307,928 research outputs found

    Generating Explanations in Context

    Get PDF

    Generating Context-Aware Contrastive Explanations in Rule-based Systems

    Full text link
    Human explanations are often contrastive, meaning that they do not answer the indeterminate "Why?" question, but instead "Why P, rather than Q?". Automatically generating contrastive explanations is challenging because the contrastive event (Q) represents the expectation of a user in contrast to what happened. We present an approach that predicts a potential contrastive event in situations where a user asks for an explanation in the context of rule-based systems. Our approach analyzes a situation that needs to be explained and then selects the most likely rule a user may have expected instead of what the user has observed. This contrastive event is then used to create a contrastive explanation that is presented to the user. We have implemented the approach as a plugin for a home automation system and demonstrate its feasibility in four test scenarios.Comment: 2024 Workshop on Explainability Engineering (ExEn '24

    Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations

    Full text link
    Post-hoc explanations of machine learning models are crucial for people to understand and act on algorithmic predictions. An intriguing class of explanations is through counterfactuals, hypothetical examples that show people how to obtain a different prediction. We posit that effective counterfactual explanations should satisfy two properties: feasibility of the counterfactual actions given user context and constraints, and diversity among the counterfactuals presented. To this end, we propose a framework for generating and evaluating a diverse set of counterfactual explanations based on determinantal point processes. To evaluate the actionability of counterfactuals, we provide metrics that enable comparison of counterfactual-based methods to other local explanation methods. We further address necessary tradeoffs and point to causal implications in optimizing for counterfactuals. Our experiments on four real-world datasets show that our framework can generate a set of counterfactuals that are diverse and well approximate local decision boundaries, outperforming prior approaches to generating diverse counterfactuals. We provide an implementation of the framework at https://github.com/microsoft/DiCE.Comment: 13 page

    Analytic aspects of the shuffle product

    Get PDF
    There exist very lucid explanations of the combinatorial origins of rational and algebraic functions, in particular with respect to regular and context free languages. In the search to understand how to extend these natural correspondences, we find that the shuffle product models many key aspects of D-finite generating functions, a class which contains algebraic. We consider several different takes on the shuffle product, shuffle closure, and shuffle grammars, and give explicit generating function consequences. In the process, we define a grammar class that models D-finite generating functions

    SmartEx: A Framework for Generating User-Centric Explanations in Smart Environments

    Full text link
    Explainability is crucial for complex systems like pervasive smart environments, as they collect and analyze data from various sensors, follow multiple rules, and control different devices resulting in behavior that is not trivial and, thus, should be explained to the users. The current approaches, however, offer flat, static, and algorithm-focused explanations. User-centric explanations, on the other hand, consider the recipient and context, providing personalized and context-aware explanations. To address this gap, we propose an approach to incorporate user-centric explanations into smart environments. We introduce a conceptual model and a reference architecture for characterizing and generating such explanations. Our work is the first technical solution for generating context-aware and granular explanations in smart environments. Our architecture implementation demonstrates the feasibility of our approach through various scenarios.Comment: 22nd International Conference on Pervasive Computing and Communications (PerCom 2024

    CLEVR-X: A Visual Reasoning Dataset for Natural Language Explanations

    Get PDF
    Providing explanations in the context of Visual Question Answering (VQA) presents a fundamental problem in machine learning. To obtain detailed insights into the process of generating natural language explanations for VQA, we introduce the large-scale CLEVR-X dataset that extends the CLEVR dataset with natural language explanations. For each image-question pair in the CLEVR dataset, CLEVR-X contains multiple structured textual explanations which are derived from the original scene graphs. By construction, the CLEVR-X explanations are correct and describe the reasoning and visual information that is necessary to answer a given question. We conducted a user study to confirm that the ground-truth explanations in our proposed dataset are indeed complete and relevant. We present baseline results for generating natural language explanations in the context of VQA using two state-of-the-art frameworks on the CLEVR-X dataset. Furthermore, we provide a detailed analysis of the explanation generation quality for different question and answer types. Additionally, we study the influence of using different numbers of ground-truth explanations on the convergence of natural language generation (NLG) metrics. The CLEVR-X dataset is publicly available at \url{https://explainableml.github.io/CLEVR-X/}

    Text-to-Image Models for Counterfactual Explanations: a Black-Box Approach

    Full text link
    This paper addresses the challenge of generating Counterfactual Explanations (CEs), involving the identification and modification of the fewest necessary features to alter a classifier's prediction for a given image. Our proposed method, Text-to-Image Models for Counterfactual Explanations (TIME), is a black-box counterfactual technique based on distillation. Unlike previous methods, this approach requires solely the image and its prediction, omitting the need for the classifier's structure, parameters, or gradients. Before generating the counterfactuals, TIME introduces two distinct biases into Stable Diffusion in the form of textual embeddings: the context bias, associated with the image's structure, and the class bias, linked to class-specific features learned by the target classifier. After learning these biases, we find the optimal latent code applying the classifier's predicted class token and regenerate the image using the target embedding as conditioning, producing the counterfactual explanation. Extensive empirical studies validate that TIME can generate explanations of comparable effectiveness even when operating within a black-box setting.Comment: WACV 2024 Camera ready + supplementary materia
    • …
    corecore