately apply relational learning methods to this sequence data, those models will

allow the ability to model statistical dependencies from one observation to the next. To verify that

this data collection exhibits such dependencies, the correlation coefficients of the label sequences

from one frame to the next, and from the first frame of each sequence to the last are computed.

In these cases, the individual discretized user labels are treated as variables and each second as

observations of those variables. Statistics of the squared correlation coefficients (r2) are provided

for the full dataset in Table 3.3.

Dimension r2 Frame-Frame r2 First-Last Frame

Arousal 0.944 ± 0.093 0.507 ± 0.242
Valence 0.951 ± 0.097 0.524 ± 0.235

Table 3.3: Statistics of ground truth squared correlation coefficient (r2) from one second to
the next and from the first second to the last.

Overall, the dataset shows high correlation from one frame to the next, and lower correlation

between the first frame and last frame. In other words, the current emotion is highly dependent

upon the emotion of the prior second, and on average each sequence exhibits a significant change

in emotion from beginning to end. As a result, the dataset is a good match for graphical modeling

techniques.

3.3.4 Emotion Space Heatmaps

In addition to regression and distribution regression, the MoodSwings Turk experiments (see Chapter

8) will also investigate the prediction of emotion space heatmaps. The previous methods for emotion

distribution representation fit single bivariate Gaussian distribution to A-V data. This representation

allows some variation in opinion, but it is limited to a single mode and all songs ratings do not

necessarily follow the same distribution. Using emotion space heatmaps it is possible to represent

arbitrary distributions with an arbitrary number of modes. An example of an A-V heatmap is shown

in Figure 3.9.
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Figure 3.9: An emotion space heatmap.

3.3.5 MTurk Discussion

The strong positive correlation between data from MoodSwings and MTurk provides evidence that

collaborating with a partner does not bias annotators’ mood judgments any more than participating

in a traditional labeling task. The logistics of each method are significant considerations, particularly

the pace of data collection and time spent on quality control. Monetary incentives can attract

annotators very quickly, but researchers must determine how to separate anonymous paid annotators

(e.g., MTurk workers) with good intentions from those who wish to obtain payment for as little work

as possible. With MoodSwings, however, the challenge is attracting annotators and the process of

collecting data has been slow. The current MoodSwings Turk dataset contains annotations from an

average of ∼17 people for each song.

Given the success of MTurk discussed both here and in the experiments in Chapter 8, it is chosen

as the method of annotation for the instrumental dataset, which will be discussed in the next section.

While dealing with the noise in MTurk data is quite challenging, the speed at which the data can be

collected makes it a more attractive method overall. While the approach of the game has perhaps

been validated, the issue of attracting people to play it remains a much more difficult task.
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3.4 Instrumental Data Corpus

The motivation in moving towards instrumental music is to remove any influence of lyrics and to

gather data on music that potentially has a larger breadth of interpretations among annotators, and

therefore more complex emotion space distributions. This corpus is largely centered around jazz and

classical music and contains clips that are hand selected to lie in areas of the piece that contain large

changes in emotion. This is a major difference from the MoodSwings Lite pop music dataset, where

many of the clips lie within a single structural segment (e.g., verse, chorus). In addition, the dataset

will consist of 30-second sequences, which are twice as long as the current set and are potentially

better suited to train time-varying models. The final corpus contains 300 clips, and because they

were hand picked the selection was a very time consuming process.

3.4.1 Data Collection

Just as with MoodSwings Turk, workers are given detailed instructions describing the A-V space

before they begin. In the activity, they navigate to a website that hosts the task and label 11

randomly-chosen clips. The first clip is a practice round, omitted from the analysis. The third and

ninth are identical clips, randomly chosen from a set of 10 “verification clips,” which are evaluated

to identify unsatisfactory work. Workers are given a 6-digit verification code to enter on the MTurk

website as proof of completion that, if successful, will earn workers $0.35 per HIT, a 10 cent increase

over MoodSwings Turk. The increase was given in order to compensate for the slightly longer clips,

as well as to hopefully attract more annotators.

This data collection also provides additional filtering to ensure data quality. Just as in MoodSwings

Turk, each HIT is manually compared to a set of predetermined “verification” songs that have been

labeled by a set of experts. To ensure this process is done properly, each HIT is manually evaluated

by three people, and the final decision of whether to include the HIT in the dataset is taken using

majority voting. The final dataset contains annotations from an average of 15.52 ± 1.820 workers

for each 30-second clip.
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Figure 3.10: A contour plot showing the A-V distribution of the instrumental dataset.

3.4.2 Comparison to MoodSwings Pop Music Corpus

A contour plot of the Instrumental Dataset distribution is shown in Figure 3.10. Comparing to

MoodSwings Lite and MoodSwings Turk (Figure 3.8), a bias towards the top right quadrant can

also be seen. However, it also seems that this dataset is not as centered around the origin as previous

sets. This is perhaps due to the emotion-space dynamics contained in the music pieces; annotators

are constantly required to change their ratings, which generally requires the movement towards one

extreme or the other.

Table 3.4 contains the aggregated squared correlation coefficients for individual user ratings from

second to second (Frame-Frame) and from first second to last second (First-Last Frame). Comparing

these values to MoodSwings Turk (Table 3.3), a similar second by second correlation can be seen,

in that the emotion at the current second depends heavily on the previous second. However, a

significant change can be seen in the first to last second comparisons, demonstrating that these clips

have much larger emotion-space dynamics over the range of the clip.

Dimension r2 Frame-Frame r2 First-Last Frame

Arousal 0.926 ± 0.113 0.192 ± 0.186
Valence 0.946 ± 0.098 0.305 ± 0.223

Table 3.4: Statistics of ground truth squared correlation coefficient (r2) from one second to
the next and from the first second to the last.

Chapter 3: Data Collection



35

Chapter 4: Acoustic Feature Selection

This chapter investigates the selection of acoustic features for music emotion recognition. Current

approaches to feature selection (e.g., sequential feature selection [39, 85]) often focus on selecting

features that provide the best separability within the space of a specific classification problem. These

approaches work well when competing against other researchers to obtain the best classification

performance on a given dataset, but what holds true on a specific dataset does not necessarily

generalize to the global task (e.g., music emotion recognition). Given the difficulty of obtaining

music content, datasets are often assembled using convenience sampling (i.e., using music that is

readily available). Thus, while datasets can still be paramount in advancing the state of the art in

certain fields, few if any can be thought of as an ideal sampling of the true distribution of music.

By developing controlled experiments, this chapter seeks to investigate feature selection for the

general problem of music emotion recognition. The first experiments seek to perceptually evaluate

two of the most commonly used features in Music-IR: mel-frequency cepstral coefficients (MFCCs)

and the chromagram. MFCCs have been shown to be one of the most informative feature domains for

music emotion recognition [6, 9, 7, 11], but as MFCCs were originally designed for speech recognition,

it is unclear why they perform so well or how much information about emotion they actually contain.

Conversely, the chromagram appears to be one of the most intuitive representations, as it provides

information about the notes contained in the piece, which could potentially provide information

about the key and mode. Thus far, chroma has shown little promise in informing this problem. In

order to properly assess these features, a perceptual study is conducted using Amazon’s Mechanical

Turk [86] (MTurk). The goal of the study is to analyze the relative emotion of two song clips,

comparing human ratings of both the original audio to those of audio reconstructions from these

features. By asking human subjects to analyze these reconstructions, it is perhaps possible to get a

much more accurate depiction of how informative these features are to musical emotion.
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Given such a data collection, this chapter also seeks to identify patterns and relationships between

musical parameters (e.g. key, mode, tempo) and perceived emotion. By identifying variability in

emotion related to these parameters, this chapter identifies existing features that respond with the

highest variance to those that inform emotion, and the least variance in those that do not. In

order to properly assess a large variety of features, these experiments utilize the features used the

perceptual study reconstructions, as well as the other features used in this work, and 14 additional

features from the MIR-toolbox [65].

4.1 Data Collection

In previous studies (such as [24]), several controlled variations of musical phrases are provided to

each participant. Since this chapter focuses on studying the changes in the acoustic feature domain,

it is necessary to have samples that can be easily manipulated in terms of mode and tempo and that

provide a wide enough range to ensure that all possible variations in the feature space are accurately

represented. To this end, this chapter uses a dataset all of its own, separate from those discussed in

Chapter 3 and later used for modeling and prediction. This dataset consists of 50 Beatles MIDI files,

attained online [87], spanning 5 albums (Sgt. Peppers, Revolver, Let It Be, Rubber Soul, Magical

Mystery Tour). In order to remove the effect of instrumentation, each song was synthesized as a

piano reduction and a random twenty second clip of each song was used for the labeling task.

4.1.1 Song Clip Pair Selection

Labeling the entire 1225 possible pairs from the 50 songs would be prohibitive, so the focus is instead

narrowed to a subset of 160 pairs. Since the Beatles dataset contains 35 songs in the major (Ionian)

mode and only 9 in the minor (Aolean) mode (with 6 additional pieces in alternate modes), it is

necessary to ensure that major-major pairings do not completely dominate our task. Some songs

are represented one extra time in order to generate 160 pairs but no song is repeated more than

once. Out of these 160 pairs, there are 81 major-major pairings, 33 major-minor pairings, and 7

minor-minor pairings.
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For each song, a piano reduction of the MIDI file is rendered for the 20 second clip, and then

MFCCs and chroma features are computed on the audio. Audio examples for reconstructions are

synthesized from the resulting features. Chromagram features are extracted and reconstructed

using Dan Ellis’ chroma features analysis and synthesis code [88] and MFCCs using his rastamat

[89] library. The MFCC reconstructions sound like a pitched noise source, and while the chroma

reconstructions have an ethereal ‘warbly’ quality to them, they sound more like the original audio

than the MFCC reconstructions.

4.1.2 Mechanical Turk Annotation Task

In order to annotate the clip pairs, Amazon’s online crowd-sourcing engine Mechanical Turk is

employed, providing input from a wide variety of subjects. In the MTurk Human Intelligence Task

(HIT), participants are asked to label four uniformly selected song pairs from each of the three

categories: original MIDI rendering, MFCC reconstructions, and chromagram reconstructions. For

each pair of clips, participants are asked to label which one exhibits more positive emotion and which

clip is more intense. The three categories of audio sources are presented on three separate pages.

The participants are always comparing chroma reconstructions to chroma reconstructions, MFCC

reconstructions to MFCC reconstructions, or MIDI renderings to MIDI renderings. Subjects never

compare a reconstruction to the original audio. For each round, a clip is randomly selected to be

repeated as a means of verification. If a user labels the duplicated verification clip differently during

the round with the original audio, their data is removed from the dataset.

4.2 Experiments and Results

The first set of experiments investigate the emotional information retained in some of the most

common acoustic features used in Music-IR, MFCCs and chromagrams. As described above, users

listen to a pair of clips that was reconstructed from features (MFCC or chroma) and rate which is

more positive and which has more emotional intensity. It is desired to quantify how much information

about musical emotion is retained in these acoustic features by how strongly emotion ratings of the

reconstructions correlate with that of the originals. First, the user ratings are related to musical
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tempo and mode, and then it is explored which features exhibit high variance with changes in tempo

and mode or are invariant to altering these musical qualities.

4.2.1 Perceptual Evaluation of Acoustic Features

Running the task for three days, a total of 3661 completed HITs were collected, and a total of 1,426

were accepted for an approval rating of 39%, which is similar to previous work annotating music

data with MTurk [8, 60, 61]. The final dataset contains 17,112 individual song pair annotations,

distributed among 457 unique Turkers, with each Turker completing on average ∼ 2.5 HITs. With

a total of 160 pairs, this equates to ∼ 35.65 ratings per pair. HITs are rejected for completing the

task too quickly (less than 5 minutes), failing to label the repeated verification pairs the same for

the original versions, and failing too many previous HITs. While repeated clips were presented for

both reconstruction pairs and originals, requiring identical ratings on the reconstructions ultimately

proved to be too stringent, due to the nature of the reconstructed clips. For the original clips, the

repeated pair was required to have the same ratings for both the higher valence and higher arousal

clips, and the A/B presentation of the clips was reversed to ensure Turk users were not just selecting

song A or song B for every pair to speed through the task.

For each pair and for each audio type, the percentage of subjects that rated clip A as more

positive (valence) and the percentage that labeled clip A as more intense (arousal) is computed,

pv =
1

N

N∑
n=1

1{An = HigherValence}, (4.1)

pa =
1

N

N∑
n=1

1{An = HigherArousal}, (4.2)

where N is the total number of annotations for a given clip, pv is the percentage of annotators that

labeled clip A as higher valence, and pa is the percentage of annotators that labeled clip A as higher

arousal. For each song pair, the percentage of Turkers who rated song A as more positive in the

original audio is compared to those who rated song A more positive in the reconstructions, yielding

the normalized difference error for all songs.
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Audio Normalized Difference Error
Source Valence Arousal

MFCC Reconstructions 0.133 ± 0.094 0.104± 0.080
Chroma Reconstructions 0.120± 0.095 0.121 ± 0.082

Table 4.1: Normalized difference error between the arousal/valence ratings for the reconstruc-
tions and the originals.

In Table 4.1, the error statistics are shown for the deviation between the two groups. The paired

ratings of each type are also verified with a paired Student’s t-test to verify that they do not fall

under the alternative hypothesis that there is a significant change, but as it is desired to have proof

that there is no change, average error remains the best indicator. Figure 4.1 shows histograms

of these error values over all examples. It can be seen that in general MFCCs are less uniform

for Arousal, and Chroma is less uniform for Valence, indicating that those features contain more

information about those emotion parameters.

4.2.2 Relationships Between Musical Attributes and Emotional Affect

The next experiments analyze the data for trends relating major/minor modes and tempo to valence

and arousal. In Section 2.1.3, the general trend of major tonality being associated with positive

emotional affect was discussed, as well as higher tempo corresponding to an increase in arousal or

valence.

A subset of the dataset S is taken M ⊂ S that consists of pairs that contain one major mode

song and one minor mode song, as well as a subset T ⊂ S in which pairs differ in tempo by more

than 10 beats per minute (bpm). For subset M , the percentage of users that labeled the major

song as more positive and the percentage of users that labeled the major song as more intense are

calculated. For subset T , it is determined whether the faster song is more intense and whether the

faster song is happier according to the users. Looking at Table 4.2, it is concluded that the results

are commensurate with the findings from the various psychology studies referenced in Section 2.1.3,

namely that major songs are happier and faster songs are more intense.
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Figure 4.1: Histograms of normalized difference error between the arousal/valance ratings for
the reconstructions and the originals.

Null Hypothesis Agreement Ratio

Major Key Labeled as More Positive Valence 0.667
Faster Tempo Labeled as More Positive Valence 0.570
Major Key Labeled as More Positive Arousal 0.528
Faster Tempo Labeled as More Positive Arousal 0.498

Table 4.2: Percentage of paired comparisons that yielded the desired perceptual result for
mode and tempo.

One area where larger agreement was expected is the relationship between tempo and intensity.

Only the beats per minute for each song are available, and the faster song is labeled as the one

with a higher bpm. The note lengths and emphasis in relation to the tempo are disregarded in this

analysis and may be a source of uncertainty in the result. Depending upon the predominant note
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value (quarter/eighth/sixteenth), a slower tempo can sound faster than a song with a higher number

of beats per minute. These are two different compositions, not the same clip at two different tempos.

4.2.3 Identifying Informative Feature Domains

When using features to understand certain perceptual qualities of music, it is important to know

how those features relate to changes in the perceptual qualities being studied. This section looks

to find appropriate variances and invariances as they relate to a perceptual quality. For example,

supposing emotion is invariant to key, if the key changes, the features should also be invariant to that

key change. It is desired to have correlation in variance as well. If the emotion of the audio changes,

the desired features are the ones that describe it to change in response. In order to investigate these

variances and invariances, the feature sets used in other experiments in this work are used, as well as

a set of features from the MIR-toolbox. Using the Beatles’ clips, changes in key, tempo, and mode

are generated to investigate possible corresponding differences in features. For key, the original was

compared with transposed versions a 5th above and below. For tempo, the original was compared

with versions at 75% and 133% of the original tempo. For mode, all the minor songs were shifted

to major and all the major songs to natural minor and compared the full dataset in major vs. the

full dataset in minor.

Because the features contain different dimensions and have different ranges, looking at differences

in their direct results does not allow for proper comparison between them. In order to draw proper

comparisons, the features are normalized over dimension and range.

Given 2 feature vectors over time F1 ∈ RM×N and F2 ∈ RM×N , the content is normalized over

the vectors’ shared range,

F ′1 =
F1 −min(F1 ∪ F2)

max(F1 ∪ F2)
, (4.3)

F ′2 =
F2 −min(F1 ∪ F2)

max(F1 ∪ F2)
. (4.4)

Chapter 4: Acoustic Feature Selection



42

The mean for each dimension is calculated, creating mean vectors µ1 ∈ RN×1 and µ2 ∈ RN×1. The

average feature change across all dimensions is then computed,

FeatureChange =
1

N

N∑
n=1

|µ1(n)− µ2(n)|. (4.5)

If this FeatureChange value is low, it means that the feature is invariant to the musical change

being presented. In Table 4.3 it is observed that features that exhibit higher variance to the specified

change (tempo up/down, key up/down, and mode shift) should be more effective in computational

models that are sensitive to these parameters. Several intuitive features, including onsets, RMS

energy, and beat spectrum, emerge as the most variant features to tempo. Conversely, it is intuitive

that features like mode and tonal center do not vary much with tempo.

Tempo Up Tempo Down Key Up Key Down Mode Shift

Feature Feature Feature Feature Feature Feature Feature Feature Feature Feature
Domain Change Domain Change Domain Change Domain Change Domain Change

Onsets 0.127 Onsets 0.126 Key 0.142 Key 0.145 Mode 0.142
Beat Spec. 0.081 Beat Spec. 0.078 Beat Spec. 0.134 Beat Spec. 0.131 Tonal Cent. 0.114
RMS Energy 0.049 RMS 0.050 Tonal Cent. 0.105 Tonal Cent. 0.102 Beat Spec. 0.103
HCDF 0.024 HCDF 0.022 MFCC 0.084 MFCC 0.178 Key 0.063
xChroma 0.024 xChroma 0.021 Zerocross 0.081 Zerocross 0.064 Chroma 0.047
Roughness 0.023 Roughness 0.019 Chroma 0.055 Chroma 0.051 MFCC 0.030
Zerocross 0.022 SSD 0.017 Contrast 0.054 Contrast 0.049 Brightness 0.019
Brightness 0.021 MFCC 0.016 Regularity 0.050 xChroma 0.048 Onsets 0.015
SSD 0.021 Brightness 0.015 xChroma 0.038 Regularity 0.045 Attack time 0.014
MFCC 0.017 Zerocross 0.015 Mode 0.038 SSD 0.041 Regularity 0.013
Chroma 0.014 Chroma 0.014 Brightness 0.037 Brightness 0.041 Zerocross 0.012
Key 0.013 Key 0.014 SSD 0.036 Mode 0.040 Contrast 0.011
S. Contrast 0.012 Regularity 0.011 Attack time 0.030 Attack time 0.026 xChroma 0.011
Regularity 0.012 Contrast 0.010 RMS 0.021 Roughness 0.023 SSD 0.010
Fluctuation 0.011 Fluctuation 0.009 Roughness 0.021 Onsets 0.020 RMS 0.009
Attack time 0.010 Mode 0.007 Onsets 0.017 RMS 0.017 Attack Slope 0.008
Mode 0.009 Attack time 0.007 Attack Slope 0.015 HCDF 0.015 Roughness 0.007
Tonal Cent. 0.007 Tonal Cent. 0.006 HCDF 0.012 Attack Slope 0.009 HCDF 0.006
Attack Slope 0.006 Attack Slope 0.005 Fluctuation 0.008 Fluctuation 0.008 Fluctuation 0.002

Table 4.3: Normalized feature change with respect to musical mode and tempo alterations.

4.3 Discussion

In this chapter, perceptual evaluation of emotional content in audio reconstructions from acoustic

features has been provided. In addition, these findings have been related to those from previous

work, showing correlation between major keys and increased positive emotion, as well as increased

tempo and increased positive emotion and activity. For tempo, mode and key, this chapter has

provided a variational analysis for a large number of acoustic features. The findings presented here
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should be informative for future computational investigations in modeling emotions in music using

content based methods.
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Chapter 5: Acoustic Feature Learning

While there has been much progress in machine learning systems for estimating human emotional

response to music, little progress has been made in terms of intuitive feature representations. As

discussed in Chapter 2, current methods generally focus on combining several feature domains (e.g.

loudness, timbre, harmony, rhythm) and performing dimensionality reduction techniques to extract

the most relevant information. In many cases, these methods have failed to provide enhanced

classification performance, and they leave much to be desired in terms of understanding the complex

relationship between emotional associations and acoustic content.

The Music Information Retrieval Evaluation eXchange (MIREX) [90] audio mood classification

task provides an excellent illustration of this [35]. Shown in Figure 5.1 is the performance of MIREX

submissions for each year. The first year MIREX ran the task, it received 9 submissions, and the

best performing system achieved 61.50% performance on the 6-class problem using a feature space

spanning 16-dimensions [74]. Each year the task has received a larger number of submissions, with

exponentially larger feature libraries, but it has failed to produce significant performance gains. Most

recently, in 2010 the task received 36 submissions with the best system mining a 70-dimensional

feature space, but achieved only 64.17% [91]. These results perhaps indicate that the data necessary

for informing systems for this problem is not present in any current feature set.

Instead of collecting sets of existing features, this chapter will discuss methods to potentially

learn representations of music audio that are specifically optimized for the prediction of emotion.

One consideration in feature learning is obtaining sparse representations. Sparse representations

are particularly desirable in the application of feature learning for forming compact representations

of high-dimensional spectral data, and previous work in sparse methods has also shown that such

representations lead to basis functions that closely model mammalian auditory filters in the auditory

cortex [92]. As a result, such representations can potentially lead to particularly informative feature

domains.
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Figure 5.1: MIREX mood classification task performance by year.

The ambiguous nature of musical emotion makes it an especially interesting problem for the

application of feature learning. Using deep belief networks (DBNs) [93], this chapter will develop

methods for the learning of emotion-based acoustic representations directly from magnitude spec-

tra. The topology of a trained DBN is identical to that of a multi-layer perceptron (MLP) or neural

network, but DBNs employ a far superior training procedure involving a secondary topology. DBN

training begins with an unsupervised pre-training approach using greedily-trained restricted Boltz-

man machines (RBMs) [94, 95]. The general approach is to attach a logistic regression layer for

classification after pre-training, and to then use gradient descent to perform the fine-tuning. In this

approach, the DBN is implemented to learn feature detectors for a regression problem and instead

a linear regression layer is attached.

In general, deep belief networks have received very little attention in the application of re-

gression problems, and at the time of writing no other work is known that has applied them to any

regression-based feature learning problem. While this model is applied specifically for music emotion

recognition, the topology presented here could easily be applied to a wide variety of regression-based

feature learning problems.

5.1 Deep Belief Networks

A fully trained deep belief network (DBN) [93, 94, 95, 96] shares an identical topology to a multi-

layer perceptron (MLP) or neural network, though they offer a far-superior training procedure,
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beginning with an unsupervised pretraining that models the hidden layers as restricted Boltzman

machines (RBMs) [93, 94, 95, 96, 97]. The general goal of pretraining is to initialize the network to

the distribution of the input data. Finetuning, as will be discussed, consists of gradient descent and

relies heavily on starting conditions, and properly pretraining the network is therefore crucial.

All DBN development for this work was done using Theano [98], a Python-based package for

symbolic math compilation. Theano is an extremely powerful tool for machine learning problems

because it combines the simplicity of Python with the power of compiled C, which can target the

CPU or GPU.

5.1.1 Restricted Boltzman Machines

A restricted Boltzman machine is a type of log-linear Markov random field with hidden units. A

graphical depiction of an RBM is shown in Figure 5.2. An RBM is a generative model that contains

only a single hidden layer, and in very simplistic terms it can be thought of as a set of basis vectors

that serve to both reduce the dimensionality of the data as well as reconstruct it. These models are

restricted in the sense that they contain only connections between the visible and hidden layer (i.e.,

no visible-visible or hidden-hidden connections).

Hidden

Layer

Visible

Layer

Figure 5.2: Restricted Boltzman machine topology.

These generative models express their probability distribution via an energy function, which is

shown here as a joint configuration between an observed part v and hidden part h [99],

E(v,h) = −
∑

i∈visible

bivi −
∑

j∈hidden

ajhj −
∑
i,j

vihjwij . (5.1)
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In the experiments discussed in this work (Chapter 7 - 8), the visible layer is a spectrogram v ∈ RI×1

and the hidden layer h ∈ RJ×1. The model has parameters W ∈ RI×J , with biases a ∈ RJ×1 and

b ∈ RI×1. A more detailed RBM tutorial is available in Appendix B.

5.1.2 Constructing a Multi-Layer Network

When constructing deep architectures, the standard method is via “greedily” stacking restricted

Boltzman machines [95]. In this method RBMs are trained one at a time starting from the bottom.

After the first layer RBM is trained using the collected data, only the forward weights are retained.

Then samples of that RBM’s hidden layer (Equation B.8) are used as the visible layer of the next

RBM. Another way to think about this is that the outputs of the first layer are used as training

data for another RBM. Shown in Figure 5.3 is a three layer DBN.

Hidden

Layer

Visible

Layer

Hidden

Layer

Hidden

Layer

Visible

Layer

•••

•••

•••

•••

Figure 5.3: Greedy stacking of restricted Boltzman machines.

Starting from the bottom, the first layer is trained as an RBM, and subsequent layers are trained

using samples from the previous ones. Note that the first hidden layer will become the visible layer

of the next RBM. Figure 5.3 shows two way connections at each level, though the weights are untied

after RBM training and only the forward weights are retained. Layer sizes are not noted, though

in some approaches, layers become smaller when moving up in the network to fully take advantage

of the dimensionality reduction power of RBMs. The last step is to add an additional visible layer
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for finetuning the network. This generally involves a logistic regression layer to train the network

for classification, but in this work a linear regression layer will be attached due to the continuous

nature of the label data.

5.1.3 Supervised Finetuning

The model resulting from stacking RBMs is referred to as a multi-layer perceptron (MLP), and it is

then finetuned to predict some set of outputs. The general approach is to use some form of gradient

descent, which operates on the back propagation of cost or error and optimizing gradients of the

model parameters with respect to error [100],

w(t+1) = w(t) + ε∆E(w(t)), (5.2)

where w is the model parameters, t is the current time, and ε represents the “learning rate,” which

limits how much the parameters will be allowed to change on each iteration. E(w(t)) is a function

describing the error of the model at the current time. This work uses the built-in conjugate-gradient

optimizer in Python’s SciPy package [101].

Generally speaking, these algorithms relate the changes in model parameters to changes in error

and modify those parameters in the direction of minimizing error. The limitation of these methods

is that they rely on having a starting position to descend from, which is near to the global minima.

As these algorithms are very likely to get caught in local minima, it is crucial that the MLP is

initialized as well as possible.

5.2 Generating Features with DBNs

A trained DBN can be used to serve several purposes. The most obvious is to use the model to

make predictions on unseen data, but the model can also be used in other ways. For one, analyzing

the model parameters can potentially shed new light on the relationship between acoustic content

and human emotions. Furthermore, the model can also be used as a set of basis functions that are

specifically tuned for human emotion. In these cases, the individual layers of the DBN are used as

features in an alternate machine learning algorithm.
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Shown in Figure 5.4 is an example of how this process may work. Moving from left to right in

the figure, magnitude spectra is used as input to the DBN. The experiments in Chapter 7 use only

a single frame of spectra as inputs, and the A-V coordinates are resampled to match the 20 msec

rate of the features. In the experiments in Chapter 8, spectra is aggregated at multiple window

sizes and concatenated to form DBN inputs. Shown in Figure 5.4, is the later method, which

aggregates spectra. Furthermore, once the model is trained, the individual layers are used in an

alternate machine learning algorithm. Shown here is a simple multiple linear regression algorithm

to predict parametrized emotion distributions in the A-V space. While MLR is another very simple

algorithm, the application of much more sophisticated algorithms, such as support vector regression

and conditional random fields will be discussed.
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Figure 5.4: Feature learning system architecture showing the temporal aggregation, deep
belief network and subsequent training of linear regressors to predict multi-dimensional A-V
distributions.
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Chapter 6: Machine Learning

This chapter will focus on machine learning methods for the development of a functional mapping

from high-dimensional acoustic features to low-dimensional Arousal-Valence (A-V) representations.

This chapter will first touch on classification systems and discuss a system using support vector

machines (SVMs) for mapping audio into discrete emotion classes. As a result of the continuous

nature of the space, the remainder of the methods presented are heavily biased towards regression,

including support vector regression which will be shown to follow a training procedure similar to

SVMs. In seeking to combine multiple feature domains to boost overall performance, the methods

discussed here will focus on decision-level fusion, as well as multi-level classification and regression

schemes.

Furthermore, given the continuous nature of musical emotion, it is also necessary to develop

systems to predict how emotion evolves over time. In the sections following classification and

regression, first a systems based approach will be discussed that uses a linear dynamical system

(LDS) to model the evolution of emotion space parameters, and employs Kalman smoothing to

estimate a sequence of emotion space parameters for an unknown testing example. Lastly, a method

using conditional random fields (CRFs) is presented, which models emotion trajectories of label

sequences as a progression through a discretized emotion grid. The trained CRF is capable of

predicting emotion space heatmaps that can take on arbitrary distributions with an arbitrary number

of modes.

6.1 Classification Methods

Support vector machines (SVMs) are the primary classification method discussed in this work be-

cause of their successful application to similar music classification tasks (e.g., artist and genre classi-

fication) [71]. Using kernel methods, SVMs can be used to construct non-linear decision boundaries,

and they have proven to be very robust to noise [102, 103, 100].
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6.1.1 Support Vector Machines

Motivated by the formulation of the perceptron, an SVM attempts to construct a classification

hyperplane of maximal separation between two classes of data [102, 103, 100]. Figure 6.1 shows

an example of a maximum margin hyperplane, shown as the solid line. The two parallel transport

functions sit up against the data on either side of the hyperplane and are explained in more detail

in the SVM tutorial found in Appendix C.

x
1

x 2

Figure 6.1: An example of a maximum margin classifier. In this example x1 and x2 are the
dimensions of the input data, each blue X represents an example in the negative class and each
red O represents an example in the positive class.

Kernel Methods

The objective when using kernel functions is to project the data into a space where it is linearly

separable, which often involves using a non-linear projection function, resulting in a space of much

higher dimension. There has been significant investigation of kernel methods with audio data,

specifically to account for common acoustic features [71]. In all classification experiments discussed

in this work, a distance-based radial basis function (RBF) kernel is used,

k(x,x′) = exp
(
−γ||x− x′||2

)
, γ > 0. (6.1)
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One property of the RBF kernel is that the Euclidean distance can be replaced by another distance

metric, such as relative entropy between features represented as stochastic distributions [71]. These

methods were investigated initially in this work but were not used due to decreased performance over

standard RBF kernels. Additional details about kernel methods are available in the SVM tutorial

in Appendix C.

6.1.2 Classifier Decision Level Fusion

Given the various feature domains described in Appendix A, it is also desired to have machine

learning methods capable of combining them. The goal of decision level fusion is to combine decisions

contributed by individual SVM classifiers on different feature types with the objective of obtaining

better predictions overall (Figure 6.2). This section describes the three approaches used in the

experiments in Chapter 7. For experiments containing more than two classes, multiple binary one-

versus-all classifiers are used, combining these results to obtain a class estimate. Given a trained

SVM decision function f(x) (see Appendix C) estimates the class y for example i as follows:

ŷi = arg max
c∈Y

fc(xi), (6.2)

where Y is the set of possible outcomes associated with y, and fc is a function that assigns the

likelihood of observation xi belonging to class c.

Maximum Distance

The first approach is to simply use the hypothesis of the classifier and feature domain that produces

the greatest distance from the separation boundary, i.e., the one reporting the highest confidence.

Sum Rule

The next approach is to combine hypotheses by simply summing the distances (confidences) reported

by each of the classifiers. The class receiving the highest ensemble confidence is considered to be

the most likely source of the observed data.
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Figure 6.2: Ensemble-based decision-fusion system of differing acoustic feature types.

Decision Templates

Decision templates are a method of multi-layer (sequential) classification, specific to multi-class

decision fusion. Each initial feature-based classifier is both trained and tested on the training data.

A template matrix is created for each class, where the number of rows in each template corresponds

to the number of classifiers, and the columns are the respective one-versus-all confidence values. In

the testing phase, the testing hypotheses are mapped to a given decision template using Euclidean

distance [104].

6.2 Regression Methods

Since the eventual goal of this work is to predict continuous A-V values, as opposed to emotion

classes, this chapter also investigates multiple regression methods for mapping acoustic features into

the A-V space. Initially, these experiments employ least-squares regression to determine the optimal

mapping. Furthermore, also investigated is a mapping using support vector regression (SVR), in

order to utilize non-linear regression functions, that may be more robust to noise than the linear

functions used in least-squares.

6.2.1 Least-Squares Regression

Creating a linear projection from acoustic features to A-V coordinates is a straightforward example

of multivariate least-squares regression. This section will first discuss singlevariate linear regression

and then show how it can be easily translated to multiple parameters by making independence
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assumptions. The vector of input data for a single example is denoted as xi ∈ R1×D, and the

full training set as a matrix X ∈ RN×D, where N is the total number of examples and D is the

dimensionality of the input space. Each scalar label value is denoted yi ∈ R, and the vector of all

training labels y ∈ RN×1. The goal of linear regression is simply to learn a mapping w,

yi = xiw +N (0, σ2), (6.3)

where error is modeled as a zero mean Gaussian distribution. Using the full training set (X,y), the

residual error vector is denoted as r,

r = y −Xw. (6.4)

It is possible to find the maximum likelihood solution by taking the partial derivatives of the

residual error with respect to the parameters, setting it to zero, and solving for w [105]:

∂rTr

∂w2
= −XT(y −Xw) = 0, (6.5)

wLS = (XTX)−1XTy. (6.6)

This same method can be applied to multivariate regression by assuming independence between the

desired output dimensions. The output variable y then becomes Y ∈ RN×K , where K is the number

of output dimensions.

6.2.2 Support Vector Regression

Support vector regression (SVR) borrows much from its classification counterpart. Again, the hy-

perplane is expressed through its normal equation, where x is the data, and w is the normal vector

with some offset b (see Equation C.1). Now, the norm of w is minimized to ensure maximal flatness

in the projection, while imposing an additional constraint that values projected from xi are within

some range ε of the actual values yi [77]:
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minimize:
1

2
||w||2,

subject to:


yi − 〈w,xi〉 − b ≤ ε

〈w,xi〉+ b− yi ≤ ε

. (6.7)

Other than the addition of another regularization parameter, there is little change in the optimization

problem, which is discussed in detail in Appendix C. In the implementations discussed in this work,

these problems are optimized in the Lagrange dual from, as with SVMs (Equation C.9), using

quadratic programming [106].

6.2.3 Regression Decision-Level Fusion

Just as with classification, it will be shown that combining information from multiple domains (in a

more informed manner than simply concatenating the features) can potentially lead to more accurate

projections.

Direct Fusion Methods

The first approach to fused regression consists of a system that simply combines the outputs of the

individual feature regression systems. In the unweighted approach, outputs are simply averaged for

each output dimension (i.e., emotion space dimension/parameter) from each individual feature re-

gressor. This approach treats all features as equally informative for each output dimension, which is

a naive assumption, and a weighted approach is therefore also investigated where each individual fea-

ture regressor is weighted by its ability to predict a particular emotion space dimension, determined

through leave-one-out cross-validation.

Multi-level Regression

The next approach is a two-level regression scheme that feeds the outputs of individual regressors,

each trained using distinct features, into a second-stage regressor to determine the final prediction.

Two topologies are investigated, shown in Figure 6.3: in one case the secondary arousal and valence
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regressors receive only arousal and valence estimates, respectively; in the other case, the secondary

arousal and valence regressors receive both arousal and valence estimates from the first-stage. These

two topologies will be referred to as as multi-level separate and multi-level combined.
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Figure 6.3: Multi-level regression topologies.

In all cases, the second-level regressors employ linear least-squares and are trained using a leave-

one-out method (for every iteration, the first-stage regressors are trained by withholding one example,

and the combined first-stage estimates from the withheld examples are used to train the second

stage).

6.3 A Kalman Filtering Approach

When applying the previously discussed approaches to the problem of time-varying emotion pre-

diction, emotion space parameters are predicted independently at each emotion space time analysis

window, without considering the other time steps. In this approach, which was originally presented

as part of this work in [10], musical emotion is modeled using a systems approach, employing a linear

dynamical system (LDS). Using an LDS, it is possible to model both the mapping from features to

emotion, as well as how the emotion parameters evolve over time. It is noted that this section will

follow conventional systems notation. As the unknown parameter in LDS prediction and inference

problems is the hidden state x, and the output y is known, this section will denote the emotion

space parameters as x and features as y.

6.3.1 Estimating model parameters

In investigating time-varying models, this section will start with the simplest approach: to simply

learn the time dependence of emotion labels x and use that to restrict the way the emotion predictions
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evolve. The goal is to learn a simple dynamics model A such that,

xt = Axt−1, (6.8)

where xt ∈ RK×1 is a vector of emotion space parameters with dynamics matrix A ∈ RK×K . Given

this model, an emotion space mapping could be represented as a linear dynamical system as follows,

xt = Axt−1 + wt, (6.9)

yt = Cxt + vt, (6.10)

where the acoustic features are defined as xt ∈ RD×1 with matrix C ∈ RD×K , which relates emotion

space parameters to acoustic features. It is possible to estimate C through least-squares, just as was

done in MLR (Equation 6.3), but it must function such that,

yt = Cxt + vt, (6.11)

and driving noise w and observation noise v are defined as a zero mean Gaussian,

w ∼ N (0, Q), (6.12)

v ∼ N (0, R). (6.13)

The values for Q and R are estimated directly from the residuals of A and C.

In estimating the dynamics matrix A, initial experiments were performed using least-squares

regression in the experiments in Chapter 7, but a constraint generation approach was used in the

final approach. Using that approach, slightly better results were achieved, which is likely attributed

to the fact that it guarantees a stable solution for A. Using constraint generation, the problem is

formed as a convex optimization one and efficiently solved through quadratic programming [107].
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Finally, because the LDS models a zero mean Gaussian process, the means of the labels and the

features are subtracted prior to training, notated as x̄ and ȳ, respectively. These values are stored,

such that ȳ can be removed from unlabeled features y in the testing phase, and so x̄ can be used to

apply the proper bias to the estimate of the labels x.

6.3.2 Making Predictions using Kalman Smoothing

Given an unknown testing example y, the known bias ȳ is removed, and an estimate of its emotion

space distribution is formed by Kalman/RTS forward-backward inference [108, 109] (see Appendix

D for equations).

6.4 Conditional Random Fields

This section will discuss the application of conditional random fields (CRFs) to the modeling of

time-varying musical emotion. CRFs are powerful graphical models that are trained to predict the

conditional probability p(y|x) for a sequence of labels y given a sequence of features x [110, 111].

Treating our features as deterministic, we retain the rich local subtleties present in the data, which

is especially promising in content-based audio analysis where there is no shortage of rich data.

Furthermore, the system provides a model of both the relationships between acoustic data and

emotion space parameters, and also how those relationships evolve over time.

6.4.1 Definition

Conditional random fields are a type of log-linear model, similar to logistic regression, that are

defined using feature functions that produce binary outcomes relating observations x to states y.

These functions are weighted by parameter λK , where K is the total number of binary features, each

defined by its own feature function fk. In this work, the linear-chain case of CRFs is investigated,

which restricts features to apply only to the current and previous position of the labels, and thus

the distribution of the CRF takes the form:

p(y|x) =
1

Z(x)
exp

{
K∑
k=1

λkfk(yt, yt−1,xt)

}
. (6.14)
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The constant Z(x) is referred to as the partition function and is a normalization function for a

specific instance or sequence:

Z(x) =
∑
y

exp

{
K∑
k=1

λkfk(yt, yt−1,xt)

}
. (6.15)

The CRF tutorial in Appendix E offers further detail on the training of CRFs.

6.4.2 Arousal-Valence Heatmaps

In applying CRFs to the problem of predicting emotion in music, instead of modeling the ambiguity

of emotion a-priori and representing the distribution of our emotion space parameters as the ground

truth, the training algorithm is presented with the individual user label sequences, thus allowing the

model to learn the range of emotion responses to a given piece. In this application of the CRF it

is also necessary to assign emotion space meanings to the states of the model, and in doing so each

label in each sequence is discretized to an 11×11 grid. While this is a significant simplification, the

findings in this work indicate that it provides sufficient granularity. As it is possible to compute the

conditional probability of every state in the model, those “transitions” can be shown as an emotion-

space heatmap. These heatmaps can model arbitrary modes and distributions, in contrast to the

previous A-V distribution approach, which constructed uni-modal Gaussian A-V predictions. An

example A-V heatmap is shown in Figure 6.4.
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Figure 6.4: Heatmap visualization of CRF transition probabilities. Actual discretization is
11×11.
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Chapter 7: MoodSwings Lite Experiments

This chapter will investigate a framework for content-based prediction of musical emotion using the

MoodSwings Lite database, which was discussed in Chapter 3. As discussed in that chapter, the

dataset consists of 240, 15-second music clips annotated with MoodSwings, a collaborative online

game developed for music mood labeling [15]. The MoodSwings game board is based on the Arousal-

Valence (A-V) space, where the valence dimension represents positive versus negative emotions, and

the arousal dimension represents high versus low energy [4]. The game provides annotations at

one-second intervals, reflecting the time-varying nature of musical mood, and delivers a distribution

of labels across multiple players for a given song or even a moment within a song.

The first experiments briefly investigate quantizing the collected data into discrete emotion

classes. These experiments will develop classification methods to relate acoustic data to the four

quadrants of the A-V space. In order to take full advantage of the A-V space, the experiments

thereafter formulate the problem as a regression one, developing a functional mapping from high-

dimensional acoustic features to emotion space coordinates. This mapping is first implemented as a

least-squares regression and later improved using support vector regression (SVR). The performance

of the system in tracking the emotional content of music over short time windows is also demon-

strated and later implemented in simplified form to be used as a simulated player AI for single-player

MoodSwings games [6].

Perceptions of the emotional content of a given song or musical excerpt are bound to vary

and reflect some degree of disagreement between listeners. Instead of viewing musical mood as a

singular label or value, the next experiments investigate the modeling of emotional ground-truth

as a probability distribution, potentially providing a more realistic (and accurate) reflection of the

perceived emotions conveyed by a song. To perform the mapping from acoustic features to the A-V

mood space, these experiments explore parameter prediction using multiple linear regression (MLR),

partial least-squares (PLS) regression, and support vector regression (SVR). The data is modeled as
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a two-dimensional Gaussian, and the goal is to be able to predict the A-V distribution parameters

N (µ,Σ) from the acoustic content. First, the effectiveness of the system is evaluated in predicting

emotion distributions for 15 second clips, and as in the previous experiments, the analysis window

length is then shorted to demonstrate its ability to follow changes in A-V label distributions over

time [9].

While the experiments discussed thus far will be shown to have promising results, the goal of the

next experiments is to improve time-varying musical emotion predictions using a systems approach.

In these experiments, a linear dynamical system (LDS) is used, enabling the approach to model both

the mapping from features to emotion space parameters, and the evolution of the emotion space

parameters over time. As it will be found that the emotion space time-series distribution parameters

do not evolve in the same way across the entire music corpus, a mixture approach is also developed,

partitioning the data into different A-V clusters and using the oracle bound to prove that this will

enhance overall performance [10].

The final experiments take on a different focus, turning to the topic of acoustic feature learning.

Using deep belief networks (DBNs), these methods seek to learn emotion-specific features directly

from short-time magnitude spectra [7]. Using a trained network, features are extracted as discussed

in Chapter 5, where the intermediary layers of the network are used as features for a separate

machine learning algorithm. The features are then compared, in terms of performance, to those

features discussed thus far on the MoodSwings Lite database.

For both the classification and regression experiments, the MoodSwings Lite corpus is divided

70%-30% between training and testing samples. In the case of DBN training, a validation set is

necessary to determine the stopping condition in training, and it is therefore split 50% training,

20% validation, and 30% testing. However, once the DBN is trained, both the training set and

validation are combined. To avoid the “album-effect” [112, 113], any songs recorded on the same

album are placed entirely in either the training or testing set. Additionally, each experiment is

subject to multiple cross-validations, varying the distribution of training and testing data sets. For
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initial experiments, 50 cross-validations are done, but due to the computational complexity of DBN

training, that number is reduced to 5 for those experiments.

7.1 Music Emotion Classification

In the first experiments, classifying music into discrete emotion categories is briefly investigated

[6]. The goal of this approach is the classification of each 15-second music clip into one of four

discrete emotion classes, where each of the four classes corresponds to a quadrant of the A-V space.

To perform the classification, four one-versus-all support vector machines (SVMs) are used, and in

testing, the binary class resulting in the highest confidence is chosen as the correct one. The SVMs

employ radial basis kernel functions in all experiments. The first experiments use singular acoustic

features, and later experiments combine predictions based on multiple features using decision fusion

methods.

7.1.1 Single Feature Classification

Shown in Table 7.1 are the 4-way classification results using the individual acoustic feature sets.

As there is no expectation to find any single dominant feature for emotion classification, the next

methods investigate combining the predictions of these individual feature classifiers to potentially

obtain higher performance.

Feature Type Accuracy

MFCC 51.85± 4.29%
Chroma 41.05 ± 5.05%
SSD 37.89 ± 4.76%
Spectral Contrast 49.14 ± 5.52%

Table 7.1: Single feature classification.

7.1.2 Decision Fusion Classification

In the decision fusion experiments, multiple methods are investigated for combining the hypotheses

of our distinct classifiers, as discussed in Section 6.1; here each classifier is trained using a different

acoustic feature set. Table 7.2 compares feature fusion using the methods of maximum distance,

sum rule, and decision templates against the collective combination of all features (stacked). A ∼5%
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classification accuracy increase is observed between the simple “stacked” feature combination and

the sum rule method, the highest performing feature fusion method.

Using All Features

Fusion Method Accuracy

All Features Stacked 42.27 ± 4.59%
Max Distance 45.70 ± 5.64%
Sum Rule 47.79± 6.27%
Decision Templates 44.77 ± 5.57%

Using Only MFCCs & Spectral Contrast

MFCC & S. Contrast Stacked 51.03 ± 4.76%
Max Distance 52.90 ± 4.53%
Sum Rule 53.72± 4.24%
Decision Templates 53.07 ± 5.49%

Table 7.2: Classifier fusion results.

Although all of the fusion methods easily outperform the “stacked” combination of features,

their performance still lags behind that of the MFCC and spectral contrast (single feature set)

classifiers. Considering the large gap in individual feature classification performance between the

high performers (MFCCs and spectral contrast) and the low performers (chroma and spectral shape),

the feature fusion experiments are reduced to include only the high performers. The lower-half

of Table 7.2 shows that the removal of low performing acoustic features and combination of the

remaining classifiers using the sum rule leads to a modest performance gain.

7.2 Music Emotion Regression

In dividing the data into discrete classes, clips for which A-V labels are in fact quite similar may be

categorized into completely different classes. Such severe quantization of essentially continuous label

data is likely the primary reason for the generally poor 4-way classification performance. Because

of this, the next experiments focus on combining the same set of acoustic features with multiple

regression methods to provide an alternative indication of musical mood [6]. In these experiments,

for each input example xi, the model is trained to produce the emotion space parameter vector yi,

yi = [µa, µv], (7.1)
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where µa and µv are the mean arousal and valence of the collected data, respectively.

Each training set was used to estimate regression parameters using both least-squares and SVR

to create optimal projections from the mean acoustic features to A-V coordinates (averaging the

labels across each 15-second music clip). There are many possible methods for evaluating regression

performance. The first method looked at is the standard error of the estimate for each emotion space

dimension (i.e., arousal and valence), where the estimate is denoted as ŷi, given the collected data

yi. Sy·x becomes an unbiased estimator of the true variance by dividing by the number of samples

minus two [114],

Sy·x =

√∑N
i=1[yi − ŷi]2
N − 2

, (7.2)

where N is the number of testing examples.

The preferred performance metric, however, is the average Euclidean distance between the pro-

jected coordinates and the collected A-V labels, as a normalized percentage of the A-V space. To

benchmark the significance of the regression results, these projections are compared to those of an

essentially random baseline. Given a trained regressor and a set of labeled testing examples, an

A-V prediction for each sample is first determined. The resulting distance to the corresponding

A-V label was compared to that of another randomly selected A-V label from the test set. Com-

paring these cases over 50 cross-validations, a Student’s T-test for paired samples is computed to

demonstrate the statistical significance of the results. A lack of correlation (larger t values) between

predicted and random values provides evidence of the statistical significance of the projected labels

(beyond random guessing). In the results (Table 7.3), average distances are given from the projected

coordinates to both the matching and randomly selected A-V labels.

7.2.1 Single Feature Regression

Without the need for forcing the data into discrete classes, qualitatively higher performance is

achieved. For single feature sets, regression using least-squares regression and spectral contrast

features results in the smallest average deviation (15.10%) from the mean labels of the test samples.
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Feature/ Regression Arousal Valence Average A-V Average A-V
Topology Method Standard Error Standard Error Error Random Error T-test

MFCC LS 0.134± 0.009 0.125± 0.007 0.160± 0.008 0.241± 0.015 4.606
Chroma LS 0.174± 0.016 0.124± 0.007 0.185± 0.008 0.223± 0.014 2.363
SSD LS 0.139± 0.009 0.122± 0.007 0.165± 0.007 0.228± 0.013 3.774
S. Contrast LS 0.117± 0.007 0.128± 0.014 0.151± 0.009 0.243± 0.014 5.309

MFCC SVR 0.113± 0.008 0.113± 0.007 0.139± 0.007 0.243± 0.016 5.743
Chroma SVR 0.163± 0.009 0.129± 0.008 0.184± 0.007 0.219± 0.011 2.033
SSD SVR 0.143± 0.009 0.138± 0.009 0.175± 0.008 0.235± 0.012 3.435
S. Contrast SVR 0.121± 0.007 0.120± 0.009 0.148± 0.007 0.234± 0.014 4.926

Stacked Features LS 0.123± 0.009 0.122± 0.011 0.153± 0.008 0.257± 0.017 5.818
Fusion Unweighted LS 0.120± 0.006 0.113± 0.006 0.148± 0.005 0.224± 0.012 4.956
Fusion Weighted LS 0.119± 0.006 0.113± 0.006 0.147± 0.005 0.224± 0.010 4.915
M.L. Separate LS-LS 0.114± 0.007 0.114± 0.006 0.144± 0.006 0.237± 0.014 5.573
M.L. Combined LS-LS 0.113± 0.008 0.116± 0.007 0.144± 0.006 0.242± 0.017 5.707

Stacked Features SVR 0.139± 0.013 0.128± 0.007 0.162± 0.008 0.241± 0.014 4.309
Fusion Unweighted SVR 0.118± 0.007 0.116± 0.006 0.148± 0.006 0.221± 0.012 4.672
Fusion Weighted SVR 0.117± 0.007 0.116± 0.006 0.147± 0.006 0.225± 0.012 4.967
M.L. Separate SVR-LS 0.112± 0.007 0.114± 0.008 0.140± 0.007 0.238± 0.014 5.616
M.L. Combined SVR-LS 0.112± 0.007 0.113± 0.007 0.139± 0.006 0.241± 0.016 5.786

Table 7.3: Regression results for fifteen second clips.

The corresponding T-test value for this case (5.309), given the degrees of freedom (72 test data

samples), provides >99.99% confidence of statistical significance. Support vector regression using

single acoustic features results in a smaller average deviation in almost all cases, with the highest

performance (lowest average distance) achieved using MFCCs. Again, the T-test indicates very high

confidence of statistical significance.

7.2.2 Regressor Fusion

In the fusion results, the performance for simply stacking features into one large feature vector is

supplied to provide a comparison baseline for the other fusion methods proposed in Section 6.2.3.

The direct fusion methods consist of unweighted and weighted methods for linearly combining the

outputs of distinct regressors trained on separate feature sets. Both approaches outperform the

concatenation of all features, as well as any of the individual feature sets for a given regressor

(least-squares or SVR).

While the direct fusion methods provide some improvement, the multi-level regression methods

offer greater performance gains when using least-squares regression for both stages. Conversely,

the multi-level fusion results using SVR followed by least-squares do not offer any significant im-
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Figure 7.1: Collected A-V labels and projections resulting from regression analysis. A-V
labels: second-by-second labels per song (gray •), µ of collected labels (red •), σ of collected
labels (red ellipse). Projections: least-squares spectral contrast projection (green +), SVR
MFCC projection (blue O), least-squares multi-level combined (black X).

provement over the best single-feature SVR. The LS-LS results approach the best case using SVR at

substantially lower computational complexity, which is important for a potential real-time realization

of the system (presented in Section 7.3.2).

7.2.3 Test Data Projections

The primary advantage of regression over classification is highlighted in the case of A-V labels close

to an axis, where a highly accurate regressor can still lead to a misclassification according to the

discrete class labels. Shown in Figure 7.1 are eight 15-second clips projected into the A-V space using

multiple regression methods and acoustic features. Second-by-second A-V labels collected over the

duration of the clip are indicated as a cloud of gray points. The performance of the regression can

be evaluated both in terms of the distance from the mean of the collected labels, and also whether or

not the regression label falls within the first standard deviation of the labels (shown as an ellipse).
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7.3 Emotion Regression Over Time

For the time-varying approach, regressors are developed to predict the emotion for a given time (at

one second intervals) using only current and past audio data [6]. In terms of the data collection,

this implies that 15 examples are present for each 15-second music clip (for 240 clips this yields a

total of 3600 examples). It is also desired to consider the optimal analysis window length (duration

of past audio) for each acoustic feature set.

In Figure 7.2, regression analysis for each window length is performed from 1 to 45 seconds

(in increments of one second) and average normalized emotion space distance is plotted from the

projections to the collected labels. As in previous experiments, the training/testing data is split

70%/30% and is cross-validated 50 times. From the window length analysis in Figure 7.2, it can be

seen that the optimal window length is not the same for all feature domains. For MFCCs, the most

accurate prediction is obtained using 10 seconds of past feature data, 13 seconds for SSDs, 9s for

spectral contrast, and 32s for chroma. These window lengths are used for the respective features in

the regression analysis to follow.

In moving to per-second predictions, it can be seen from Table 7.4 that the overall error has

increased slightly, as expected. The T-test values have increased as well, which is attributed to

the overall increase in examples (from 240 to 3600). Considering the short-time degrees of freedom
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Figure 7.2: Window length analysis for different acoustic features.
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Feature/ Arousal Valence Average A-V Average A-V
Topology Standard Error Standard Error Error Random Error T-test

MFCC 0.138 ± 0.007 0.131 ± 0.009 0.169 ± 0.007 0.245 ± 0.009 16.07
Chroma 0.177 ± 0.016 0.129 ± 0.009 0.192 ± 0.010 0.230 ± 0.014 8.606
S. Shape 0.146 ± 0.009 0.128 ± 0.007 0.173 ± 0.008 0.236 ± 0.009 13.68
S. Contrast 0.124± 0.006 0.127± 0.008 0.159± 0.006 0.248± 0.010 19.15

Stacked Features 0.121 ± 0.006 0.124 ± 0.007 0.154 ± 0.007 0.259 ± 0.010 21.85
Fusion Unweighted 0.123 ± 0.008 0.121 ± 0.007 0.155 ± 0.008 0.227 ± 0.009 17.18
Fusion Weighted 0.122 ± 0.008 0.121 ± 0.007 0.155 ± 0.008 0.227 ± 0.008 17.19
M.L. Separate 0.118 ± 0.008 0.122 ± 0.008 0.152 ± 0.008 0.248 ± 0.009 20.73
M.L. Combined 0.117± 0.008 0.122± 0.008 0.152± 0.008 0.249± 0.010 20.88

Table 7.4: Time-varying regression results.

(1080 testing examples), the lowest T value (8.606) produces confidence of statistical significance

(vs. randomly selected projections) higher than 99.99%.

7.3.1 Test Data Projections

To visualize the projections over time, eight clips are chosen that display a clear shift in emotional

content. In Figure 7.3, both the collected and projected emotion space labels are plotted for a 15-

second selection for each clip at one second intervals. In these examples, the multi-level combined

least-squares system is used, the highest performing system indicated in Table 7.4. The symbols for

both the collected labels and the projected coordinates become darker over time, clearly depicting

the common motion of both values.

7.3.2 MoodSwings “AI”

To further demonstrate the system and to allow for additional human feedback, the multi-level

least-squares regression has been incorporated into a version of MoodSwings to compensate for a

major issue with the game in that oftentimes no human partners are available online. Single-player

games can be played using “partner” labels recorded from a prior game, but this eliminates songs for

which annotations have not been previously recorded. The previous solution was to intersperse use

of an “AI” partner that generates random labels centered around the player’s position, which is easy

to detect and highly frustrating for a player. The low-complexity of the multi-level least-squares

projection enables real-time implementation as the new game “AI,” where the system generates

Chapter 7: MoodSwings Lite Experiments



69

−0.5

0

0.5

Soul Asylum
Somebody To Shove: 75 to 89 seconds

Va
le

nc
e

Live
Waitress: 108 to 122 seconds

Joel, Billy
Captain Jack: 71 to 85 seconds

Lifehouse
Quasimodo: 113 to 127 seconds

−0.5 0 0.5
−0.5

0

0.5

Rod Stewart
Rebel Heart: 181 to 195 seconds

Arousal

Va
le

nc
e

−0.5 0 0.5

Aqua
Cuba Libre: 147 to 161 seconds

Arousal
−0.5 0 0.5

Denver, John
Take Me Home, Country Roads: 14 to 28 seconds

Arousal

Emotion Regression Over Time

−0.5 0 0.5

Ben Folds Five
Brick: 108 to 122 seconds

Arousal
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the “partner” annotations at one-second intervals. This version, MoodSwings Single Player, is also

available online [115].

7.4 Emotion Distribution Prediction

Human judgements are necessary for deriving emotion labels and associations, but perceptions of

the emotional content of a given song or musical excerpt are bound to vary and reflect some degree of

disagreement between listeners. In developing computational systems for recognizing musical affect,

this lack of specificity presents significant challenges for the traditional approach of using supervised

machine learning systems for classification. Instead of viewing musical mood as a singular label or

value, the modeling of emotional “ground-truth” as a probability distribution potentially provides a

more realistic (and accurate) reflection of the perceived emotions conveyed by a song [9].

These experiments will develop regressors to predict the parameterization vector yi of a two-

dimensional Gaussian distribution in A-V space,

yi = [µa, µv, σ
2
aa, σ

2
vv, σ

2
av], (7.3)
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which encapsulates a fully parametrized Gaussian representation of the collected arousal and valence

data, denoted as a and v, respectively.

7.4.1 Single Feature Emotion Distribution Prediction

Given the continuous nature of the problem, the prediction of a bivariate Gaussian within the A-V

space, several methods are explored for multi-variate parameter regression. In these experiments,

multiple linear regression (MLR), partial least-squares (PLS), and support vector regression (SVR)

are used to create optimal projections from the acoustic feature sets described in Appendix A. For

the initial distribution regression experiments, feature dimensions are averaged across all frames of a

given 15-second music clip, thus representing each clip with a single vector of features. Preliminary

experiments were performed using second- and higher-order statistics with the 15-second clips, but

in all cases the inclusions of such data failed to show any significant performance gains.

There are many possible methods for evaluating the performance of the system. Kullback-Liebler

(KL) divergence (relative entropy) is commonly used to compare probability distributions. Since

the regression problem targets known distributions, our primary performance metric is the non-

symmetrized (one-way) KL divergence (from the projected distribution to that of the collected A-V

labels),

KL(p||q) ≡
∫
p(x) log

p(x)

q(x)
dx = Ep

{
log

p(x)

q(x)

}
. (7.4)

Since the comparison is between two emotion space Gaussian distributions, the KL divergence has

closed-form,

KL(p||q) = log
|Σq|
|Σp|

+ tr(Σ−1
q Σ−1

p ) + (µq − µp)TΣ−1
q (µq − µp)− d. (7.5)

To provide an additional qualitative metric, the Euclidean distance between the projected means

as a normalized percentage of the A-V space is also supplied. However, to provide context to

KL values and to benchmark the significance of the regression results, the projections are again
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Feature/ Regression Average Mean Average KL Average Randomized T-test
Topology Method Distance Divergence KL Divergence

MFCC MLR 0.161 ± 0.008 4.098 ± 0.513 8.516 ± 1.566 5.306
Chroma MLR 0.185 ± 0.010 5.617 ± 0.707 7.765 ± 2.135 5.659
S. Shape MLR 0.167 ± 0.009 4.183 ± 0.656 7.691 ± 1.573 5.582
S. Contrast MLR 0.151± 0.008 3.696± 0.657 8.601± 1.467 5.192

MFCC PLS 0.155 ± 0.008 3.863 ± 0.56712 8.306 ± 1.389 5.540
Chroma PLS 0.183 ± 0.010 5.286 ± 0.96019 7.146 ± 1.665 5.565
S. Shape PLS 0.151 ± 0.008 3.770 ± 0.84026 8.278 ± 1.527 4.951
S. Contrast PLS 0.151± 0.008 3.684± 0.644 8.700± 1.831 5.171

MFCC SVR 0.140± 0.008 3.186± 0.597 7.744± 1.252 5.176
Chroma SVR 0.186 ± 0.008 4.831 ± 0.737 6.466 ± 0.935 5.655
S. Shape SVR 0.176 ± 0.008 4.611 ± 0.841 7.348 ± 1.025 5.251
S. Contrast SVR 0.150 ± 0.008 3.357 ± 0.500 7.356 ± 1.341 5.301

Stacked Features MLR 0.152 ± 0.007 3.917 ± 0.496 9.355 ± 1.879 5.737
Fusion Unweighted MLR 0.149 ± 0.007 3.333 ± 0.433 6.785 ± 0.996 5.879
Fusion Weighted MLR 0.147 ± 0.007 3.280 ± 0.423 6.803 ± 1.309 5.980
M.L. Seperate MLR 0.147 ± 0.007 3.399 ± 0.478 8.235 ± 1.598 5.598
M.L. Combined MLR 0.145± 0.007 3.198± 0.454 7.637± 1.389 5.551

Stacked Features PLS 0.145 ± 0.006 3.403 ± 0.467 8.407 ± 1.635 5.543
Fusion Unweighted PLS 0.145 ± 0.007 3.332 ± 0.508 7.123 ± 1.461 5.681
Fusion Weighted PLS 0.145 ± 0.006 3.309 ± 0.501 7.160 ± 1.373 5.619
M.L. Seperate PLS 0.145 ± 0.008 3.465 ± 0.577 8.426 ± 1.705 5.433
M.L. Combined PLS 0.144± 0.007 3.206± 0.515 7.889± 1.656 5.485

Table 7.5: Distribution regression results for fifteen second clips.

compared to those of an essentially random baseline. Given a trained regressor and a set of labeled

testing examples, an A-V distribution is estimated for each sample. The resulting KL divergence

to the corresponding A-V distribution was compared to that of another randomly selected A-V

distribution from the test set. Comparing these cases over 50 cross-validations, a Student’s T-test

for paired samples is computed to verify the statistical significance of the results.

From Table 7.5, it can be seen that the best performing single feature system is SVR with

MFCC features at an average KL of 3.186. However, in both the MLR and PLS system, the

highest performing single feature is spectral contrast with 3.696 and 3.684, respectively. As the

main advantage of PLS over MLR is that it observes any correlation between dimensions in the

multivariate regression, it is surprising that the performance difference between the two is nearly

negligible. Given the degrees of freedom (72 test samples), even the lowest T-test value (5.171)

produces confidence of statistical significance greater than 99.999%.

Chapter 7: MoodSwings Lite Experiments



72

−0.5

0

0.5

Ben Folds Five
Brick, 108 to 122 secs

Va
le

nc
e

Cake
She’ll Come Back To Me, 66 to 80 secs

Collective Soul
Breathe, 34 to 48 secs

Counting Crows
Perfect Blue Buildings, 51 to 65 secs

−0.5 0 0.5
−0.5

0

0.5

Dave Matthews Band
The Song That Jane Likes, 56 to 70 secs

Arousal

Va
le

nc
e

−0.5 0 0.5

Jackson, Michael
Rock With You, 99 to 113 secs

Arousal
−0.5 0 0.5

Queen
Save Me, 20 to 34 secs

Arousal

Emotion Distribution Projected From Acoustic Features

−0.5 0 0.5

Wonder, Stevie
Sir Duke, 124 to 138 secs

Arousal

Figure 7.4: Collected A-V labels and distribution projections resulting from regression anal-
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Multi-Level combined projection (dashed green ellipse).

Shown in Figure 7.4 is the projection of six 15-second clips into the A-V space resulting from

multiple regression methods and acoustic features. The standard deviation of the ground truth, and

of each projection is shown as an ellipse. The performance of the regression can be evaluated in

terms of the total amount of overlap between a projection and its ground truth.

7.4.2 Emotion Distribution Feature Fusion

While most individual features perform reasonably in mapping to A-V coordinates, a method for

combining information from these domains (more informed than simply concatenating the features)

could potentially lead to higher performance. In this section, the feature fusion approaches discussed

in Section 6.2.3 are investigated for emotion distributions. Given the very small performance gains

and high computational overhead of SVR, the focus is narrowed to MLR and PLS for these experi-

ments. As the ultimate system will require many predictions over time in order to reflect emotional

changes, the costs of SVR outweigh the benefits.
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Figure 7.5: Multi-layer regression topologies.

In the fusion results, the performance for simply stacking features into one large feature vector

is provided to give context to the other fusion methods. The more simple approach consists of a

fusion system that is a combination of the outputs from the individual feature regression systems. In

the unweighted approach, the parameter outputs are simply averaged from each individual feature

regressor, and in the weighted approach each individual feature regressor is weighted by its ability

to predict a particular parameter, which is determined by leave-one-out cross-validation.

In addition, a two-level regression scheme is developed by feeding the outputs of individual

regressors, each trained using distinct features, into a second-stage regressor determining the final

prediction. Two topologies are investigated (Figure 7.5): in one case, the secondary arousal and

valence regressors receive only arousal and valence estimates, respectively; in the second case, the

secondary arousal and valence regressors receive both arousal and valence estimates from the first-

stage. Just as in the prior experiments, these two topologies are referred to as multi-layer separate

and multi-layer combined. In all cases, the secondary regressors are trained using a leave-one-out

method (on each iteration the first-stage regressors are trained by leaving one example out and using

the estimates of that example from the first stage to train the second stage). The results for both

cases are shown in Table 7.5.
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7.5 Time-Varying Emotion Distribution Prediction

In attempting to predict the emotion distribution over time, the label observation rate is shortened

to once per second and these experiments attempt to regress multiple feature windows from each

song [9]. Just as in the previous time-varying experiments, this means that for each 15-second clip

there are 15 examples, increasing the total corpus to 3600 examples. Of course, for any experiment,

multiple examples from the same song must be either all in the training or testing set. In addition,

as it is clear that some past data may be necessary to accurately determine the current emotional

content, past features are included and the optimal feature window length is investigated.

Given the similar performance of MLR and PLS in fusion methods, for the short time analysis

the experiments will be restricted to only the MLR methods. The similarity in performance is likely

due to the fact that in the multi-layer combined system, both MLR and PLS are able to account for

the correlation between label dimensions.

! " #! #" $! $" %! %" &! &"
!'#(

!'#("

!'#)

!'#)"

!'#*

!'#*"

!'#+

!'#+"

!'$
,-./0.1234564770.128019.:2;415/<2=1>?@707

A0-42B74C.197D

E
.6
-
>?
0F
49
2G
07
/>
1C
4

HIJJ
J<6.->
K<>L4
J.1/6>7/

41s

14s

9s

10s

Figure 7.6: Window length analysis for different acoustic features.

For the time-varying approach, regressors are developed to predict the emotion for a single second

using only current and past audio data. In terms of the data collection, this implies that there are

15 distributions for each 15-second music clip (for 240 clips this yields a total of 3600 distributions).

Just as in the prior experiments with A-V means, the optimal analysis window length for regression

is investigated for each acoustic feature set. In Figure 7.6, a regression analysis is performed for each

window length from 1 to 45 seconds (in increments of one second). It can be seen that the optimal

window length is not the same for all feature domains. For MFCCs, the most accurate prediction
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Feature/ Average Mean Average KL Average Randomized T-test
Topology Distance Divergence KL Divergence

MFCC 0.169 ± 0.007 14.61 ± 3.751 27.00 ± 10.33 10.77
Chroma 0.190 ± 0.007 18.71 ± 6.819 22.53 ± 6.984 9.403
S. Shape 0.173 ± 0.007 15.46 ± 6.402 24.61 ± 9.220 11.06
S. Contrast 0.160± 0.006 13.61± 5.007 27.29± 9.861 10.23

M.L. Combined 0.154± 0.006 13.10± 5.359 28.39± 10.35 10.08

Table 7.6: Distribution regression results for short-time (one-second) A-V labels.

is obtained using 13 seconds of past feature data, also 13 seconds for SSDs, 15 seconds for spectral

contrast, and 41 seconds for chroma. This has changed slightly from the previous experiments

(Figure 7.2) because additional label data was collected between the time the experiments were

conducted. These feature window lengths are used in the regression analysis to follow.

Figure 7.7: Time-varying emotion distribution regression results for three example 15-second
music clips (markers become darker as time advances): second-by-second labels per song (gray
•), Σ of the collected labels over 1-second intervals (red ellipse), and Σ of the distribution
projected from acoustic features in 1-second intervals (blue ellipse).

In moving to short-time labels, it can be seen from Table 7.6 that the overall KL has increased,

but the average distance ratings have mostly remained the same. This is most likely attributed

to the fact that the underlying label covariance is less consistent due to the smaller quantity of

collected A-V labels. The T-test values have increased as well, which can be attributed to the

overall increase in examples (from 240 to 3600). Considering the short-time degrees of freedom

(1080 testing examples), the lowest T value (9.403) produces confidence of statistical significance

(vs. randomly selected projections) higher than 99.999%. To visualize emotion regression over time,
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three clips are shown that display a clear shift in emotion distribution, plotting both the collected

and projected distributions at one second intervals (Figure 7.7).

7.6 A Kalman Filtering Approach

The systems used in the time-varying experiments thus far made predictions at each time slice

independently. In this section, a linear dynamical systems (LDS) approach is used to estimate

the temporal evolution of emotion space distributions with Kalman/Rauch-Tung-Striebel (RTS)

smoothing. In the first set of experiments, a single LDS model is used, and in later experiments

mixture systems are investigated to establish an “oracle bound” for the performance upper limit

[10]. Furthermore, as this section will focus on the relative performance of different models, these

experiments will be constrained to only a single feature domain, which is chosen to be spectral

contrast as it achieved the highest performance on most prior experiments.

7.6.1 Kalman Data Preprocessing

In the previous sections, the parameters of the ground truth distributions were estimated at each

time instance independently, computing the sample mean and minimum variance unbiased estimator

of the covariance [9]. While the assumption of temporal independence allows estimation methods

that are computationally efficient, it ignores the time-varying nature of music and undoubtedly

introduces noise. Furthermore, the temporal starting point for a MoodSwings match is randomly

selected for each game, so a particular labeler does not necessarily have the opportunity to weigh in

on all 15 time intervals in the clip. As a result, there are often different sample sizes at each interval.

For example, see the left-hand plot of Figure 7.8: shown in gray are the individual second-by-second

labels collected from the MoodSwings game, and in red ellipses are the estimates of the distribution;

both become darker as time progresses. While the general drift of the distribution is captured, there

is a heavy amount of noise in the covariance ellipses.

To address this issue and form a better approximation of the ground truth distribution, a pre-

processing step is applied using a Kalman/RTS smoother [108, 109]. Using this approach the labels
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Figure 7.8: Emotion label preprocessing: gray dots indicate individual second-by-second labels
collected from the MoodSwings game. Red ellipses are the estimates of the distribution; both
become darker as time progresses.

y are modeled as noisy observations of the true distribution of x,

xt = xt−1 + wt, (7.6)

yt = xt + vt. (7.7)

Gaussian noise sources w and v are parametrized experimentally, representing the interfering

noise corrupting the labels, which are assumed to be zero mean,

w ∼ N (0, Q), (7.8)

v ∼ N (0, R). (7.9)

Thus, the values of Q and R are chosen experimentally to provide the desired amount of smooth-

ing. Defining the initial conditions as the mean and covariance of the noisy labels, Kalman smoothing

is performed to estimate the clean distribution x of the noisy process y. The Kalman smoothing

equations are discussed in detail in Appendix D. It is important to note that in this special case

of the Kalman filter, because the observation matrix C and dynamics matrix A have been omitted,

they simply reduce to identity matrices in the standard Kalman/RTS equations.
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Feature/ Average Mean Average KL Average Randomized T-test
Topology Distance Divergence KL Divergence

MLR Noisy [9] 0.169 ± 0.007 14.61 ± 3.751 27.00 ± 10.33 10.77
MLR 0.160 ± 0.007 4.576 ± 0.642 9.531 ± 1.856 18.35
Kalman 0.160 ± 0.007 4.650 ± 0.652 8.870 ± 1.633 16.85

MLR Mixture 0.109 ± 0.007 3.179 ± 0.539 12.00 ± 1.899 19.68
Kalman Mixture 0.109 ± 0.007 2.881 ± 0.568 12.34 ± 1.973 19.63

Table 7.7: Results for emotion distribution prediction over time.

The right half of Figure 7.8 shows the smoothed version of the estimate, which provides a much

more reasonable representation of the true distribution. It can be seen that the distribution moves

consistently forward, and the unrealistic movement in the covariance ellipses has been removed.

7.6.2 Multiple Linear Regression

MLR results on the smoothed data are provided for benchmarking. Shown in Table 7.7 are the

results, where MLR has an average error in the mean prediction of 0.160 in the normalized space.

This is a significant improvement over previous approaches, with an error of 0.169 on average (Table

7.6). This improvement can be directly attributed to the fact that there was no label preprocessing.

However, the largest improvement can be seen in the KL-divergence values, which have been reduced

from 14.61 (Table 7.6) to 4.576 on average.

7.6.3 Kalman Filtering

Applying the Kalman filtering approach presented in Section 6.3 provides quite reasonable results

as well. The total error is similar to MLR, but this result is not surprising due to the fact that the

evolution model has been restricted to a single A matrix, which is a significant simplification. While

the average distance remains identical, the increase from 4.576 to 4.650 in KL is a nearly negligible

change. As this demonstrates that all of our clips do not fit easily into exactly the same dynamics

model, it makes a strong case for mixture systems.
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Emotion Distribution Prediction Using Kalman Mixtures

Figure 7.9: Emotion label preprocessing: gray dots indicate individual second-by-second labels
collected from the MoodSwings game, red ellipses indicate the estimates of the distribution, and
blue ellipses indicate the predictions using Kalman filter mixtures; all three become darker as
time progresses.

7.6.4 Kalman Filter Mixtures

While a single LDS makes for an interesting approach to model the temporal dependence in music

emotion prediction, it is not expected that the dynamics in all 240 clips can be represented with

a single A matrix, and it may be possible to achieve better results with more than one C. In

this approach, multiple systems are trained and an “oracle bound” is established for the prediction

of musical emotion using mixtures, which is compared to using MLR on the same clusters. An

assignment variable z is now added,

xt = Azxt−1 + wt, (7.10)

yt = Czxt + vt. (7.11)
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To form the mixtures, k-means clustering is performed on a three dimensional vector for each

sequence: the average arousal, valence, and flux. The flux is computed between each time instance

vector in the label sequences, which as previously discussed is made up of the arousal and valence

means and covariance at one second intervals. This allows clustering to occur both spatially and

dynamically.

As in the previous experiments, the feature means ȳ are computed across all clusters and saved

for removal before both training and testing. In the case of the labels, a specific mean is computed

for each cluster x̄z, which is removed before training and saved to bias testing estimates for the

corresponding cluster.

The Kalman mixture provides the best result of any system; using only four clusters an average

KL of 2.881 is achieved, which is a significant improvement over both the MLR system at 4.576 and

the MLR mixture at 3.179. In terms of mean error, however, Kalman and MLR mixtures produce

nearly identical results, with normalized distances of about 0.109.

Shown in Figure 7.9 are the emotion space predictions of six fifteen second clips using this

method. Shown in gray are the individual A-V ratings collected from the MoodSwings game, in

red are the distribution estimates, and in blue are the predictions from acoustic features; all three

become darker as time progresses.

7.7 Emotion Regression with Learned Features

Using the MoodSwings Lite dataset, this section presents a preliminary investigation into the use of

deep belief networks (DBNs) feature learning [7]. An explanation of DBN training and application

to feature learning can be found in Chapter 5. In these experiments, learned feature representations

are compared to other state-of-the-art feature representations investigated in prior experiments, with

the addition of the Echo Nest Timbre features. DBN hidden layer outputs are used as features to

predict the training labels using a separate linear regression model. The features generated by the

second layer of the DBN are shown to outperform all other features in terms of mean A-V error,

and the topology is especially promising in providing insight into the relationship between acoustic

data and emotional associations via a physical structure. The final model was demonstrated on five
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training/verification/testing cross-validation permutations, which is something that had not been

investigated in prior approaches due to the time required for training.

7.7.1 DBN Training

In the following experiments, a regression-based deep belief network is investigated for feature learn-

ing on magnitude spectra. Magnitude spectra is computed at approximately 20 msec window lengths,

and the labels are up-sampled to match that same rate. All experiments use 3 hidden layers, each

containing 50 nodes. Restricted Boltzman machine (RBM) pre-training is run for 50 epochs with a

learning rate of 0.001. Conjugate gradient fine-tuning is used, and during that stage an additional

multiple linear regression (MLR) layer is attached to the output of the DBN. As this stage is su-

pervised, for each input example xi, the model is trained to produce the emotion space parameter

vector yi,

yi = [µa, µv]. (7.12)

For each cross-validation, the MoodSwings Lite dataset was split such that 50% of the data was

used for training, 20% for verification, and 30% for testing. To speed up the computation of our

DBNs, the training was run on StarCluster [116], a Python-based tool for creating and managing

computing clusters on Amazon’s Elastic Compute Cloud (EC2) [117]. Using StarCluster, several

hundred parameterizations of the network were tried before settling on the ones described above.

7.7.2 DBN Features in Emotion Prediction

From Table 7.8, it can be seen that the DBN features performed very well overall in music emotion

recognition. For each cross-validation in the experiment, the DBN was trained on the training

set, using the verification set for fine-tuning. After model training, individual layer outputs were

computed for the combined training and verification sets and then used for the training of a separate

MLR regression system. Overall, Layer 2 of the DBN performs best in terms of mean error, validating

the use of a deep representation.

KL-divergence for the Gaussian ground-truth representation used in prior work is also shown

[9, 10], where regressors are developed to predict the parameterization vector yi of a two-dimensional
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Feature/ Average Mean Average KL
Topology Distance Divergence

DBN Layer 1 0.168 ± 0.006 5.73 ± 1.09
DBN Layer 2 0.158± 0.004 5.41± 1.12
DBN Layer 3 0.158 ± 0.005 5.45 ± 1.20

Spectral Contrast 0.161± 0.003 5.04± 0.688
MFCCs 0.167 ± 0.004 5.32 ± 0.737
Chroma 0.195 ± 0.007 7.89 ± 1.25
SSDs 0.180 ± 0.006 6.09 ± 1.02
ENTs 0.174 ± 0.004 5.69 ± 0.742

Table 7.8: Results for emotion distribution prediction over time.

Gaussian in A-V space,

yi = [µa, µv, σ
2
aa, σ

2
vv, σ

2
av]. (7.13)

It is noted that, for these cases, spectral contrast performs better, but it is maintained that mean

error in the arousal-valence space is significantly more important than KL divergence. For instance,

KL-divergence may punish an incorrectly rotated covariance equal to a large mean distance, but

in terms of emotion prediction the covariance rotation is much less important than the bias in the

mean.

7.7.3 Relating DBN Features to Frequency Content

This deep learning approach is promising not just for the features it generates, but because it offers

a mathematical model that represents the relationship between raw frequency content and human

emotion. In this section, the learned mappings are investigated in terms of sparsity and shape, as well

as the projection of the learned feature representations back to the magnitude spectra domain. The

input to the DBN for these examples is a magnitude spectrogram from the classification experiments

(Figure 7.10), reduced to 200 frames. Note that the log-magnitude of the spectrum is taken here

for illustration purposes, but as with all previous experiments, only the magnitude was used as the

DBN input.

The learned feature representations for the individual DBN layers are shown below in Figure

7.11. For the given sample, highly sparse features are observed at the first layer, and it is expected
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Figure 7.10: Log view of DBN magnitude spectra input.

Figure 7.11: DBN hidden layer outputs.

that the learned mappings from magnitude spectra are heavily dependent on sparse frequency bands.

Layers two and three show much more detail, which is expected due to their higher performance in

the emotion prediction experiments.

Next, the reconstruction of the original spectrogram from the layer 1 output is investigated. The

output y of the first hidden layer is simply the projected data with a logistic function applied,

ylayer1i = 1/(1 + exp(−xiw − b)), (7.14)
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and thus the original spectral data x can easily be reconstructed as follows,

xreconstructedi =

(
−ln

(
1

ylayer1i
− 1

)
− b

)
w−1, (7.15)

where 1/ylayer1i is element-wise division.

Shown in Figure 7.12 is the heatmap for the reconstructed x. In looking back at frequency

content, we see an interesting sparse representation. The reconstruction reveals that the learned

representations are heavily dependent upon energy in specific frequency bands.

Figure 7.12: Log view of DBN magnitude spectra reconstruction.

In observing the layer 1 outputs in Figure 7.11, and their spectral reconstruction in Figure 7.12,

it is impressive that the DBN is able to learn informative features from such a sparse representation

of the spectrum.

7.8 Discussion

In working with a continuously labeled space such as A-V, it is clear that regression provides a more

informative result than classification and is less sensitive to small variations (e.g., near the quadrant

boundaries). In examining acoustic features for classification and regression, spectral contrast and

MFCCs consistently provided the best performance across the classification and regression tasks,

while spectral shape and chroma did not perform to expectations. MFCCs and spectral contrast

capture different aspects of frequency-domain variation, so it is somewhat surprising that the com-

bination of the two features improved classification but not regression performance. This is likely

due to the “curse of dimensionality” (exponentially more data is required to fill a volume in feature

space as more dimensions are added). Thus, adding feature dimensions, rather than leading to

more informed decisions, could have hindered overall performance. The relative scaling of different
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features also presents problems, since variations in magnitudes may lead to artificially inflated or

reduced contributions from particular features.

The regression results are quite promising, even using the most elementary techniques (least-

squares). In working with highly subjective emotional labels, where there is not necessarily a singular

rating for even the smallest time slice, it is clear that it is possible to construct a more accurate system

(in terms of predicting actual human labels) by representing the ground truth as a distribution.

While accounting for potential dependence between the distribution parameters in the A-V emotion

space seemed to be of high importance, some of the best performing techniques assumed total

independence of parameters. In particular, combining MLR in multiple stages produces results

comparable to more computationally complex methods.

In estimating the Gaussian distribution parameters from the collected data, it is clear that much

more robust estimates of the distribution and how it evolves over time can be achieved with the

Kalman approach. Given a limited number of samples at each time step, it is necessary to take

into account samples from past (or future) observations if available. In looking to improve the

collected data distribution, future work should explore beyond these Gaussian assumptions. While

the Gaussian assumption provides an interesting representation of the data, it is in fact a naive

assumption, as there is no reason to expect A-V ratings to follow a bivariate Gaussian for every

second of every song. The true distribution may vary in terms of family or number of modes across

different songs or even different moments within the same song.

In terms of automatically parameterizing these time-varying distributions from acoustic content,

the Kalman approach has shown to be somewhat promising, yielding the ability to model and track

emotion space distribution changes over time. Through the “oracle bound,” it has been shown

that using mixtures, it is possible to more accurately model both the different spacial clusters

as well as dynamics in the A-V space. In the future, it would be necessary to develop methods to

accurately predict the cluster of an unknown testing example. This problem could be solved through

traditional classification approaches, though added difficulty is presented in terms of clusters that

are often of unequal sizes (especially in terms of dynamics clustering), and making decisions based on
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the prior negates the benefit of those added clusters. It is possible that, given the limited dynamics

representation of a linear dynamical system, it may be necessary to move to a more complex graphical

model to obtain a better representation of this data.

The deep belief network is a powerful topology for music emotion recognition for both learning

informative feature domains, as well as providing insight into the direct relationship between emotion

and acoustic content. The overall performance could potentially be increased by more advanced

regression algorithms that are more robust to the high dimensionality of the data. Furthermore,

other optimization methods for fine-tuning the deep structure could be investigated, as well as

alternate error metrics. This approach, which models the output of the regression layer as a single

point in the A-V space, could be expanded to a metric that provides better knowledge of the emotion

space distribution.
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Chapter 8: MoodSwings Turk Experiments

This chapter will discuss experiments using the MoodSwings Turk database in music emotion recog-

nition. The MoodSwings Turk database was collected with Mechanical Turk, an online crowd

sourcing service provided by Amazon [86]. The initial purpose of investigating MTurk was to pro-

vide a dataset collected through more traditional means to assess the effectiveness of the game,

specifically to determine any biases created though collaborative labeling. Working with Mechanical

Turk presented myriad challenges in the area of data filtering, as the inclusion of monetary incen-

tive attracted a great number of individuals looking to game the system. Chapter 3 discussed the

many rules that were put in place to identify these workers. However, even after filtering out a

good portion of the collected data, MTurk still attracted a much larger number of participants than

MoodSwings, with the final dataset containing 4, 064 label sequences in total, 16.93± 2.690 ratings

per song. As a result of this dense labeling, the MoodSwings Turk database became the primary

label set for future experiments. Furthermore, this dataset has also been made publicly available to

the research community [118].

The first experiments discussed in this chapter are essentially a repeat of the MoodSwings Lite

time-varying emotion distribution prediction experiments (Section 7.5). The goal of these experi-

ments is to verify similar performance to that of the original MoodSwings Lite dataset. It is desired

that the different features achieve similar performance, and also rank in terms of that performance

in a similar order [8].

In the next set of experiments, this chapter will examine application of conditional random fields

(CRFs) to the modeling of time-varying musical emotion. CRFs are powerful graphical models that

are trained to predict the conditional probability p(y|x) for a sequence of labels y given a sequence

of observed data (e.g., acoustic features) x. As CRFs are trained on the data of individual users,

the fact that complete sequences are available from every annotator and the dense annotation of

MoodSwings Turk makes it a good candidate for evaluating these methods [11].
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This chapter will next investigate feature learning methods with the MoodSwings Turk database.

The first feature learning experiments will essentially be a repetition of those performed on the

MoodSwings Lite dataset (Section 7.7), and similar performance will be confirmed. Next, in looking

to improve learned feature performance, the next feature learning methods will be modified to learn

features from multiple time steps. The first feature learning experiments relied on a single ∼20 msec

frame of audio in order to provide comparison to standard features (e.g., MFCCs), but humans

certainly cannot perceive emotion in such a short clip, and therefore extraction of such information

should be performed over a much larger window. In these experiments, aggregations of past spectral

data are included as input to the DBN. Furthermore, in looking to improve pretraining performance,

a universal background model (UBM) approach is discussed, where pretraining occurs on a much

larger set of unlabeled data (∼8000 songs) than is available in MoodSwings Turk [13, 14].

Finally, this chapter will examine the use of learned features with conditional random fields.

Both the features from the single frame approach as well as the multi-frame approach with UBM

pretraining will be evaluated using CRFs. Overall it will be shown that these features work well in

CRF training, despite their overwhelmingly large dimensionality.

8.1 Emotion Prediction with MTurk Data

These experiments seek to further establish correlation between the MoodSwings Lite and MoodSwings

Turk datasets. The MoodSwings Turk label set is used in this section for the problem of time-varying

emotion prediction experiments that was discussed in Section 7.5. The desired outcome is to identify

similar performance overall, as well as relative performance in the ranking of the individual features.

Just as in the prior experiments, the systems utilize supervised machine learning algorithms to

map A-V labels to content-based audio features (e.g., MFCCs). Prediction performance for each

feature, as well as combined performance using a multi-layer regression method for late-feature

fusion, using multiple linear regression (MLR) is shown in Table 8.1.

These results can be compared to Table 7.6, which contains the results using the MoodSwings

Lite labels on the same tasks. The results are similar: all features rank in the same order, and in

terms of overall mean distance there is only slight improvement for the MTurk dataset. In terms of

Chapter 8: MoodSwings Turk Experiments



89

Feature/ Average Mean Average KL Average Randomized T-test
Topology Distance Divergence KL Divergence

MFCC 0.143 ± 0.007 1.501 ± 0.148 2.801 ± 0.294 20.68
Chroma 0.181 ± 0.008 3.555 ± 0.302 3.897 ± 0.313 21.08
S. Shape 0.158 ± 0.007 1.733 ± 0.172 2.501 ± 0.246 23.51
S. Contrast 0.141± 0.007 1.486± 0.158 2.821± 0.297 21.17

M.L. Combined 0.130± 0.006 1.308± 0.132 2.928± 0.310 20.52

Table 8.1: MLR results for short-time (one-second) A-V labels, repeating the experiments of
Table 7.6 with labels collected via MTurk.

KL-divergence, the MTurk system performs significantly better. However, high KL values in Table

7.6 were attributed to noisy distribution estimates at one-second intervals, taken independently from

other time slices [10]. Increased performance on the MTurk set can be similarly attributed to the

larger per-second sample sizes. Improvements based on the quantity of data collected are unrelated

to the question of whether or not collaborative labeling biases the annotators’ judgments.

8.2 Emotion Prediction with Conditional Random Fields

This section will discuss the application of conditional random fields (CRFs) to the modeling of

time-varying musical emotion. As discussed, CRFs are powerful graphical models that are trained

to predict the conditional probability p(y|x) for a sequence of labels y given a sequence of features x

[110, 111]. Treating acoustic features as deterministic, it is possible to retain the rich local subtleties

present in the data, which is especially promising in content-based audio analysis where there is no

shortage of rich data. Furthermore, the system provides a model of both the relationships between

acoustic data and emotion space parameters, and also how those relationships evolve over time.

In applying CRFs to the problem of predicting emotion in music, instead of modeling the ambi-

guity of emotion a-priori and representing the emotion space distribution parameters as the ground

truth, the training algorithm is instead presented with the individual user label sequences, thus

allowing the model to learn the range of emotion responses to a given piece. In applying the CRF, it

is also necessary to assign emotion space meanings to the states of the model, and in doing so each

label in the sequences is discretized to an 11×11 grid. While this is a significant simplification, the
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findings shown here indicate that it provides sufficient granularity. Furthermore, the trained models

are fully connected and can be used to model complex distributions in emotion as an A-V heatmap.

These heatmaps can model arbitrary modes and distributions, in contrast to the previous approach,

which constructed uni-modal Gaussian A-V predictions.

8.2.1 A CRF Model for A-V Emotion Prediction

This section discusses the application of a linear-chain CRF to musical emotion prediction. In

general, linear-chain CRFs place the assumption that each observation is only dependent upon the

previous (i.e., first order Markov), and relate computability between observations and labels using

feature functions. In these experiments, all state transitions are learned directly from the labels and

are not conditioned on the data.

In mapping acoustic data to states of the model, two types of features are used, which will be

referred to node and edge features. The node features map a single binary feature to a single node

of the model. Edge features, in the case of these experiments, take into account the state change in

the observations from the previous to current frame, but depend only upon the current state of the

labels.

CRFs are trained on sequences, and in the process of learning them the system is presented with

the individual user ratings (as opposed to statistics of all users) recorded in the MTurk task. Using

a fully connected model, it is possible to learn a set of transition probabilities from each class to

all others. During inference, CRFs allow the computation of the conditional probability p(y|x) for

every state at each time step. Therefore, at each stage in a testing sequence, it is possible to display

the transition probabilities in the form of a heatmap as shown in Figure 8.1.

Acoustic Feature Representation

All features are initially computed using short-time analysis windows at a much higher rate than

the 1-second emotion label windows. In order to reduce their frame rate to that of the labels,

spectral contrast and MFCCs are simply re-windowed via averaging from their original analysis rate

(∼23 msec). This section will also investigate the ENT features investigated in the feature learning
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Figure 8.1: Heatmap visualization of CRF transition probabilities. Actual discretization is
11×11.

experiments in Section 7.7; they are re-windowed following their non-linear analysis frame start

times to take into account their beat-synchronous nature.

Additionally, as conditional random fields are highly optimized to operate on binary features,

this approach will discuss converting acoustic features into such a representation. In doing so, each

feature dimension is quantized using 10 equal energy bins, which for the 14-dimensional case of

spectral contrast yields 140 binary features. In early experiments, the use of higher discretization

levels was investigated as well as combining representations from multiple discretization levels (e.g.,

5, 10, 20), but overall 10 levels were found to offer the best performance.

Training Label Sequence Jittering

In discretizing the original label sequences to the 11×11 grid representation, the CRF models are

trained on vectorized version of that space by assigning 121 classes. As a result, the neighbor-

relationship of the heatmap grid-cells is lost in the vector-wise representation, and it therefore is

necessary to investigate how to improve the model’s ability to learn such relationships.

In order to ensure that the CRF learns the spatial relationships of each class, it is trained on

additional “jittered” versions of each label sequence. This has two benefits: it increases the overall

size of the dataset, and it helps the model to learn the spatial relationships between the different

classes. In applying the jitter, the size of the dataset is increased by a factor of 10, creating 9

additional sequences for each sequence in the dataset. Each jittered sequence is created by adding a

small amount of zero mean Gaussian noise, biasing the whole sequence by a single point. In initial
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experiments, the number of jittered sequences was investigated at multiple levels between 0 and 50,

but 10 was found to offer the best performance.

8.2.2 Applying the Model to MoodSwings Turk

As a baseline for comparing performance of the CRF in modeling the time-dependencies of the data,

the performance for the CRF when trained on independent observations as opposed to sequences

is also provided. Furthermore, to provide a baseline for comparison to the prior work discussed in

Chapter 7, the prediction accuracy of multiple linear regression (MLR) is provided. To compute the

heatmap representations for MLR, the mean and covariance of an emotion-space Gaussian density

is first predicted using multivariate regression, and then the predicted probability density function

is integrated under each square of the heatmap.

As in previous experiments, to avoid the well-known “album-effect,” any songs that were recorded

on the same album are either placed entirely in the training or testing set. Additionally, each

experiment is subject to 5 cross-validations, varying the distribution of training and testing data

sets, which are split 70%/30%, respectively.

CRF Parameterization

The CRF optimization code used for these experiments is built on top of CRF++ [119], a highly

efficient general purpose CRF toolkit written in C++. The training of CRFs requires the selection of

feature functions. In these experiments, three different types of features are used: a simple unigram

node feature for each acoustic feature dimension, a unigram edge feature that models the change

in each feature dimension between nodes, and a simple bigram (first order) feature that models the

transition between states of the model based upon the label data. The total number of binary CRF

features for a selected training set is described in Table 8.2.

Additionally, in the case of the CRF trained on independent observations, only node features are

used, so as to avoid an artificial decrease in performance. When presenting the training algorithm

with independent examples instead of sequences, feature functions that encode time dependencies

that cannot be modeled lead to large decreases in performance.
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The training of graphical models such as CRFs tends to have a very high computational cost.

These experiments were run on Amazon’s Elastic Compute Cloud (EC2) using High-CPU Extra

Large Instances (c1.xlarge), which provide access to a 64-bit platform with 8 virtual cores. Shown

in Table 8.2 is the computation time for each feature domain the CRF was trained on, as well as

the number of binary features created using the specified feature functions.

Feature # CRF Features Compute Time (hrs)

Contrast 210, 782 11.49 ± 1.245
MFCC 300, 927 11.81 ± 1.515
ENT 185, 009 12.04 ± 0.461

Table 8.2: Computing time analysis for CRF training on each cross-validation set.

A-V Mean Prediction Results

The first set of experiments uses CRFs to predict a singular A-V point at each second in the

sequences. These MLR experiments vary slightly from those discussed in the previous section since

only the past one second of feature data is used to provide an appropriate comparison to the CRF

approach. These predictions are taken as the means of the CRF heatmaps, which are compared

to the means of the MLR Gaussian distributions. The heatmap mean is computed as the sum of

the weighted A-V coordinate values of each bin center. For each two-dimensional heatmap this is

computed as,

µa =
∑
ya,yv

P (ya, yv |x) ya, (8.1)

µv =
∑
ya,yv

P (ya, yv |x) yv, (8.2)

where ya and yv are the arousal and valence coordinates of each bin center. The mean values for

the ground truth distribution are computed directly in the continuous A-V space. These results are

available in the third column of Table 8.3. Overall, the best performance (minimum mean `2 error)

is 0.122 and is obtained using the CRF with MFCCs, a significant improvement over the best result

with MLR, which is 0.140 using spectral contrast.
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Acoustic Prediction A-V Mean Heatmap Earth Heatmap Error Heatmap Error Heatmap Error
Feature Method `2 Error Mover’s Distance Unsmoothed (×10−2) Smoothed G.T. (×10−2) Smoothed (×10−2)

Contrast CRF 0.130 ± 0.007 0.180 ± 0.007 1.300 ± 0.007 0.539 ± 0.002 0.342 ± 0.0142
MFCC CRF 0.122± 0.004 0.173± 0.004 1.300± 0.000 0.541± 0.010 0.326± 0.008
ENT CRF 0.130 ± 0.004 0.179 ± 0.003 1.300 ± 0.009 0.510 ± 0.010 0.337 ± 0.009

Contrast CRF-I 0.138 ± 0.006 0.188 ± 0.005 1.323 ± 0.007 0.452 ± 0.012 0.355 ± 0.011
MFCC CRF-I 0.135± 0.004 0.186± 0.003 1.319± 0.006 0.459± 0.007 0.350± 0.008
ENT CRF-I 0.144 ± 0.005 0.194 ± 0.004 1.331 ± 0.005 0.446 ± 0.007 0.367 ± 0.009

Contrast MLR 0.140± 0.005 0.213± 0.009 1.082± 0.010 0.580± 0.018 0.460± 0.018
MFCC MLR 0.141 ± 0.005 0.208 ± 0.008 1.076 ± 0.009 0.570 ± 0.021 0.448 ± 0.021
ENT MLR 0.153 ± 0.005 0.204 ± 0.007 1.068 ± 0.009 0.560 ± 0.018 0.440 ± 0.018

Table 8.3: Emotion prediction results for conditional random fields (CRF) trained on sequence
examples as well as independent examples (CRF-I). Multiple linear regression (MLR) results
are provided as a baseline.

Heatmap Prediction Results

As previously stated, with the CRF it is possible to compute the conditional probabilities for each

step in a sequence for all states, which can be used to form an A-V heatmap; however, to analyze

the prediction accuracy on testing data, ground truth heatmaps must be estimated directly, which

is a difficult task. In traditional generative estimation (e.g., maximum likelihood estimation), the

goal is to fit a probabilistic model to data and derive a smooth function, even with a small dataset.

As heatmap estimation requires histogram techniques, a small amount of data can lead to sparse,

blocky estimates, and a massive amount of data is needed to achieve the true smooth distribution.

As a result of this, the earth mover’s distance (EMD) [120] has been chosen to be the primary

metric for comparing these histograms, which can be thought of as the minimum cost of transforming

one heatmap into the other. Using this metric, it is possible to take into account the weight of

adjacent bins, which overall provides a more accurate comparison of the two heatmaps. These

results are in the fourth column of Table 8.3, where the best performer is the CRF with an EMD

of 0.173, which is significantly better than the CRF trained on independent samples at 0.186 and

MLR at 0.213.

The absolute pixel error between the predicted and ground truth heatmaps is also investigated.

These results are shown in the fifth column of Table 8.3, and it is found that MLR appears to be

performing slightly better than the CRF. This result is not surprising given the sparsity that the
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ground truth heatmaps exhibit, which is to be expected with 121 histogram bins computed from

an average of 16.93 ratings. The MLR method, which predicts Gaussian distributions, guarantees a

smooth distribution, producing a lower pixel error if the ground truth is sparse or blocky than the

CRF, which takes arbitrary shapes. However, it can be easily demonstrated that the CRF is more

accurate by applying a simple smoothing function to the ground truth.

To smooth out the blocking artifacts from sparsity, a simple 2-d Gaussian filter is applied. This

process applies a light smoothing without altering the mean of the data. These results are shown in

the sixth column of Table 8.3. Here the CRF performs slightly better, and the performance similarity

is most likely because the CRF is producing rough edges compared to the smooth MLR predictions

that are computed from the Gaussian PDF. An interesting result is that the independently learned

CRFs perform the best here. This is most likely because they produce more uniform transition

probabilities due to their training method.

To compensate for blocking artifacts in the CRF predictions, a smoothing filter is applied to the

predicted heatmaps as well. Initial experiments showed that applying the same filter to the MLR

heatmaps improved performance there also, so to keep the analysis consistent the filter is applied

to them as well. The differences in heatmaps are examined using mean absolute error, and these

results are shown in the seventh column of Table 8.3. In these results, it is seen again that the CRF

is performing significantly better than MLR.

Visualizing the Results

Shown in Figure 8.2 are the CRF heatmap predictions for eight seconds of the song “Something

About You,” by Boston. The colormap of these heatmaps assigns red to areas of high density, blue

to low, and uses the color spectrum to assign colors in between. This clip was selected because of

the large change in emotion that occurs at second 29, where the song transitions from a low-energy,

negative-emotion introduction into a high-energy, positive-emotion hard-rock verse. The system

tracks the transition very accurately, showing a brief amount of uncertainty at second 30 in terms

of positive or negative emotion, and finally settling on positive emotion at second 31.
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Emotion Space Heatmap Prediction
Boston: Something About You, 25-32 secs 

Figure 8.2: Emotion space heatmap prediction using conditional random fields. Shown is the
predicted emotion from the beginning of the song “Something About You,” by Boston. These
figures demonstrate the system tracking the emotion through the low-energy, negative-emotion
introduction, and through the transition at second 29 into a high-energy, positive emotion rock
verse. In these figures, red indicates the highest density and blue is the lowest.

8.3 Feature Learning Experiments

The following experiments investigate the use of deep belief networks (DBNs) for emotion-based

acoustic feature learning [13, 14]. In all experiments, the model training is cross-validated 5 times,

dividing the dataset into 50% training, 20% verification, and 30% testing. All learned features

are then evaluated in the context of multiple linear regression (MLR), as has been investigated

in prior experiments. MLR provides extremely high computational efficiency, making it ideal for

discriminating between relative usefulness of many feature domains.

8.3.1 Short-Time Feature Learning

The first set of experiments will investigate learning features directly from short-time magnitude

spectra. This approach was investigated in the previous chapter on the MoodSwings Lite set (Section

7.7), and here it is investigated to compare performance with the Turk dataset and to provide a

baseline for further work. As with the previous approach, 3 hidden layers are used in all experiments,

each containing 50 nodes. Furthermore, pre-training is run for 50 epochs with a learning rate of
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0.001. During the conjugate gradient fine-tuning stage, an additional multiple linear regression

(MLR) layer is attached to the output of the DBN. As this stage is supervised, for each input

example xi, the model is trained to produce the emotion space parameter vector yi,

yi = [µa, µv]. (8.3)

Results for standard acoustic features (e.g., MFCC) are again presented, as these experiments differ

slightly from the previous ones. All features are aggregated at one-second intervals just as in the

CRF experiments, but here, since the focus is A-V Gaussian prediction, the Kalman approach for

estimating ground truth parameters is used, which was developed in Section 7.6.

Shown in Table 8.4 are the results for employing the learned features for multiple linear regression.

Features are first extracted on 20msec intervals and then appropriately aggregated to match the

one second intervals of the labels. Results for these features that are learned from single frames

are shown as DBN-SF. Additionally, the KL-divergence is shown for the Gaussian ground-truth

representation used in prior work approaches. In that approach, regressors are developed to predict

the parameterization vector yi of a two-dimensional Gaussian in A-V space,

yi = [µa, µv, σ
2
aa, σ

2
vv, σ

2
av]. (8.4)

8.3.2 Multi-Frame Feature Learning

While future work on more sophisticated finetuning approaches or better stochastic models in pre-

training may improve performance, the largest issue is the inherent limitation in using a single

short-time window. Human emotional associations necessarily require more than a ∼20msec short-

time window, and thus future approaches must take into account the variation of acoustic data over

a larger period of time. In these experiments, the development of models that incorporate multiple

spectral windows is investigated to derive musical emotion. Taking spectral aggregations of the past

one second, past two seconds, and past four seconds, the resulting vectors are concatenated as inputs
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Feature A-V Mean Average KL
Type `2 Error Divergence

MFCC 0.140 ± 0.005 1.28 ± 0.157
Chroma 0.182 ± 0.006 3.33 ± 0.294
Spectral Shape 0.153 ± 0.006 1.51 ± 0.160
Spectral Contrast 0.138± 0.005 1.29± 0.160
ENT 0.151 ± 0.006 1.41 ± 0.175

DBN-SF Model Error 0.203 ± 0.009 -
DBN-SF Layer 1 0.138 ± 0.005 1.25 ± 0.142
DBN-SF Layer 2 0.133± 0.004 1.19± 0.129
DBN-SF Layer 3 0.133 ± 0.002 1.21 ± 0.180

DBN-MF Model Error 0.194 ± 0.032 -
DBN-MF Layer 1 0.131 ± 0.006 1.15 ± 0.106
DBN-MF Layer 2 0.131 ± 0.004 1.14 ± 0.107
DBN-MF Layer 3 0.129± 0.004 1.12± 0.114

DBN-UBM Model Error 0.140 ± 0.015 -
DBN-UBM Layer 1 0.129 ± 0.006 1.12 ± 0.091
DBN-UBM Layer 2 0.128 ± 0.004 1.13 ± 0.097
DBN-UBM Layer 3 0.128± 0.004 1.11± 0.090

Table 8.4: Emotion regression results for fifteen second clips. DBN-SF are features learned
from single frames (SF), DBN-MF are features learned from multi-frame (MF) aggregations,
and DBN-UBM are features learned with a universal background model (UBM) approach to
DBN pretraining. KL-divergence is not applicable to model error.

to the system. As each spectrum frame is a 257-dimensional vector, the total DBN input is now

771 dimensions. Results for multi-frame (MF) feature learning can be found in Table 8.4 labeled as

DBN-MF.

For this new approach, visualizations of the learned features are provided. Figure 8.3 shows the

input spectrogram in log-magnitude for proper visualization, though log is not taken for the actual

model input.

Figure 8.3: Log-magnitude spectrogram of input audio.

Chapter 8: MoodSwings Turk Experiments



99

In the original spectrogram (Figure 8.3), the verse transition into the first chorus is seen for

the Soulive rendition of the Beatles song Come Together, starting at around frame 500. A similar

pattern is seen in the spectrogram between frames 1488-1800, which is the only other part of the

clip where the percussion includes cymbals. Shown in Figure 8.4 are the resulting features from the

intermediary layer outputs. Note that the structural information in the spectrogram is retained in

the hidden layer outputs rendered in Figure 8.4.

Figure 8.4: DBN hidden layer outputs using the aggregate spectral frames as input.

Also investigated is the reconstruction of the original input aggregated spectrogram from the

hidden layer outputs. Figure 8.5 depicts this reconstruction, which was generated using the method

outlined in Section 7.7. Due to the concatenations of multiple time scale aggregations, the y-axis

is adjusted to display the correct frequency values for each. The top contains the last one second

aggregations, below that is the aggregation from the last two seconds, and the last four seconds are

at the bottom.

8.3.3 Universal Background Model Feature Learning

In order to improve the results with the multi-frame approach, it is desired to harness the power of

a much larger unlabeled music dataset. As DBN training relies on a two step training process, the
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Figure 8.5: Reconstruction of the original aggregated spectrogram used as the DBN input.
Top is last one second aggregates, middle is last 2 seconds, bottom is last 4 seconds.

first of which is unsupervised, there is no reason not to use every piece of available data. In training

the RBMs with the larger dataset, a much more accurate portrayal of the overall distribution of

music is provided, and therefore creates a much more accurate music model, which can then be

finetuned for musical emotion or any other supervised machine learning problem. As this model is

a general music model, it will be referred to as a universal background model (UBM). For the larger

dataset, the uspop2002 dataset [84] is used in its entirety, which contains nearly 8000 songs. Even

after aggregating spectra at one-second intervals, this adds up to ∼26 GB of training data. Results

for the universal background model approach are shown in Table 8.4 as DBN-UBM.

8.4 Conditional Random Fields with Learned Features

This set of experiments will investigate applying the feature representations learned in the previous

section to CRFs for time-varying emotion prediction. The results here can be compared directly to

those of the previous CRF experiments in Section 8.2, Table 8.3. Overall, the CRF experimental

setup is identical to Section 8.2.

8.4.1 DBN Single-Frame Features

The first set of features investigated are the single-frame features (DBN-SF) from the prior section

(Section 8.3). Results for both average mean distance (single A-V point prediction) as well as earth

movers distance are shown in Table 8.5. Overall the CRF performs very well on DBN features.
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Feature A-V Mean Earth Mover’s
Type `2 Error Distance

DBN-SF Layer 1 0.135 ± 0.004 0.182 ± 0.004
DBN-SF Layer 2 0.127± 0.007 0.176± 0.007
DBN-SF Layer 3 0.129 ± 0.004 0.178 ± 0.004

DBN-UBM Layer 1 0.140 ± 0.007 0.187 ± 0.005
DBN-UBM Layer 2 0.133± 0.006 0.181± 0.004
DBN-UBM Layer 3 0.135 ± 0.008 0.184 ± 0.006

Table 8.5: Time-varying music emotion prediction using conditional random fields. DBN-
SF are features learned from single frames (SF) and DBN-UBM are features learned with a
universal background model (UBM) approach to DBN pretraining.

Comparing to Table 8.3, the second layer of the DBN performs better than both spectral contrast

and ENT features, where both of those features achieved an `2 error of 0.130. MFCC features

perform only slightly better than the learned representations, at an `2 error of 0.122.

8.4.2 DBN Multi-Frame Features

The next set of experiments uses the UBM multi-frame feature learning approach (DBN-UBM)

discussed in the previous section (Section 8.3). The UBM approach is used for pretraining, as it was

shown to improve overall mode error. Looking at the CRF results for these features, it can be seen

that the error has increased slightly. The best performing feature here is also the second layer, with

an A-V `2 error of 0.133. This result differs from the previous section, where with the MLR model,

the DBN-UBM features improved performance over single frames and improved the A-V prediction

error of the DBN model itself significantly.

This performance could be attributed to a variety of factors, with the most obvious being the

reduced dynamics of the individual feature dimensions over time. Observing Figure 8.4, there is very

little change in the features over time. This is a large change from the single frame method, where

the individual dimensions were quite dynamic (see Figure 7.11). With such little dynamics, CRF

features that consider edges (changes in the acoustic domain) may not be able to extract relevant

information from the signal and may lead to curse of dimensionality.
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8.5 Discussion

The MoodSwings Turk database is a reasonably well-annotated corpus that should hopefully serve

to advance the field of music emotion recognition. These experiments have further demonstrated its

correlation to the original MoodSwings database, and the corpus has been used here to evaluate a

variety of algorithms.

Overall, conditional random fields have been shown to be a powerful tool for modeling time-

varying musical emotion. The CRF approach is shown to be superior to MLR, both at predicting

single A-V mean values as well as full emotion space heatmaps. In looking at standard features

(Section 8.2), the best performing feature for CRF prediction is MFCCs, which differs from the

MLR method where spectral contrast performs best. This perhaps indicates that there is more

information to be gained out of MFCCs when modeling the temporal evolution of emotion.

Using the earth mover’s distance, it is possible to better analyze the similarity between heatmaps

by also taking into account adjacent bin densities. While the MLR method appears to perform

slightly higher when the ground truth distributions are not smoothed, this is a result of blocking

artifacts in the ground truth. The Gaussian density is a smooth function, which is much more

likely to be similar to a sparse ground truth distribution than the CRF predictions, which take on

arbitrary shapes and are not necessarily as smooth. Overall, the ground truth representation could

significantly benefit from more data.

Acoustic feature learning also is very promising for this application. In looking at the MLR

experiments (Section 8.3), the first set of results for learning features from single frames (DBN-SF)

agrees with what was found in the previous chapter (Section 7.7). The second layer features perform

best for this method, outperforming spectral contrast, which is the best performing standard feature.

However, there is a slight variation in that here the DBN-SF features are found to be better than

spectral contrast, both in predicting single points and distributions. In the previous chapter, the

DBN features were found to be more accurate in terms of mean prediction, but spectral contrast

was shown to perform slightly better in terms of KL, though it was strongly emphasized that an

incorrect mean is much worse an error than an incorrectly sized or rotated covariance.
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In trying to improve the features by including multiple timescales, an improvement is seen in

A-V `2 error from 0.133 to 0.129, which is encouraging. In analyzing the reconstructed spectra

from first layer features, an interesting result is found similar to the previous chapter. The overall

representation is very sparse in terms of frequency and seems to target very specific frequencies to

contribute to the overall emotion features. Analyzing the features in Figure 8.4, it is noted that there

is most definitely an emotion change as we progress from the slower and heavily minor sounding

verse into the higher tempo rock chorus. Changes are reflected in all three layers’ features in that

area of the clip. It is also noted that it appears as if the features do not exactly line up with

the spectrogram, which is a result of including past data in our feature computation. When the

spectrum changes abruptly it takes several frames for our model to catch up. This is not seen as

a limitation, as humans have a reaction time too, which perhaps is reflected in the increased MLR

performance on these features.

Furthermore, while the performance increase between the third layer features of DBN-MF and

DBN-UMB is small, the performance of the DBN model itself is reduced from 0.194 to 0.140, which

we find to be highly encouraging. These results indicate that UBM pretraining is providing us a

model that is much better suited (regularized) for emotion finetuning.

In applying the DBN features to CRFs, the single-frame approach is very promising. The second

layer features perform better than the other standard features investigated, with the exception

of MFCCs. However, the fact that multi-frame UBM features show decreased performance is an

interesting result. This method increased the overall accuracy of the DBN model itself at predicting

A-V emotion, as well as MLR methods that employed features learned using these techniques. As

previously stated, this is most likely attributed to decreased dynamics in the feature space due to

aggregating past data.

In future work, shrinking layer sizes should be investigated in the UBM approach, where the

dimensionality reduction power of the RBM can be better taken advantage of. Furthermore, it may

also be interesting to investigate multiple stages of finetuning. Such an approach would first follow

that of [93] for reducing the dimensionality of unlabeled data. It may be possible to gain a more
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accurate UBM by applying a finetuning stage that involved unraveling the model to reconstruct the

unlabeled data. Those model parameters could then be adapted to emotion or any other type of

music prediction.
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Chapter 9: Instrumental Dataset Experiments

This chapter will investigate the robustness of the algorithms developed in this work for musical

emotion prediction using instrumental data. Instrumental data presents an interesting problem for

several reasons, first and foremost because it removes the influence of lyrics. This work seeks to

extract emotion purely through analysis of the acoustic content, and therefore these methods have

no access to text data containing the lyrics. Removing lyrics can ensure that the collected data is

truly a reflection of the acoustic content, and not a reflection of a potentially conflicting message in

lyrics. Furthermore, removing the influence of lyrics also potentially opens the door for much wider

variations in opinion, creating interesting A-V emotion-space distributions. Finally, this data has

been hand chosen to contain large shifts in emotion-space dynamics, as opposed to the MoodSwings

audio corpus, which contained temporal information but had no guarantee of dynamics. This dataset

should therefore better serve to evaluate algorithms that seek to model such dynamics.

The first experiments presented in this chapter apply the method of time-varying A-V Gaussian

prediction originally presented using MoodSwings Lite (Section 7.5), and then later evaluated using

MoodSwings Turk (Section 8.1). For initial experiments, it was desired to see how well this simplistic

method functions on this new and complex dataset. The varying opinions and high A-V dynamics

of these songs, as opposed to the previous MoodSwings data, present an interesting opportunity

to evaluate the performance of these methods. Finally, conditional random fields are investigated,

demonstrating that the graphical modeling techniques developed in the previous chapters also func-

tion well in this domain.

9.1 Predicting A-V Gaussian Distributions

This section will investigate multiple linear regression over time using the instrumental dataset.

These experiments seek to parameterize A-V Gaussian distributions automatically at one-second

intervals. In training these regressors, the collected label distributions are extracted using the
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Feature/ Average Mean Average KL Average Randomized T-test
Topology Distance Divergence KL Divergence

MFCC 0.152 ± 0.005 1.206 ± 0.100 1.650 ± 0.111 42.15
Chroma 0.178 ± 0.005 3.805 ± 0.168 4.011 ± 0.181 42.44
S. Shape 0.156 ± 0.005 1.269 ± 0.092 1.631 ± 0.112 43.61
S. Contrast 0.152± 0.004 1.159± 0.092 1.629± 0.119 42.56

M.L. Combined 0.147± 0.005 1.092± 0.092 1.687± 0.114 41.27

Table 9.1: MLR results for short-time (one-second) A-V labels, repeating the experiments of
Table 7.6 with labels collected via MTurk.

Kalman approach originally discussed in Section 7.6. While it is not expected that the performance

should be identical on these experiments, it is expected that the relative performance between

features will be similar.

Just as in the prior experiments, the systems utilize supervised machine learning algorithms to

map A-V labels to content-based audio features (e.g., MFCCs). Prediction performance for each

feature, as well as combined performance using a multi-layer regression method for late-feature

fusion, is shown in Table 9.1.

Shown in Figure 9.1 are the predictions for a few selected audio clips using this method. Shown in

grey are the individual user ratings, red ellipses are the estimated distribution of the collected data,

and blue ellipses are the predicted distributions, all of which get darker over time. In general, the

dataset contains complicated targets in terms of prediction, as many of them exhibit emotion-spaces

more than once throughout the entire clip. Furthermore, there are generally varying opinions about

the emotion, all of which are valid. For example, in the clip shown in the top right, most annotators

agree that it moves from low to high arousal (energy), but some annotators feel a strong movement

towards high-valence, high-arousal (excited), while others feel that it moves towards low-valence,

high-arousal (angry). In listening to the clip, at around 40 seconds the drums and bass enter with

a steady, and intense groove and could easily be argued to convey high-valence and high-arousal

emotions. However, at the same time the horn section enters with a very dissonant melody that

could easily be considered to convey low-valence. Both of these opinions are valid, and overall it

could be argued that perhaps this clip exhibits both emotions simultaneously.
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Figure 9.1: Time-varying A-V emotion distribution predictions of instrumental data using the
M.L. combined method (see Section 7.5). Shown in gray are the individual user ratings, red
ellipses are the estimated distribution of the collected data, and blue ellipses are the predicted
distributions, all of which get darker over time.

9.2 Conditional Random Fields

Given clips that contain valid disagreement in emotion, the single bivariate Gaussian representation

used in the MLR experiments is seen as a modeling limitation. Therefore, in these next experiments,

the conditional random fields approach is investigated, as it is capable of predicting A-V heatmaps

that can represent arbitrary A-V distributions. This approach was originally developed in Chapter 8

and is now applied to the problem of predicting complex emotion-space distributions of instrumental

data.

The results for this approach are shown in Table 9.2, and as in the previous chapter, the results

of CRFs trained without edge features are provided as well. That approach contains no model of the

temporal evolution of the sequences and is provided to benchmark how much the approach benefits
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Acoustic Prediction A-V Mean Heatmap Earth Heatmap Error Heatmap Error Heatmap Error
Feature Method `2 Error Mover’s Distance Unsmoothed (×10−2) Smoothed G.T. (×10−2) Smoothed (×10−2)

Contrast CRF 0.153± 0.004 0.202± 0.004 1.356± 0.002 0.563± 0.009 0.379± 0.010
MFCC CRF 0.154 ± 0.005 0.201 ± 0.004 1.358 ± 0.006 0.582 ± 0.005 0.379 ± 0.011
ENT CRF 0.158 ± 0.002 0.205 ± 0.003 1.363 ± 0.005 0.545 ± 0.012 0.386 ± 0.008

Contrast CRF-I 0.155± 0.004 0.203± 0.004 1.372± 0.003 0.457± 0.006 0.379± 0.011
MFCC CRF-I 0.157 ± 0.002 0.205 ± 0.002 1.373 ± 0.001 0.468 ± 0.005 0.383 ± 0.009
ENT CRF-I 0.161 ± 0.003 0.208 ± 0.003 1.378 ± 0.003 0.458 ± 0.003 0.391 ± 0.008

Contrast MLR 0.162± 0.004 0.200± 0.004 1.360± 0.004 0.485± 0.010 0.399± 0.010
MFCC MLR 0.163 ± 0.006 0.202 ± 0.004 1.361 ± 0.004 0.507 ± 0.010 0.408 ± 0.012
ENT MLR 0.165 ± 0.000 0.204 ± 0.003 1.362 ± 0.004 0.505 ± 0.012 0.410 ± 0.010

Table 9.2: Emotion prediction results for conditional random fields (CRF) trained on sequence
examples as well as independent examples (CRF-I). Multiple linear regression (MLR) results
are provided as a baseline.

from a temporal model. Furthermore, MLR results are again displayed, and the values for A-V `2

error vary slightly from the previous experiments; this is because the collected data distributions are

not smoothed using the Kalman approach applied in the last section, which is removed to provide

an accurate comparison to the CRF methods. Furthermore, just as in the previous chapter, MLR

heatmaps are generated by integrating the probability distribution of the predicted Gaussian under

each heatmap bin.

Overall, spectral contrast performs best in terms of the A-V mean predictions using the CRF

method. However, there is slight disagreement between the varying metrics used to determine the

performance of the heatmaps. In the end, the MLR method actually performs slightly better than

CRFs in terms of earth mover’s distance, with error values of 0.200 and 0.202, respectively. However,

in terms of the smoothed heatmap differences, the CRF method performs best with an error of 0.379

versus 0.399.

9.3 Discussion

The MLR error seen in these experiments is slightly higher than that found on the previous datasets,

but overall the features do rank in the same order. Spectral contrast is the best performing single

feature, and the multi-level combined approach improves performance better than the individual

feature regressors. In general, these clips seem to be varying in emotion space distribution over
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time, not just in terms of parameterization, but perhaps in type of distribution family. Such a result

makes the case for heatmap representations.

Application of CRFs on this dataset provided results that varied slightly from what was seen

on the MoodSwings Turk dataset (see Chapter 8). It is difficult to clearly rank the performance

of these methods, as there is disagreement between the various metrics. Overall, CRFs display the

best performance using the A-V `2 error metric as well as the smoothed and unsmoothed heatmap

differences, but the MLR method performs best using the earth mover’s distance. These results

point towards the CRF displaying superior performance, but future work must further investigate

the relative significance of these various metrics.

Chapter 9: Instrumental Dataset Experiments
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Chapter 10: Conclusions and Future Directions

A variety of methods have been presented in this work for the representation, modeling, and pre-

diction of musical emotion. The overall focus of the work should be seen as understanding human

arousal-valence (A-V) responses to music through content-based (signal processing) techniques. The

main contributions of this work are as follows:

• Collected multiple datasets spanning multiple genres of music, including a pop music database

collected via an online collaborative gaming approach [6], a pop music database crowdsourced

through Amazon’s Mechanical Turk (MTurk) [7, 8], and a database that consists entirely of

instrumental music.

• Proposed a range of methods for representing arousal-valence disagreement in human responses

to music, including aggregating the data from multiple subjects to a single A-V point [6],

representing disagreement in collected data as an A-V distribution [9, 10], and using emotion

space heatmaps that can represent arbitrary distributions and modes [11].

• Developed multiple frameworks for acoustic feature identification, including those based on

perceptual evaluations of existing domains for a bottom-up style feature selection process [12],

as well as methods to learn sets of basis functions directly from magnitude spectra that are

informative to musical emotion [7, 13, 14].

• Developed multiple machine learning approaches for relating high-dimensional acoustic con-

tent to low-dimensional A-V representations, including multi-class classification [6], direct A-V

regression using a variety of methods [6], regression methods for the automatic parameteriza-

tion of A-V Gaussian distributions [9, 10], and a final method using conditional random fields

(CRFs) that is capable of automatically parameterizing A-V heatmaps over time [11].
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10.1 Overall Conclusions

This work investigated a variety of methods for human data collection, including an online collab-

orative gaming approach using MoodSwings, and an online crowdsourcing system approach, using

Amazon’s Mechanical Turk, which offered small sums of payment for data labeling. Overall, both

approaches show similar results, but each have their own set of tradeoffs. With the gaming approach,

the largest challenge is making the experience fun so users will return and continue to contribute

data. Quality control is achieved by assigning scores based on A-V agreement between two players,

and bonus points are awarded to the player who moves their cursor to those A-V coordinates first,

making it impossible to win by simply chasing the other player. Overall it was found to be quite

difficult to raise interest in the game outside of the research community, and even more difficult to

attract repeat players. Conversely, the MTurk approach tended to attract large numbers of partic-

ipants and massive data collections, but quality control was very challenging and time consuming.

Many Turkers attempted to game the system by either leaving their cursor at the origin or make

shapes such as squares or figure eights in the A-V space. These were easy to identify, but there were

also Turkers who failed to read the directions and did not understand the A-V space. Given the

subjectivity of the task, those Turkers were much harder to identify. Furthermore, MTurk offers the

ability to reject bad or malicious work from Turkers, but rejecting such data can lead to negative

reviews of the task and often requires correspondence with the individual, which can be very time

consuming. Turkers must maintain a certain acceptance rate in order to participate in MTurk and

it was found after running several tasks that reviews claiming unfair rejection can scare off potential

workers, essentially making it difficult to attract good workers because of rejecting bad ones.

The perceptual studies presented in Chapter 4 offered a theoretical backing for the use of standard

acoustic representations (i.e., MFCC, chroma) that are used in both speech processing and music

information retrieval. While these studies demonstrated that such features most likely do contain

a significant amount of information about musical emotion, users were not able to exactly label

reconstructions from features as conveying the same emotion as the originals. The roughly 10%

error shown (see Table 4.1) between these ratings could perhaps be seen as a theoretical upper limit.
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For instance, the best system for predicting emotion, conditional random fields with MFCC features,

generally makes predictions with about 12% error (see Table 8.3). However, a very interesting result

is that while chroma perhaps faired the best in the perceptual studies, it tended to be the one of

the poorest performing features on nearly all of the emotion prediction experiments, which is most

likely attributed to the loss of information in aggregated representations.

In looking to take things a step further, feature learning offers a promising direction, with most

approaches demonstrating learned feature representations that obtain higher accuracy on the emo-

tion prediction tasks than any other feature. These approaches were originally presented in Chapter

7 on the MoodSwings Lite dataset, and then later refined using the MoodSwings Turk dataset in

Chapter 8. The universal background model (UBM) method developed in the later approaches (see

Chapter 8) offered additional regularization in terms of starting conditions, however, the finetuning

of the model remains a difficult obstacle. The application of iterative numerical optimization meth-

ods, such as gradient descent on functions that lack a guarantee of convexity, is very unlikely to find

a global minima. These approaches undoubtedly lead to interesting and promising results, but will

require further regularization in order to take the next step.

Overall, conditional random fields offered some of the most promising results in modeling the

temporal evolution of musical emotion. Using emotion space heatmaps, the models are able to

represent arbitrary A-V distributions; this is especially promising in the case of instrumental music

(e.g., jazz, classical), where there may be large disparity in human opinions at each moment in a

song.

10.2 Future Directions

In looking towards future directions in the data collection methods, there are a variety of tradeoffs

that need to be taken into consideration. In continuing with Mechanical Turk, it would be helpful

to develop a series of tests that Turkers must pass in order to be allowed to participate in the task.

Those tests would seek to verify a basic understanding of the space before workers are allowed to label

data, and would hopefully reduce the overall number of submissions that need to be rejected, while

still ensuring high quality ratings. Future approaches cannot reject large numbers of submissions,
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as this hurts the ability of the task to attract participants. Given the difficulty and time-consuming

nature of data filtering and correspondence with participants on MTurk, the advantages over bringing

subjects into the lab is perhaps limited, especially at institutions that have access to large numbers

of undergraduates who can receive course credit for participation in such studies.

In seeking to improve feature learning methods, future approaches should investigate regularizing

the DBN finetuning. The experiments discussed in Chapter 5 sought to relate invariances (or

variances) in musical parameters to those in emotional content. Perhaps future feature learning

approaches could use such knowledge to regularize the optimization process in feature learning,

though requiring key invariant features, for instance, would be difficult and necessarily require that

all examples be annotated with such data. Future work should investigate this topic in greater depth

and continue to identify high-level acoustic transformations that are invariant to emotion.

In analyzing the multiple machine learning algorithms utilized in this work, a variety of metrics

were investigated: Euclidean distances between A-V means, relative entropy between A-V Gaussian

distributions, absolute differences between A-V heatmaps, absolute differences between smoothed

A-V heatmaps, and the earth mover’s distance between A-V heatmaps. In moving forward with

these approaches, more investigation is necessary into the optimal metric for analyzing performance,

especially in the context of instrumental data, as comparing these metrics in some cases did not point

to a clearly superior method. One interesting way to achieve this would be through a perceptual

study, using a labeled corpus. For instance, to compare the relative information contained in two

metrics, a user could be presented with a song that is randomly chosen from the dataset, as well

as two other songs, each of which is selected by finding the most similarly labeled song using one

of the two metrics, respectively. The more informative metric would be chosen to be the one that

more often locates the song with a more similar emotion.

With the CRF approach, it may also be interesting to investigate alternate feature functions

to operate on continuous valued data, as well as additional regularization schemes, to ensure the

model represents the neighborhood relationship of the heatmap bins. It would be possible to add an

additional regularization parameter that ensures adjacent bins are assigned similar weights. Doing
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so would remove the necessity for including “jittered” duplicates, and more importantly would

ensure that the model produces smooth heatmap estimates. In these experiments it has been shown

that CRF accuracy is improved by applying a smoothing filter to the predicted heatmaps, and an

approach containing these additional regularization parameters should remove this necessity and

perhaps lead to more accurate predictions overall.
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Appendix A: Acoustic Feature Extraction

This chapter investigates the computation of acoustic features for music emotion recognition. Pre-

vious work has indicated that there is no single dominant feature in determining musical emotion,

but rather many that play a role (e.g., loudness, timbre, harmony). Since the experiments dis-

cussed in Chapters 7 - 9 focus on the tracking of emotion over time, this chapter will focus solely

on time-varying features. This collection contains many features that are popular in music infor-

mation retrieval (Music-IR) and speech processing, encompassing both psychoacoustic as well as

music-theoretic representations.

A.1 Mel-Frequency Cepstral Coefficients

Mel-frequency cepstral coefficients (MFCCs) are among the most widely used acoustic features in

speech and audio processing. MFCCs are essentially a low-dimensional representation of the fre-

quency spectrum warped according to the mel-scale, which reflects the nonlinear frequency sensitivity

of the human auditory system. MFCCs can be defined as [62, 63]:

Mm,c =

40∑
b=1

X̂m,b cos

[
c

(
b− 1

2

)
π

40

]
, c = 1, 2, ..., 20 (A.1)

X̂m,b = mb[k] log

∣∣∣∣∣
N−1∑
n=0

xm[n]e−j
2πnk
N

∣∣∣∣∣ . (A.2)

Normally, MFCCs are implemented over short-time segments, and this implementation accordingly

divides the audio into overlapping segments and applies a Hanning window function to reduce edge

effects. The discrete Fourier transform (DFT) of each short-time segment is computed using the

fast Fourier transform (FFT) algorithm. The magnitude of the frequency components is determined

and the mel-spaced triangular filters (the design of the triangular filters is discussed below in greater

detail) are applied via multiplication in the frequency domain. Continuing with the cepstrum calcu-
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lation, the log of the mel-filtered energies is calculated, which serves, to some extent, to deconvolve

the audio by transforming multiplications in the frequency-domain (and thus, convolutions in the

time-domain) into additions. As a final step, the inverse DFT is applied to the log of the mel-filtered

data using the DCT (sine components are not needed since the input is guaranteed to be real and

even). This step is also used to reduce the dimensionality of the data to the desired quantity, and

it has been shown that the DCT has the additional effect of decorrelating the vector of feature

components [63].

A.1.1 Mel-Spaced Triangular Filters

The filterbank range is determined by defining minimum and maximum frequencies in Hertz and

converting those to the mel-scale. Within the defined mel-range, the desired number of filters are

linearly spaced (according to mels) while ensuring 50% overlap with adjacent filters. Each filter’s

low-edge, center, and high-edge frequencies (fl, fc, and fh, respectively) is then converted to Hertz.

As each mel-filter is applied by means of a multiplication in the frequency domain, it is necessary

for the filters to be represented at the same granularity as the DFT of the audio signal. The

frequency samples for each of the triangular filters are generated from the ideal filter parameters,

linearly interpolating between the center and edge frequency values. Lastly, the amplitude for each

filter is normalized such that the total energy of each filter is equal to one. Shown in Figure A.1 is

a typical filterbank containing 40 mel-spaced filters employed in an MFCC calculation.
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Figure A.1: Forty band mel-warped triangular filterbank
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A.2 Autocorrelation of chroma

The chroma feature is an often-used representation to estimate spectral energies of the different

musical pitch classes (A, A#, etc.) within a short time-interval. It is essentially a circular version of

the logarithmically warped spectrogram, where the frequencies corresponding to pitches in different

octaves are added together to provide a summary of energy at each of the 12 pitch classes. Using

this feature, it is sometimes possible to obtain an indication of the overall musical key and modality

[121]. In these experiments, however, the autocorrelation of each short-time chroma vector is uti-

lized, providing a shift-invariant feature. In preliminary experiments, it was found that this feature

performs better than raw chroma, since it promotes similarity in terms of the modes of harmony

(e.g. major, minor, augmented, and diminished chords) as opposed to particular chords (e.g., A

major vs. D major).

A.3 Spectral Shape Features

In music and audio processing, spectral shape features are often related to timbral texture [122].

For each spectral shape function, we begin by dividing the data into short-overlapping segments,

applying a Hanning window, and computing the magnitude DFT.

A.3.1 Spectral Centroid

Spectral centroid is defined as the weighted-average (center of mass) of the spectrum,

Cm =

∑K−1
k=0 F [k]|Xm[k]|∑K−1
k=0 |Xm[k]|

, (A.3)

where Xm[k] is the DFT of short-time segment m, and F [k] is a vector of frequencies corresponding

to the bins of the magnitude spectrum.
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A.3.2 Spectral Flux

Spectral flux is defined as the Euclidean distance between successive spectral frames:

Fm =

(
K−1∑
k=0

(|Xm[k]| − |Xm−1[k]|)2

) 1
2

. (A.4)

Again, Xm[k] is the discrete spectrum of the current analysis frame m and Xm−1[k] is the spectrum

of the previous frame.

A.3.3 Spectral Rolloff

Spectral rolloff is defined as the frequency beneath which a given proportion of the total spectral

energy lies, typically 85%:

Rm =
fs
K
rm =

fs
K

(
arg
rm

rm∑
k=0

|Xm[k]| = 0.85

K−1∑
k=0

|Xm[k]|

)
. (A.5)

Here |Xm[k]| is the magnitude of the kth frequency sample of the current frame, and rm is the

frequency sample number that produces the desired 85% rolloff.

A.3.4 Spectral Flatness

Spectral flatness quantifies how close the spectral distribution is to uniform (white). The equation

for computing spectral flatness, Um is as follows,

Um =
K K

√∏K−1
k=0 |Xm[k]|∑K−1

k=0 |Xm[k]|
, (A.6)

where again |Xm[k]| is the magnitude spectrum of the current frame.

A.4 Octave-Based Spectral Contrast

The spectral contrast feature provides a rough representation of the harmonic content in the fre-

quency domain based upon the identification of peaks and valleys in the spectrum, separated into

different frequency sub-bands [123]. Whereas the other spectrum-based features (MFCCs, SSDs)
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Figure A.2: Graphical depiction of SSDs.

provide information about the wideband characteristics of the signal, spectral contrast focuses on

the narrowband (harmonic) content, which is often the dominant component in musical signals.

To compute the spectral contrast features, we first divide the magnitude spectrum into k octave

based sub-bands. The frequency range of the first band is 0 - 200 Hz, the second is 200 - 400 Hz,

and the remaining sub-bands are similarly calculated by doubling the cutoff frequency of the upper

band edge (except for the last band, which has a range of 6400 Hz - Nyquist). Since most meaningful

spectral content within music occurs in the lower range of frequencies, we reduce computation by

limiting the number of bands to seven.

After the sub-bands have been determined, the peaks, valleys, and differences are calculated. The

maxima and minima within a local area are calculated to eliminate spurious values. First, the vector

of sub-band magnitudes are ordered in descending order. Then the first αN values, where α is an

appropriately tuned constant, are averaged to yield the peak value. The same process is completed

for the valleys, except that the vectors are ordered in ascending order. The spectral contrast is

simply the difference between the peaks and valleys. The equations for the contrast features are as
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follows:

Pk =
1

αN

αN∑
i=1

Xk,i, (A.7)

Vk =
1

αN

αN∑
i=1

Xk,N−i+1, (A.8)

SCk = Pk − Vk. (A.9)

Here, α has been defined as 0.02 and the ith bin in the kth sub-band is represented by Xk,i.

A.5 Echo Nest Timbre

Echo Nest Timbre (ENT) features are a proprietary 12-dimensional acoustic feature developed by

the Echo Nest corporation. These features have recently received a great deal of attention due to

the release of the million song dataset [124]. The million song dataset is the first publicly released

large scale dataset, and because of illegality of releasing audio content, is limited to features used

by the Echo Nest. As it would be of great interest to leverage the million song dataset in music

emotion recognition, these features are investigated in this work for comparison to existing features.

While the exact computation of these features is not known exactly, a good deal of information

is available. Timbre features are extracted on events (i.e. note onsets) thoughout a piece of au-

dio, with therefore varying hop and window sizes. Tristan Jehan, the creator of the ENT feature

describes them as a “high-res spectrogram through psychoacoustic filters (inner-outer ear filter, dB

compression, cochlea warping, frequency and temporal masking) and its resulting auditory surface

converted to 12 ‘optimal’ coefficients on a segment basis.” Shown in Figure A.3 are the 12 basis

functions, as provided by Tristan Jehan.
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Figure A.3: EchoNest timbre feature basis functions [125].
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Appendix B: Restricted Boltzman Machine Tutorial

A restricted Boltzman machine is a type of log-linear Markov random field with hidden units [93,

94, 95, 96, 97]. This section will first discuss the overall topic of energy-based probabilistic models,

then the addition of hidden units, and finally sampling and training in RBMs.

B.1 Energy-Based Models

RBMs fall into a category of probabilistic models known as energy-based models. In developing

an energy-based model, the variables of interest are associated with a scalar energy quantity. The

standard form of such a probabilistic model is as follows,

P (x) =
e-Energy(x)

Z
, (B.1)

where x ∈ RN×1. The normalizing function Z is also referred to as the partition function, as it is

similar to the function in physical systems that describes equilibrium,

Z =
∑
x

e-Energy(x). (B.2)

B.2 Hidden Variables

In order to define the energy function for an RBM, it is necessary to introduce hidden variables.

An RBM has a two layer architecture, containing a layer of visible nodes v and a layer of hidden

nodes h. These models are restricted in the sense that they contain only connections between the

visible and hidden layer (i.e., no visible-visible or hidden-hidden connections). A graphical depiction

is shown in Figure B.1.



123

Hidden

Layer

Visible

Layer

Figure B.1: Restricted Boltzman machine topology.

These generative models express their probability distribution via an energy function, which is

shown here as a joint configuration between an observed part v and hidden part h [99],

E(v,h) = −
∑

i∈visible

bivi −
∑

j∈hidden

ajhj −
∑
i,j

vihjwij . (B.3)

In the experiments discussed in this work (Chapter 7 - 8), the visible layer is a spectrogram v ∈ RI×1

and the hidden layer h ∈ RJ×1. The model has parameters W ∈ RI×J , with biases a ∈ RJ×1 and

b ∈ RI×1. The probability distribution then becomes,

P (v) =
∑
h

P (v,h) =
∑
h

e−E(v,h)

Z
. (B.4)

As only v is observed, it is necessary to obtain the marginal by summing over all h. Continuing to

borrow notation from physics, “free energy” in the model is expressed as,

F(v) = −log
∑
h

e−E(v,h), (B.5)

which is just the marginalization of energy in the log domain [96]. Applying this to the RBM

distribution, it simplifies to the form of Equation B.1,

P (v) =
e−F(v)

Z
, (B.6)
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and the normalizing factor Z is defined as,

Z =
∑
v

e−F(v). (B.7)

B.3 Binomial Hidden Units

The standard approach in RBMs is to use binary input data, and therefore both the hidden and

visible layers are binary. But in practice, it has also been found that binomial RBMs work well on

real valued data scaled within the range [0, 1], which is interpreted as probabilities of node activation.

Given a training vector v, the probability of hidden node activation is found as follows [97],

p(hj = 1|v) = σ(bj +
∑
i

wijvi). (B.8)

The function σ(x) is the logistic sigmoid function,

σ(x) =
1

1 + exp(−x)
. (B.9)

Given a hidden vector, it is also very easy to obtain an unbiased sample of state of a visible units,

p(vi = 1|h) = σ(ai +
∑
j

wijhj). (B.10)

However, the hidden vector is latent and must be determined in order to train the model. Many

methods exist for training models that rely on latent data, the most common being expectation

maximization (EM). The method used here is contrastive divergence (CD), which follows a very

similar iterative structure as EM. In the first part, inference occurs to estimate the latent variables,

and in the second part, the model parameters are updated. The main differences are approximations

for tractability and computational complexity, due to the complex nature of the underlying graphical

model.
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B.4 Sampling in RBMs

In order to perform RBM training, it is necessary to be able to obtain accurate samples of the

model’s distribution. As the RBM is a Markov chain, this is done through Gibbs sampling. In

Gibbs sampling, given a distribution p(z) = p(z1, ..., zm) and some initial state, the procedure

involves replacing one of the variables by a value drawn from the distribution of that variable, and

conditioned on all of the remaining variables [100].

In RBMs there are only two distributions of importance, that of the visible and the hidden units.

Furthermore, because there are only visible-hidden connections (i.e. independence within layer), all

nodes in a layer can be updated at the same time,

h(n+1) ∼ σ(bj +
∑
i

wijvi), (B.11)

v(n+1) ∼ σ(ai +
∑
j

wijhj). (B.12)

This essentially becomes a procedure of going back and forth between the two layers. Training

data can be used at the visible layer to obtain estimates of the hidden layer, and then those hidden

layer values are used to obtain estimates of the visible layer. In Figure B.2, this back and forth

process can be seen. Note that this figure is different from Figure B.1, because each circle represents

update of an entire layer.

Hidden

Layer

Visible

Layer

•••

•••

h(0)

v(0) v(1) v(2) v(t)

h(1) h(t)

Figure B.2: Gibbs sampling in restricted Boltzman machines In this figure v(0) refers to all
visible nodes and h(0) refers to all hidden nodes at time zero.
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More precisely the equations of B.11 - B.12 are used to obtain the estimates for the next layer

at the next time step given the state of the current layer at the current time step [96]:

v(0) ∼ Training Example, (B.13)

h(0) ∼ P (h|v(0)), (B.14)

v(1) ∼ P (v|h(0)), (B.15)

h(1) ∼ P (h|v(1)). (B.16)

B.5 Training RBMs

The partials of the model distribution with respect to each of the parameters take the form [126],

∂ logP (v)

∂W
= v′E[h|v]− E[v′h], (B.17)

∂ logP (v)

∂a
= E[h|v]− E[h], (B.18)

∂ logP (v)

∂b
= v − E[v]. (B.19)

The model parameter W is initialized to be a zero mean Gaussian distribution with a standard

deviation of usually about 0.01, and bias parameters a and b are set to zero [97]. Following from

these equations, sampling is performed on each iteration for up to k steps; in practice, it has been

shown that 1 step works quite well [95, 96].

W = W + ε(v(0)ĥ(0)′ − v(1)ĥ(1)′), (B.20)

a = a+ ε(ĥ(0) − ĥ(2)), (B.21)

b = b+ ε(v(0) − v(1)), (B.22)

where ε is the “learning rate” of the model, which controls how much the parameters are allowed to

change on each iteration.
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Appendix C: Support Vector Machine Tutorial

Motivated by the formulation of the perceptron, an SVM attempts to construct a classification

hyperplane of maximal separation between two classes of data [102, 103, 100]. Figure C.1 shows

an example of a maximum margin hyperplane that is shown as the solid line. The two parallel

transport functions sit up against the data on either side of the hyperplane and will be explained in

more detail.

x
1

x 2

Figure C.1: An example of a maximum margin classifier. In this example x1 and x2 are the
dimensions of the input data, each blue X represents an example in the negative class, and each
red O represents an example in the positive class.

C.1 Perceptron

The hyperplane is expressed through its normal equation, which generalizes over any input data

example x ∈ RN×1, with normal vector w ∈ RN×1, and has some scalar offset b ∈ R:

f(x) = 〈w,x〉+ b. (C.1)
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In seeking to determine the parameters (w, b) of the model, the perceptron has a very loose definition.

Any line that satisfies the following constraints for all training inputs xi and labels yi ∈ [−1, 1] will

separate the data:

yi(〈w,xi〉+ b) > 0. (C.2)

Therefore, there is no unique solution that satisfies this equation. Shown in Figure C.2 are multiple

perceptron classification boundaries for the given data. It can be seen that some of the classification

boundaries solve the problem quite well while others solve it quite poorly.

x
1

x 2

Figure C.2: Four valid perceptron classification boundaries that satisfy the training criteria
described in Equation C.2.

C.2 Obtaining a Unique Solution

In order to produce a more optimal classification boundary, it is wished to determine one that

provides maximal separation between the two classes of data. This is done by defining two parallel

transports such that they are tangential to the data points corresponding to the minimum distance

between the two classes, and such that any datapoint lying on one of them evaluates to ±1. Referring

back to Figure C.1, the solid line is the classification hyperplane, and the dashed lines are the parallel

transports. Therefore, if we define two input data examples x1 and x2, each lying on one of the two
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parallel transports such that:

〈w,x1〉+ b = +1, (C.3)

〈w,x2〉+ b = −1. (C.4)

It is then possible to show [127]:

〈w, (x1 − x2)〉 = 2, (C.5)〈
w

||w||
, (x1 − x2)

〉
=

2

||w||
. (C.6)

Equation C.5 simply states that the functional margin between those two points must equal two.

But to maximize the geometric margin, it is necessary to normalize w, yielding Equation C.6.

To determine the maximum margin classifier, it is necessary to maximize 2
||w|| . This function is

unattractive for several reasons, primarily because it suffers from a potential division by zero. But

it can be easily inferred that minimizing 1
2 ||w|| or 1

2 ||w||
2 yields an identical solution. As convex

optimization will be used for the minimization process, the latter will be chosen, as it is a convex

function with a unique minimum value. The full optimization problem can be stated as follows,

minimize
1

2
||w||2 (C.7)

subject to yi(〈w,xi〉+ b)− 1 ≥ 0 for all 1 ≤ i ≤ m. (C.8)

This will be referred to as the primal form of the optimization problem. While it is possible to solve in

the primal form, most off-the-shelf convex optimization algorithms, such as quadratic programming

[106], solve this problem in its Lagrange dual form. In the dual form, the optimization problem and
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constraints are combined into one equation,

L(w, b, α) = Primal Objective +
∑
i

αici, (C.9)

=
1

2
||w||2 +

m∑
i=1

αi(1− yi(〈w,xi〉+ b). (C.10)

The Lagrange function is specifically nice for optimization because it has a saddlepoint at the optimal

solution. It can be seen that L has a minimum with respect to w and b for the optimal alpha. As a

result, it is possible to take the derivatives of L with respect to w and b and simply optimize in the

α’s [127]. After reducing at the saddlepoint, we are left with the optimization problem as follows,

minimize
1

2

m∑
i,j=1

αiαjyiyj 〈xi,xj〉 −
m∑
i=1

αi, (C.11)

subject to

m∑
i=1

αiyi = 0 and αi ≥ 0. (C.12)

Given a trained model it can also be found that,

w =
∑
i

αiyixi and hence f(x) =

m∑
i=1

αiyi 〈xi,x〉+ b. (C.13)

The Karush Kuhn Tucker (KKT) conditions state that at the optimal solution the constraint mul-

tiplied by the Lagrange multiplier is equal to zero,

αi(1− yi(〈xi,x〉+ b)) = 0, (C.14)

and the classification boundary can be expressed in the same form as the perceptron in Equation

C.1.

C.3 Kernel Methods

The objective when using kernel functions is to project the data into a space where it is linearly

separable, which often involves using a non-linear projection function, resulting in a space of much
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higher dimension. Shown in Figure C.3 is single dimensional data that is not linearly separable in

the current space in which it is represented; however, if the data is projected to a higher dimensional

space using a simple polynomial kernel, it can easily be separated linearly.

Figure C.3: Simple kernel projection example

In all classification experiments discussed in this work, a distance-based radial basis function

(RBF) kernel is used,

k(x,x′) = exp
(
−γ||x− x′||2

)
, γ > 0. (C.15)

As the kernel space is considered to be of infinite dimension, the data and the normals can now only

be defined implicitly with respect to each other. However, the only modification necessary to the

optimization problem is to replace the inner product with the kernel function,

minimize
1

2

m∑
i,j=1

αiαjyiyjk(xi,xj)−
m∑
i=1

αi, (C.16)

subject to

m∑
i=1

αiyi = 0 and αi ≥ 0. (C.17)

As w is no longer linear (i.e., the kernel must be computed on unseen examples), the decision

function can only be expressed as follows,

f(x) =

m∑
i=1

αiyik(xi,x) + b, (C.18)
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Figure C.4: SVM with a third order polynomial kernel (left) and a radial basis kernel (right).
The two classes of data are denoted with X and O. The classification hyperplane is denoted as
0 with parallel transports +1 and −1. Examples that are support vectors are marked with a
square �.

where the xi are the support vectors (i.e., training examples that lie on the parallel transports

necessary for expressing the hyperplane).

In Figure C.4 two kernel examples are shown. In the left plot a third order polynomial kernel is

used, and in the right plot an RBF kernel is implemented. The two classes are marked as x and o,

and the contour lines marked as −1, 0, and 1 show the hard decision boundary and its respective

parallel transports. In addition, a filled contour plane is shown in the background displaying the full

decision function throughout the space.
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Appendix D: Kalman/Rauch-Tung-Striebel Estimation

Given an unknown testing example y, the estimation of the hidden state y is performed via the

following forward-backward Kalman/RTS recursions [108, 109]:

xt−1
t = Axt−1

t−1 (D.1)

V t−1
t = AV t−1

t−1 A
′ +Q (D.2)

Kt = V t−1
t C ′(CV t−1

t C ′ +R)−1 (D.3)

xtt = xt−1
t +Kt(yt − Cxt−1

t ) (D.4)

V tt = V t−1
t −KtCV

t−1
t (D.5)

Next, we perform the following backward (RTS) recursions:

Jt−1 = V t−1
t−1 A

′(V t−1
t )−1 (D.6)

xTt−1 = xt−1
t−1 + Jt−1(xTt −Axt−1

t−1) (D.7)

V Tt−1 =V t−1
t−1 + Jt−1(V Tt − V t−1

t )J ′t−1 (D.8)
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Appendix E: Conditional Random Fields Tutorial

CRFs are powerful graphical models that are trained to predict the conditional probability p(y|x) for

a sequence of labels y given a sequence of features x [110, 111]. Treating our features as deterministic,

we retain the rich local subtleties present in the data, which is especially promising in content-based

audio analysis where there is no shortage of rich data. Furthermore, the system provides a model

of both the relationships between acoustic data and emotion space parameters and also how those

relationships evolve over time.

E.1 Definition

Conditional random fields are a type of log-linear model, similar to logistic regression, that are

defined using feature functions that produce binary outcomes relating observations x to states y.

These functions are weighted by parameter λK , where K is the total number of binary features, each

defined by its own feature function fk. In this work, the linear-chain case of CRFs is investigated,

which restricts features to apply on only the current and previous position of the labels, and thus

the distribution of a CRF takes the form:

p(y|x) =
1

Z(x)
exp

{
K∑
k=1

λkfk(yt, yt−1,xt)

}
. (E.1)

The expression fk(yt, yt−1,xt) is used to generalize over all feature function types, using the

maximal Markov order allowed by the linear-chain model. However, in the experiments discussed

in this work both zeroth and first order Markov feature functions are used. Zeroth order Markov

features are generally referred to as node features and only rely on the current position of the data

and the labels, fk(yt, xt). These feature functions span N × L binary features, where N is the

number of output classes and L is the number of discrete values which xt can take on. In addition,

it is also common to define node features that operate on the value of xt from both the current as

well as past or future time steps, and hence xt is therefore notated as a vector. Those define feature
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functions to span N × LR possibilities, where R is the the number of time steps of encapsulated in

xt.

First order Markov features are referred to as edge features and can be expressed in terms of

fk(yt, yt−1, xt). Edge features produce a total of N ×N ×K binary features, and can therefore be

very costly. The general intuition with these features is that the input data xt might have a different

meaning for each current state, depending on each previous state. Furthermore, it is also common

to learn node features that are only dependent on the labels, fk(yt, yt−1). These features model the

dynamics of the label space without regard for the features and produce N ×N features.

The constant Z(x) is referred to as the partition function, and is a normalization function for a

specific instance or sequence:

Z(x) =
∑
y

exp

{
K∑
k=1

λkfk(yt, yt−1,xt)

}
. (E.2)

E.2 Estimating CRF Parameters

Following typical maximum likelihood estimation methods, the conditional log-likelihood of the

parameters θ can be expressed as follows:

`(θ) =

N∑
i=1

log p(y(i)|x(i)), (E.3)

where y(i) and x(i) are sequences of labels and observations, respectively, and N is the total number

of label observation pairs. Substituting the definition of p(y|x) (Equation E.1) yields the following

form:

`(θ) =

N∑
i=1

T∑
t=1

K∑
k=1

λkfk(y
(i)
t , y

(i)
t−1,x

(i)
t )−

N∑
i=1

logZ(x(i)). (E.4)

After adding in regularization penalty 1/(2σ2) this leaves:

`(θ) =

N∑
i=1

T∑
t=1

K∑
k=1

λkfk(y
(i)
t , y

(i)
t−1,x

(i)
t )−

N∑
i=1

logZ(x(i))−
K∑
k=1

λ2
k

2σ2
. (E.5)
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In order to compute maximum likelihood, the partial derivatives are taken with respect to the

model parameters, which in this case are simply the weights on the feature functions λk. The

partial derivatives take the form [111]:

∂`

∂λk
=

N∑
i=1

T∑
t=1

fk(y
(i)
t , y

(i)
t−1,x

(i)
t )−

N∑
i=1

T∑
t=1

∑
y,y′

fk(y, y′,x(i))p(y, y′|x(i))−
K∑
k=1

λ2
k

2σ2
, (E.6)

but this function cannot be maximized in closed form, so methods similar to gradient descent are

used, with the most common technique being limited-memory BGFS [111].

E.3 Inference

Inference methods for conditional random fields are nearly identical to those used in hidden Markov

models [128]. During training, the forward-backward algorithm is used in order to obtain the

marginal probabilities p(yt, yt−1,x) as well as the partition function. In adapting forward-backward

to CRFs, the weight vector on the transitions from state i to j Ψ(i, j, x) is defined as [128, 111]:

Ψt(i, j, x) =

K∑
k=1

λkfk(yt, yt−1,xt). (E.7)

In the same way, Veterbi decoding can be used to find the most likely state combination for an

unlabeled observation, x, but what is more interesting with CRFs is that it is possible to estimate

the conditional probability of every state, for every time step in an unlabeled observation [129].
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