1,723 research outputs found

    Building an interpretable fuzzy rule base from data using Orthogonal Least Squares Application to a depollution problem

    Get PDF
    In many fields where human understanding plays a crucial role, such as bioprocesses, the capacity of extracting knowledge from data is of critical importance. Within this framework, fuzzy learning methods, if properly used, can greatly help human experts. Amongst these methods, the aim of orthogonal transformations, which have been proven to be mathematically robust, is to build rules from a set of training data and to select the most important ones by linear regression or rank revealing techniques. The OLS algorithm is a good representative of those methods. However, it was originally designed so that it only cared about numerical performance. Thus, we propose some modifications of the original method to take interpretability into account. After recalling the original algorithm, this paper presents the changes made to the original method, then discusses some results obtained from benchmark problems. Finally, the algorithm is applied to a real-world fault detection depollution problem.Comment: pre-print of final version published in Fuzzy Sets and System

    Learning concurrently partition granularities and rule bases of Mamdani fuzzy systems in a multi-objective evolutionary framework

    Get PDF
    AbstractIn this paper we propose a multi-objective evolutionary algorithm to generate Mamdani fuzzy rule-based systems with different good trade-offs between complexity and accuracy. The main novelty of the algorithm is that both rule base and granularity of the uniform partitions defined on the input and output variables are learned concurrently. To this aim, we introduce the concepts of virtual and concrete rule bases: the former is defined on linguistic variables, all partitioned with a fixed maximum number of fuzzy sets, while the latter takes into account, for each variable, a number of fuzzy sets as determined by the specific partition granularity of that variable. We exploit a chromosome composed of two parts, which codify the variables partition granularities, and the virtual rule base, respectively. Genetic operators manage virtual rule bases, whereas fitness evaluation relies on an appropriate mapping strategy between virtual and concrete rule bases. The algorithm has been tested on two real-world regression problems showing very promising results

    Designing fuzzy rule based classifier using self-organizing feature map for analysis of multispectral satellite images

    Full text link
    We propose a novel scheme for designing fuzzy rule based classifier. An SOFM based method is used for generating a set of prototypes which is used to generate a set of fuzzy rules. Each rule represents a region in the feature space that we call the context of the rule. The rules are tuned with respect to their context. We justified that the reasoning scheme may be different in different context leading to context sensitive inferencing. To realize context sensitive inferencing we used a softmin operator with a tunable parameter. The proposed scheme is tested on several multispectral satellite image data sets and the performance is found to be much better than the results reported in the literature.Comment: 23 pages, 7 figure

    Probabilistic and fuzzy reasoning in simple learning classifier systems

    Get PDF
    This paper is concerned with the general stimulus-response problem as addressed by a variety of simple learning c1assifier systems (CSs). We suggest a theoretical model from which the assessment of uncertainty emerges as primary concern. A number of representation schemes borrowing from fuzzy logic theory are reviewed, and sorne connections with a well-known neural architecture revisited. In pursuit of the uncertainty measuring goal, usage of explicit probability distributions in the action part of c1assifiers is advocated. Sorne ideas supporting the design of a hybrid system incorpo'rating bayesian learning on top of the CS basic algorithm are sketched

    Interpretable clinical time-series modeling with intelligent feature selection for early prediction of antimicrobial multidrug resistance

    Get PDF
    Electronic health records provide rich, heterogeneous data about the evolution of the patients’ health status. However, such data need to be processed carefully, with the aim of extracting meaningful information for clinical decision support. In this paper, we leverage interpretable (deep) learning and signal processing tools to deal with multivariate time-series data collected from the Intensive Care Unit (ICU) of the University Hospital of Fuenlabrada (Madrid, Spain). The presence of antimicrobial multidrug-resistant (AMR) bacteria is one of the greatest threats to the health system in general and to the ICUs in particular due to the critical health status of the patients therein. Thus, early identification of bacteria at the ICU and early prediction of their antibiotic resistance are key for the patients’ prognosis. While intelligent data-based processing and learning schemes can contribute to this early prediction, their acceptance and deployment in the ICUs require the automatic schemes to be not only accurate but also understandable by clinicians. Accordingly, we have designed trustworthy intelligent models for the early prediction of AMR based on the combination of meaningful feature selection with interpretable recurrent neural networks. These models were created using irregularly sampled clinical measurements, both considering the health status of the patient and the global ICU environment. We explored several strategies to cope with strongly imbalance data, since only a few ICU patients are infected by AMR bacteria. It is worth noting that our approach exhibits a good balance between performance and interpretability, especially when considering the difficulty of the classification task at hand. A multitude of factors are involved in the emergence of AMR (several of them not fully understood), and the records only contain a subset of them. In addition, the limited number of patients, the imbalance between classes, and the irregularity of the data render the problem harder to solve. Our models are also enriched with SHAP post-hoc interpretability and validated by clinicians who considered model understandability and trustworthiness of paramount concern for pragmatic purposes. Moreover, we use linguistic fuzzy systems to provide clinicians with explanations in natural language. Such explanations are automatically generated from a pool of interpretable rules that describe the interaction among the most relevant features identified by SHAP. Notice that clinicians were especially satisfied with new insights provided by our models. Such insights helped them to trust the automatic schemes and use them to make (better) decisions to mitigate AMR spreading in the ICU. All in all, this work paves the way towards more comprehensible time-series analysis in the context of early AMR prediction in ICUs and reduces the time of detection of infectious diseases, opening the door to better hospital care.This work is supported by the Spanish NSF grants PID2019-106623RB-C41 (BigTheory), PID2019-105032GB-I00 (SPGraph), PID2019-107768RA-I00 (AAVis-BMR), RTI2018-099646-B-I00 (ADHERE-U); the Galician Ministry of Education, University and Professional Training grants ED431F 2018/02 (eXplica-IA) and ED431G2019/04; the Instituto de Salud Carlos III, Spain grant DTS17/00158; as well as the Community of Madrid in the framework of the Multiannual Agreement with Rey Juan Carlos University in line of action 1, “Encouragement of Young Phd students investigation” Project Ref. F661 (Mapping-UCI). Sergio M. Aguero is a recipient of the Predoctoral Contracts for Trainees URJC Grant (PREDOC21-036). Jose M. Alonso-Moral is a Ramon Cajal Researcher (RYC-2016-19802).S

    Modelo Predictivo Borroso de la Aceleración de Cabeceo de Buque de Alta Velocidad

    Get PDF
    An adaptable fuzzy inference technique is being described in order to generate predictive models of the acceleration of the pitching of a high speed vessel, from the data obtained from the web on an experiment conducted by the University of Iowa. The geometry of interest in the experiment is a scale model of the type 1/46.6 of the DTMB model 5415 (DDG-51). The fuzzy algorithm for the generation of the predictive model uses a triangular partition with a 0.5 overlapping and consequents of the Singleton type. The consequents are adjusted in an automatic fashion by using recursive least squares. The algorithm shows a very low computational complexity rate which allows for it to be used for on line identification.Se describe una técnica de inferencia borrosa adaptativa para generar modelos predictivos de la aceleración de cabeceo de un buque de alta velocidad, a partir de datos obtenidos de la web de un experimento realizado en la Universidad de Iowa. En el experimento, la geometría de interés es un modelo a escala 1/46.6 del DTMB modelo 5415 (DDG-51). El algoritmo borroso para la generación del modelo predictivo emplea partición triangular con solapamiento de 0.5 y consecuentes tipo singlenton. Los consecuentes son ajustados de manera automática empleando mínimos cuadrados recursivos. El algoritmo presenta una baja complejidad computacional lo que permite su empleo para identificación en línea

    Mixture model with multiple allocations for clustering spatially correlated observations in the analysis of ChIP-Seq data

    Get PDF
    Model-based clustering is a technique widely used to group a collection of units into mutually exclusive groups. There are, however, situations in which an observation could in principle belong to more than one cluster. In the context of Next-Generation Sequencing (NGS) experiments, for example, the signal observed in the data might be produced by two (or more) different biological processes operating together and a gene could participate in both (or all) of them. We propose a novel approach to cluster NGS discrete data, coming from a ChIP-Seq experiment, with a mixture model, allowing each unit to belong potentially to more than one group: these multiple allocation clusters can be flexibly defined via a function combining the features of the original groups without introducing new parameters. The formulation naturally gives rise to a `zero-inflation group' in which values close to zero can be allocated, acting as a correction for the abundance of zeros that manifest in this type of data. We take into account the spatial dependency between observations, which is described through a latent Conditional Auto-Regressive process that can reflect different dependency patterns. We assess the performance of our model within a simulation environment and then we apply it to ChIP-seq real data.Comment: 25 pages; 3 tables, 6 figure
    corecore