14 research outputs found

    Fast Generation of Discrete Random Variables

    Get PDF
    We describe two methods and provide C programs for generating discrete random variables with functions that are simple and fast, averaging ten times as fast as published methods and more than five times as fast as the fastest of those. We provide general procedures for implementing the two methods, as well as specific procedures for three of the most important discrete distributions: Poisson, binomial and hypergeometric.

    Dynamic Sampling from a Discrete Probability Distribution with a Known Distribution of Rates

    Get PDF
    In this paper, we consider a number of efficient data structures for the problem of sampling from a dynamically changing discrete probability distribution, where some prior information is known on the distribution of the rates, in particular the maximum and minimum rate, and where the number of possible outcomes N is large. We consider three basic data structures, the Acceptance-Rejection method, the Complete Binary Tree and the Alias Method. These can be used as building blocks in a multi-level data structure, where at each of the levels, one of the basic data structures can be used. Depending on assumptions on the distribution of the rates of outcomes, different combinations of the basic structures can be used. We prove that for particular data structures the expected time of sampling and update is constant, when the rates follow a non-decreasing distribution, log-uniform distribution or an inverse polynomial distribution, and show that for any distribution, an expected time of sampling and update of O(loglogrmax/rmin)O\left(\log\log{r_{max}}/{r_{min}}\right) is possible, where rmaxr_{max} is the maximum rate and rminr_{min} the minimum rate. We also present an experimental verification, highlighting the limits given by the constraints of a real-life setting

    Monte Carlo methods

    Get PDF
    Call number: LD2668 .R4 1963 K2

    Pseudo-random number generators having specified probability density function and autocorrelation

    Get PDF
    Ph.D.Joseph L. Hammond, Jr

    Dynamic sampling from a discrete probability distribution with a known distribution of rates

    Get PDF
    In this paper, we consider several efficient data structures for the problem of sampling from a dynamically changing discrete probability distribution, where some prior information is known on the distribution of the rates, in particular the maximum and minimum rate, and where the number of possible outcomes N is large. We consider three basic data structures, the Acceptance–Rejection method, the Complete Binary Tree and the Alias method. These can be used as building blocks in a multi-level data structure, where at each of the levels, one of the basic data structures can be used, with the top level selecting a group of events, and the bottom level selecting an element from a group. Depending on assumptions on the distribution of the rates of outcomes, different combinations of the basic structures can be used. We prove that for particular data structures the expected time of sampling and update is constant when the rate distribution follows certain conditions. We show that for any distribution, combining a tree structure with the Acceptance–Rejection method, we have an expected time of sampling and update of O(loglogrmax/rmin) is possible, where rmax is the maximum rate and rmin the minimum rate. We also discuss an implementation of a Two Levels Acceptance–Rejection data structure, that allows expected constant time for sampling, and amortized constant time for updates, assuming that rmax and rmin are known and the number of events is sufficiently large. We also present an experimental verification, highlighting the limits given by the constraints of a real-life setting

    Methods for generating variates from probability distributions

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Diverse probabilistic results are used in the design of random univariate generators. General methods based on these are classified and relevant theoretical properties derived. This is followed by a comparative review of specific algorithms currently available for continuous and discrete univariate distributions. A need for a Zeta generator is established, and two new methods, based on inversion and rejection with a truncated Pareto envelope respectively are developed and compared. The paucity of algorithms for multivariate generation motivates a classification of general methods, and in particular, a new method involving envelope rejection with a novel target distribution is proposed. A new method for generating first passage times in a Wiener Process is constructed. This is based on the ratio of two random numbers, and its performance is compared to an existing method for generating inverse Gaussian variates. New "hybrid" algorithms for Poisson and Negative Binomial distributions are constructed, using an Alias implementation, together with a Geometric tail procedure. These are shown to be robust, exact and fast for a wide range of parameter values. Significant modifications are made to Atkinson's Poisson generator (PA), and the resulting algorithm shown to be complementary to the hybrid method. A new method for Von Mises generation via a comparison of random numbers follows, and its performance compared to that of Best and Fisher's Wrapped Cauchy rejection method. Finally new methods are proposed for sampling from distribution tails, using optimally designed Exponential envelopes. Timings are given for Gamma and Normal tails, and in the latter case the performance is shown to be significantly better than Marsaglia's tail generation procedure.Governors of Dundee College of Technolog
    corecore