2,549 research outputs found

    Generating and using truly random quantum states in Mathematica

    Full text link
    The problem of generating random quantum states is of a great interest from the quantum information theory point of view. In this paper we present a package for Mathematica computing system harnessing a specific piece of hardware, namely Quantis quantum random number generator (QRNG), for investigating statistical properties of quantum states. The described package implements a number of functions for generating random states, which use Quantis QRNG as a source of randomness. It also provides procedures which can be used in simulations not related directly to quantum information processing.Comment: 12 pages, 3 figures, see http://www.iitis.pl/~miszczak/trqs.html for related softwar

    Employing online quantum random number generators for generating truly random quantum states in Mathematica

    Full text link
    We present a new version of TRQS package for Mathematica computing system. The package allows harnessing quantum random number generators (QRNG) for investigating the statistical properties of quantum states. It implements a number of functions for generating random states. The new version of the package adds the ability to use the on-line quantum random number generator service and implements new functions for retrieving lists of random numbers. Thanks to the introduced improvements, the new version provides faster access to high-quality sources of random numbers and can be used in simulations requiring large amount of random data.Comment: New version of the package described in arXiv:1102.4598. Software available at http://www.iitis.pl/~miszczak/trq

    QuantumInformation.jl---a Julia package for numerical computation in quantum information theory

    Full text link
    Numerical investigations are an important research tool in quantum information theory. There already exists a wide range of computational tools for quantum information theory implemented in various programming languages. However, there is little effort in implementing this kind of tools in the Julia language. Julia is a modern programming language designed for numerical computation with excellent support for vector and matrix algebra, extended type system that allows for implementation of elegant application interfaces and support for parallel and distributed computing. QuantumInformation.jl is a new quantum information theory library implemented in Julia that provides functions for creating and analyzing quantum states, and for creating quantum operations in various representations. An additional feature of the library is a collection of functions for sampling random quantum states and operations such as unitary operations and generic quantum channels.Comment: 32 pages, 8 figure

    Symbolic integration with respect to the Haar measure on the unitary group

    Full text link
    We present IntU package for Mathematica computer algebra system. The presented package performs a symbolic integration of polynomial functions over the unitary group with respect to unique normalized Haar measure. We describe a number of special cases which can be used to optimize the calculation speed for some classes of integrals. We also provide some examples of usage of the presented package.Comment: 7 pages, two columns, published version, software available at: https://github.com/iitis/Int

    Generating random density matrices

    Full text link
    We study various methods to generate ensembles of random density matrices of a fixed size N, obtained by partial trace of pure states on composite systems. Structured ensembles of random pure states, invariant with respect to local unitary transformations are introduced. To analyze statistical properties of quantum entanglement in bi-partite systems we analyze the distribution of Schmidt coefficients of random pure states. Such a distribution is derived in the case of a superposition of k random maximally entangled states. For another ensemble, obtained by performing selective measurements in a maximally entangled basis on a multi--partite system, we show that this distribution is given by the Fuss-Catalan law and find the average entanglement entropy. A more general class of structured ensembles proposed, containing also the case of Bures, forms an extension of the standard ensemble of structureless random pure states, described asymptotically, as N \to \infty, by the Marchenko-Pastur distribution.Comment: 13 pages in latex with 8 figures include
    corecore