
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322404098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


13 

Prediction of Herbicides Concentration  
in Streams 

Raj Mohan Singh 
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1. Introduction 

Natural and anthropogenic variables of stream drainage basins such as hydrogeologic 
parameters (permeability, porosity etc.), amount of agricultural chemicals applied, or 
percentage of land planted affect agricultural chemical concentration and mass transport in 
streams. The use of herbicides, pesticides, and other chemicals in agricultural fields increase 
the concentration of chemicals in streams which severely affects the health of human and 
environment. The transport of chemical pollutants into river or streams is not straight 
forward but complex function of applied chemicals and land use patterns in a given river or 
stream basin. The factors responsible for transport of chemicals may be considered as inputs 
and chemical concentration measurements in streams as outputs. Each of these inputs and 
outputs may contain measurement errors. Present work exploited characteristics of fuzzy 
sets to address uncertainties in inputs by incorporating overlapping membership functions 
for each of inputs even for limited data availability situations. Soft computing methods such 
as the fuzzy rule based and ANN (Artificial Neural Networks) is used for characterization 
of herbicides concentration in streams. The fuzzy c-means (FCM) algorithm is used for the 
optimization of membership functions of fuzzy rule based models for the estimation of 
diffuse pollution concentration in streams. The general methodology based on fuzzy, ANN 
and FCM for estimation of diffuse pollution in streams is presented. The application of the 
proposed methodology is illustrated with real data to estimate the diffuse pollution 
concentration in a stream system due to application of a typical herbicide, atrazine, in corn 
fields with limited data availability. Solution results establish that developed fuzzy rule base 
model with FCM outperform fuzzy or ANN and capable for the estimation of diffuse 
pollution concentration values in water matrices with sparse data situations. 

Application of pesticides, insecticides and herbicides, cause diffuse pollution, commonly 
referred to as non-point source pollution in river or streams. Diffuse pollution from 
agricultural activities is a major cause of concern for the health of human and environment. 
Diffuse (non-dot, dispersed) pollution generally arises from land-use activities (urban and 
rural) that are dispersed across a catchment or subcatchment, where as point sources of 
pollution arise as a process industrial effluent, municipal sewage effluent, deep mine or 
farm effluent discharge (Novotny 2003, based on CIWEM (D’Arcy et al., 2000)). Potential 
point sources of pollution is characterised by its location, magnitude and duration of 
activity; and the sources of pollution is characterized when these parameters are identified 
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(Mahar and Dattta 2000; Singh and Datta, 2004, and Singh and Datta, 2006a and 2006b). In 
diffuse sources of pollution or non-point sources of pollution, sources of pollution is moving 
with polluting media thus making it more difficult and complex problem to solve.  

Often diffuse pollution is individually minor but collectively constitutes significant sources 
at basin scale. Although nonpoint or diffuse sources may contribute many of the same kinds 
of pollutants, these pollutants are generated in different volumes, combinations, and 
concentrations (Jha et al., 2005). Thus, diffuse pollution comprises true non-point source 
pollution together with inputs from a multiplicity of minor point sources. The important 
characteristics of diffuse pollution are, therefore, not whether anyone can identify the source 
or sources, but the collective impact of diffuse pollutants and the mechanisms through 
which they move through the environment. The concept of diffuse pollution is useful 
because it explains features of pollution in receiving water bodies that differ from the point 
sources of pollution that are typically well characterized, monitored, and quantified. Some 
of the characteristics of diffuse pollutants are that the concentrations of some pollutants 
actually may increase with flow rather than it has diluted, pollution peaks are variable and 
difficult to predict, and impacts are often slow to develop and become evident years later 
(e.g. contamination of groundwater). For diffuse pollution, it is the proportion of the land 
use from which the pollution is derived, is more important. 

Agricultural activities such as application of herbicides result in the contamination of 
surface water with agricultural chemicals. Numerous recent investigations (Goolsby and 
Battaglin, 1993 and 1995; Schottler et al., 1994; Baker and Richards, 1990) indicate that 
significant quantities of some herbicides are flushed from cropland to streams each spring 
and summer during rainfall events following the applications. Peak concentration of several 
herbicides can exceed 10 µg/l during these events (Coupe et al., 1995; Scribner et al., 1994). 
Pareira (1990), Crawfard (1995, 2001), Capel and Larson (2001), and Smith and Wheater 
(2004) in their studies on pesticides/herbicides, identified the major factors that control the 
pollutant transport. Herbicides and pesticides concentrations in surface waters are affected 
by natural and human factors. For example, concentrations of atrazine, a herbicide widely 
used on corn fields, tended to be higher in an agricultural basin with permeable, well 
drained soils, than in an agricultural basin with less permeable, more poorly drained soils 
(Crawfard, 1995). Capel et al. (2001) estimated the annual pollutant transport as percent of 
use (load as percent of use - LAPU). Larson and Gilliom (2001) developed a regression 
model for the estimation of pollutants. 

Water resources professionals, managers and government authorities involved in surface 

water management are increasingly pressed to make appropriate decisions on land use and 

development policies such that these decisions will not adversely affect the health and 

environment. At the same time, they are constrained by inadequate budgets, limited 

resources, and incomplete information, which compel them to rely on models to evaluate or 

to estimate the pollution characteristics in the water bodies, and the implications of their 

decisions based on those evaluations. In this regard, the role of complex stream quality 

simulation models e.g. SWAT (Arnold et al. 1983), AGNPS (Young et al., 1989) etc. in 

evaluating runoff pollution conditions under various agricultural chemicals and land use 

patterns is also limited. These models incorporate rainfall, catchments, and pollutant 

characteristics, requiring extensive calibration and verification. However, their results are 

not without large uncertainties. These uncertainties arise both in the representation of the 
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physical, chemical, and biological processes as well as in the data acquisition and 

parameters for model algorithms. Consequently, the complexities of these models and their 

resource-intensive nature are significant obstacles to their application (Charbeneau and 

Barrett 1998).  

There is a need for the development of simpler methods of agricultural stream quality 
predictions that provide the required information to the analyst and water managers with 
minimal effort and limited data requirements as compared to complex process models. As 
an alternative or supplement to complex runoff quality simulation models, fuzzy rule based 
model with FCM is proposed to estimate pollutant concentration due to applications of 
agricultural chemical, herbicide, atrazine, in the streams. 

The herbicide atrazine (2-chloro-4-[ethylamino]-6-[isopropylamino]-1,3,5-triazine), a 
chlorinated herbicide, has been one of the most heavily used herbicides in the world. 
Atrazine is toxic to many living organism. The maximum contaminant level (MCL) of 
atrazine is restricted to 3 µg/l for drinking water (USEPA, 2001). Because atrazine is water 
soluble, it has the potential to leach into ground water and run off to surface water. Atrazine 
is associated with developmental effects (USEPA, 2002), such as birth defects, structural 
anomalies, and adverse hormone changes. Thus, its accurate estimation in water matrices is 
imperative. 

In this study, a fuzzy rule based model optimized by fuzzy c-Means, is developed to obtain 
the estimate of atrazine concentrations from agricultural run-off using limited available 
information. The work discusses the methodology to develop the fuzzy rule base model 
using annual average use of herbicide atrazine per unit area, extent of herbicide atrazine 
applied area and herbicide atrazine application season as inputs to fuzzy rule based model 
and observed herbicide concentration at the basin outlet as the output for the fuzzy model. 
The data of White River Basin, a part of the Mississippi River system, USA, is used for 
developing the fuzzy rule base model. 

2. Agricultural diffuse pollution concentration simulation in streams 

Natural and anthropogenic variables of stream drainage basins such as hydrogeologic 
parameters (permeability, porosity etc.), amount of agricultural chemicals applied, or 
percentage of land planted affect agricultural chemical concentration and mass transport in 
streams. The general form of model that simulates the concentration measurement in a 
watershed can be represented by (Tesfamichael et al., 2005) 

 C = f (W, H, A) (1) 

where C is the stream agricultural diffuse pollution observed concentration measurement 
values; W is a vector of watershed characteristics; and H is a vector of hydrological variables 
such as precipitation, runoff, etc., and A is a vector of relevant agricultural practices 
including actual chemical application rate in the field in lb/acre.  

For a particular watershed, watershed characteristic, W, may be assumed to be constant. 
Also, for a particular hydrological unit, H may be assumed to be of similar characteristics. 
Then, Equation (1), though simplified, may be represented by  

 C = f (A) (2) 
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The A may be further represented by  

 A = f (AC, AL) (3) 

where AC represent the  vector of applied agricultural chemical characteristics such as type 
of agricultural chemical (insecticide, herbicides etc.), application rate, application season 
etc., and  AL is the land use patterns such as type of crop grown, percentage of cropped area, 
etc. 

Here, agricultural chemical considered is herbicide, atrazine, and crop considered is corn. In 
this study fuzzy rule based model with FCM simulates the stream system behavior from 
inputs of agricultural practices and corresponding observed concentration measurement 
values. In fact the model tries to emulate the mechanism that produced the data set. In this 
way, the mathematical description of the physical system is learned by the model, and 
therefore utilized as a tool for stream system simulation. The cluster centers of inputs and 
outputs obtained using FCM model, in essence, represents a typical characteristics of the 
system behaviour, and hence utilized in the formation of rule base of the fuzzy model.  

3. Methodology 

Statistical methodologies have been traditional being utilized for diffuse pollutants 
predictions in streams. However, transport of herbicides is complex and uncertain 
phenomena and traditional methods like regression are not able to incorporate uncertainty 
in model predictions. Present work will discuss methodologies based on recent soft 
computing techniques like fuzzy, artificial neural network (ANN) and their hybrids. The 
application of the proposed methodology is illustrated with real data to estimate the diffuse 
pollution concentration in a stream system due to application of a typical herbicide, 
atrazine, in corn fields with limited data availability.  

3.1 Modeling approach  

The models based on fuzzy logic and ANN, also known as intelligent or soft computing 
models, are potentially capable of fitting a nonlinear function or relationships. Identification 
of model architecture is decisive factor in the simulation and comparison. The identification 
of model architecture is crucial in ANN model building process. While the input and output 
of the ANN model is problem dependent, there is no direct precise way to determine the 
optimal number of hidden nodes (Nayak et al., 2005).The model architecture is selected 
through a trial and error procedure (Singh et al.. 2004). The fuzzy model, on the other hand, 
may be considered as a mapping of input space into output space by partitions in the 
multidimensional feature space in inputs and outputs. Each partition represents a fuzzy set 
with a membership function.  

3.2 Fuzzy rule based system 

Fuzzy logic emerged as a more general form of logic that can handle the concept of partial 
truth. The pioneering work of Zadeh (1965) on fuzzy logic has been used as foundation for 
fuzzy modeling methodology that allows easier transition between humans and computers 
for decision making and a better way to handle imprecise and uncertain information. 
Human being think verbally, not numerically. As the fuzzy logic systems involves verbal 
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statements and, therefore, the fuzzy logic is more in line with human perception (Zadeh, 
2000). Fuzzy logic has an advantage over many statistical methods in that the performance 
of a fuzzy expert system is not dependent on the volume of historical data available. Since 
these expert systems produce a result based on logical linguistic rules, extreme data points 
in a small data set do not unduly influence these models. Because of these characteristics, 
fuzzy logic may be a more suitable method for diffuse pollution forecasting than the usual 
regression modeling techniques used by many researchers (e,g. Goolsby and Battaglin 
(1993); Larson and Gilliom (2001); and Tesfamichael et al. (2005) etc.) for estimation of 
diffuse pollution concentration in streams or other water bodies. 

3.2.1 Fuzzy rule based system architecture 

The most common way to represent human knowledge is to form it into natural language 
expression of the type, 

 IF premise (antecedent), THEN conclusions (consequent) (4) 

The form in expression (4) is commonly referred to as the IF-THEN rule based form (Ross, 
1997). It typically expresses an inference such that if a fact (premise, hypothesis, antecedent) 
is known, then another fact called a conclusion (consequent) can be inferred or derived. 
Fuzzy logic systems are rule base systems that implements a nonlinear mapping (Dadone 
and VanLandingham, 2000) between stresses (represented by consequents) and state 
variables (represented by antecedents). Creating a fuzzy rule based system may be 
summarized in four basic steps (Ross 1997; Mahabir et al. 2003; Singh and Singh 2005): 

a. For each variable, whether an input variable or a result variable, a set of membership 
functions must be defined. A membership function defines the degree to which the 
value of a variable belongs to the group and is usually a linguistic term, such as high or 
low.  

b. Statements, or rules, are defined that relate the membership functions of each variable 
to the result, normally through a series of IF–THEN statements.  

c. The rules are mathematically evaluated and the results are combined. Each rule is 
evaluated through a process called implication, and the results of all of the rules are 
combined in a process called aggregation. 

d. The resulting function is evaluated as a crisp number through a process called 
defuzzification.  

Subjective decisions are frequently required in fuzzy logic modeling, particularly in defining 
the membership functions for variables. In cases such as in this study, where large data sets 
are not available to define every potential occurrence scenario for the fuzzification of model, 
expert opinion is used to create logic in the rule base system. 

3.2.2 Membership functions 

Membership functions used to describe linguistic knowledge are the enormously subjective 
and context dependent part of fuzzy logic modeling (Vadiee, 1993). Each variable must have 
membership functions, usually represented by linguistic terms, defined for the entire range 
of possible values. The key idea in fuzzy logic, in fact, is the allowance of partial belongings 
of any object to different subsets of universal set instead of belonging to a single set 
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completely. Partial belonging to a set can be described numerically by a membership 
function which assumes values between 0 and 1 inclusive. Intuition, inference, rank 
ordering, angular fuzzy sets, neural networks, genetic algorithms, and inductive reasoning 
can be, among many, ways to assign membership values or functions to fuzzy variables 
(Ross, 1997). Fuzzy membership functions may take on many forms, but in practical 
applications simple linear functions, such as triangular ones are preferable due to their 
computational efficiency (Khrisnapuram, R¸1998). In this study, triangular shapes are 
utilized to represent the membership functions. 

3.3 Fuzzy c-means partitioning 

Fuzzy rule based models represent the system behaviour by means of if then fuzzy rules. 
The basic requirement of fuzzy rule based model is to fuzzify or partition the inputs and 
outputs representation of a physical system. Assigning the number, shape, overlaps etc. of 
membership functions is most complex part of the fuzzy rule based model building. In most 
of the cases the optimality of the membership assigned to different fuzzy variables are not 
guaranteed. FCM is one of the methods to determine the fuzzy partitions of the available 
data sets into a predetermined number of groups. The data points are divided into group of 
points that are close to each other. Each data point belongs to a group or cluster with a 
membership function. Closeness between data points is defined by a metric distance or data 
center, and each metric yields a different portioning. This cluster centers are utilized in 
assigning overlaps of triangular shape membership function in this study. 

Fuzzy c-means (FCM) is a method of clustering which allows one piece of data to belong to 
two or more clusters. The FCM method (developed by Dunn (1973) and improved by 
Bezdek (1981)) is frequently used in pattern recognition. It is based on minimization of the 
following objective function: 
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where m is any real number greater than 1, uij is the degree of membership of xi in the cluster 
j, xi is the ith of d-dimensional measured data, cj is the d-dimension center of the cluster, and 
||*|| is any norm expressing the similarity between any measured data and the center. The N 
represents total number of data points, and CN represents the total number of fuzzy centers. 
Fuzzy partitioning is carried out through an iterative optimization of the objective function 
shown above, with the update of membership uij and the cluster centers cj by: 
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This iteration will stop when maxij{│uijk+1-uijk │}< ε , where ε is a termination criterion 
between 0 and 1, where as k are the iteration steps. This study used FCM algorithm (Matlab 
version 6.5), and ε is equal to 0.1 - 10-5 to obtain the pre-specified fuzzy centers. 

This study implements FCM algorithm (Matlab version 6.5), m=2, and ε equal to 10-5 to 
obtain the pre-specified fuzzy centers. 

3.4 Fuzzy rule based system with FCM for estimation of diffuse pollution 
concentration in streams 

The watershed of the streams plays a vital role in influencing the diffuse pollution 

concentration in the streams. Basic Steps 1 through Steps 4 as discussed earlier in section 

Rule Based System are implemented by partitioning the input and output spaces into fuzzy 

regions with FCM, generation of fuzzy rules from available data pairs, assigning a degree to 

each rule, construction of a combined fuzzy rule base, and mapping from the input space to 

the output space using the rule base and a defuzzification (Wang and Mendel, 1992).  

The vector AC and AL as represented by equation (2) are characterized for the specified 

watershed of the streams. As explained earlier, AC represents the vector of applied 

agricultural chemical characteristics such as type of agricultural chemical (insecticide, 

herbicides etc.), application rate, application season etc. The AL is the land use patterns such 

as type of crop grown, percentage of cropped area, etc. and C is the stream agricultural 

diffuse pollution observed concentration measurement values. Patterns were generated 

using a known set of input-output data pairs. The input data pairs AC and AL values and 

corresponding output values of C for a particular year constitutes a pattern. While AC and 

AL are constant for a particular year, the C is temporally and spatially varying at each of the 

monitoring station sites.  

Fuzzy rules are building-blocks of fuzzy rule base systems. Partitioning the fuzzy variables 

into linguistic variables is necessary step towards designing the rule base system. Fuzzy 

partitions for the input and output variables are defined or generated according to the type 

of data as discussed in the membership section (Singh, 2008). In this work, FCM model is 

utilized to supply optimum number data centers to partition the input and output fuzzy 

variables.  

It is absolutely possible to obtain the redundant and inconsistent rules from the data 

patterns having same antecedent parts. As mentioned, each rule is assigned a degree or 

weight by multiplying the membership functions of inputs and outputs for that rule. In the 

standard approach the rule having largest degree is adopted (Wang and Mendel, 1992). As 

an improvement, the degree of each rule is multiplied by a redundancy index to obtain the 

effective degree for that rule. The redundancy index may be defined as: 

 irRedundancy Index (R.I.)
rT

  (8) 

where, ri represents the redundant rule with same i antecedents; and Tr represents the sum 
of all the redundant rules. Final fuzzy rule base includes the rules having the highest 
effective degree. 
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The fuzzy inference mechanism uses the fuzzified inputs and rules stored in the rule base 
for processing the incoming inputs data and produces an output. The fuzzy rules are 
processed by fuzzy sets operations as discussed in rule based section as basic steps for fuzzy 
rule base system. The fuzzy rule based design is accepted to be satisfactorily completed 
when its performance during training and testing satisfies the stopping criteria based on 
some statistical parameters. 

3.5 ANN based methodology for estimation of diffuse pollution concentration in 
streams 

The ANN learns to solve a problem by developing a memory capable of associating a large 
number of example input patterns, with a resulting set of outputs or effects. ANN is 
discussed in ASCE Task Committee (2000), etc. An overview of artificial neural networks 
and neural computing, including details of basics and origins of ANN, biological neuron 
model etc. can be found in Hassoun (1999), Schalkoff (1997), and Zurada (1997). The details 
of ANN model building process and selection of best performing ANN model for a given 
problem is available in (Singh et al., 2004). 

As illustrated in the fuzzy model building for estimation of diffuse pollution concentrations 
in streams, the AC and AL values for a particular year in a watershed are inputs, and 
corresponding C values in the stream is out put for the ANN model. The values of AC, AL 
and C for a particular year constitute a data pattern.  A standard back propagation 
algorithm (Rumelhart et al., 1986) with single hidden layer is employed to capture the 
dynamic and complex relationship between the inputs and outputs utilizing the available 
patterns. The ANN architecture that perform better than other evaluated architectures based 
on certain performance evaluation criteria, both in training and testing, was selected as the 
final architecture. 

3.6 Performance evaluation criteria 

The performance of the developed models are evaluated based on some performance 
indices in both training and testing set. Varieties of performance evaluation criteria are 
available (e.g. Nash and Sutcliffe 1970; WMO 1975; ASCE Task Committee on Definition of 
Criteria for Evaluation of Watershed Models1993 etc.) which could be used for evaluation 
and inter comparison of different models. Following performance indices are selected in this 
study based on relevance to the evaluation process. There can be other criteria for evaluation 
of performance.  

3.6.1 Correlation coefficient (R) 

The correlation coefficient measures the statistical correlation between the predicted and 
actual values. It is computed as:  
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where Xai and Xpi are measured and computed values of diffuse pollution concentration 

values in streams; Xai and Xpi  are average values of Xai and Xpi values respectively; i 

represents index number and n is the total number of concentration observations. 

The correlation coefficient measures the statistical correlation between the predicted and 
actual values. A higher value of R means a better model, with a 1 meaning perfect statistical 
correlation and a 0 meaning there is no correlation at all.  

3.6.2 Root sean square error (RMSE) 

Mean-squared error is the most commonly used measure of success of numeric prediction, 

and root mean-squared error is the square root of mean-squared-error, take to give it the 

same dimensions as the predicted values themselves. This method exaggerates the 

prediction error - the difference between prediction value and actual value of a test case. The 

root mean squared error (RMSE) is computed as: 
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n

i

RMSE Xai Xpi
n 

   (10) 

For a perfect fit, Xai = Xpi and RMSE = 0. So, the RMSE index ranges from 0 to infinity, with 

0 corresponding to the ideal. 

3.6.3 Standard error of estimates (SEE) 

The standard error of estimate (SEE) is an estimate of the mean deviation of the regression 
from observed data. It is defined as (Allen, 1986): 
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3.6.4 Model efficiency (Nash–Sutcliffe coefficient) 

The model efficiency (MENash), an evaluation criterion proposed by Nash and Sutcliffe 
(1970), is employed to evaluate the performance of each of the developed model. It is 
defined as: 

 

2

1
Nash

2

1

( )

ME 1.0

( )

n

i pi
i
n

ai
i

Xa X

X Xai






 






 (12)  

A value of 90% and above indicates very satisfactory performance, a value in the range of 
80–90% indicates fairly good performance, and a value below 80% indicates an 
unsatisfactory fit.  
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4. Data synthesis and architecture identification of models 

In this work, the diffuse pollution concentration in stream is considered due to herbicide 
atrazine application in corn fields of the watershed. Concentration measurements data were 
obtained from the National Water Quality Assessment (NAWQA) program of the U S 
Geological Survey (USGS) (http://water.usgs.gov/nawqa/naqamap.html) for the period 
1992 to 2002. The stream considered is White River, and monitoring site for the atrazine 
concentration measurement, is Hazeltone (Crawford, C.G, 1995), the outlet site of the 
watershed of White River Basin in Indiana State. At Hazeltone site, Latitude  is 38°29'23", 
and Longitude  is 87°33'00" and Drainage area 11,305.00  square miles.  The White River 
basin is a part of the Mississippi River system where the application of atrazine accounts for 
24 percent of all agricultural herbicides. The major agricultural chemical characteristics, AC, 
which contribute to the atrazine concentration at the watershed outlet are identified as its 
application rate (lb/Acre) and application time. The major land use patterns, AL, is the 
extent of cropped area (percentage of cultivated area (Pareira, 1990; Crawfard, 2001; and 
Capel and Larson, 2001). 

Time series of data (average monthly values) from 1992-2001 are utilized for model building 
and validation. The major agricultural chemical characteristics, AC, which contribute to the 
atrazine concentration at the watershed outlet are identified as its application rate (lb/acre) 
and application time. The major land use pattern, AL, is the extent of cropped area (percentage 
of cultivated area (Crawford, 2001, 1995).These data are utilized for identification of fuzzy and 
ANN based models architectures by applications of the methodologies discussed in previous 
sections. The performance evaluations criteria are utilized to judge the predictive capability of 
the best performing fuzzy and ANN models. The procedure of developing fuzzy logic rule 
based model is implemented using the data of atrazine application rate as first input, atrazine 
application season as second input, and the percentage area applied with atrazine as third 
input. The atrazine concentration measurement values observed at the monitoring site is the 
output for the fuzzy rule based model. The weighted average of herbicide application rates 
and percentage of area applied of the corn and soybean cropped area are given in Table 1. The 
seven years data (1992-1998) are utilized for training and the three years data (1999-2001) 
(Table 1) are utilized for testing models. 

Year 
Weighted Percentage 

Area 
Application Rate 

(lb/Acre) 

1992 79 1.35 

1993 91 1.31 

1994 87 1.35 

1995 87 1.31 

1996 91 1.31 

1997 84 1.33 

1998 89 1.36 

1999 91 1.26 

2000 80 1.41 

2001 94 1.35 

Table 1. Agricultural Herbicide Atrazine Application Rate and Percentage Area Applied for 
the Corn Crop. 
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4.1 Evaluation of fuzzy c-means centers 

The FCM model represented by equation (5) is used to partition the input data into fuzzy 

partitions. The FCM algorithm is implemented using MATLAB version 6.5 for ε equal to 10-5 

to obtain the pre-specified fuzzy centers. The 3, 4, and 5 fuzzy centers for the inputs 

application rate and weighted percentage area obtained using the FCM model is shown in 

Table 2. Instead of iterating for the optimal number of fuzzy centers, a prior knowledge 

about the fuzzy partitioning for the fuzzy rule based models were utilized in implementing 

fuzzy c-means algorithm.  

 

Fuzzy Partition centers by FCM Model 

Fuzzy 

Partitions 

Input 

Application Rate 

(lb/Acre) 

Application Rate 

(lb/Acre) 

3-Fuzzy 

Centers 

 

1.26 

1.31 

1.37 

80.38 

86.68 

90.75 

4-Fuzzy 

Centers 

 

 

1.26 

1.31 

1.33 

1.36 

79.50 

84.02 

87.21 

90.88 

5-Fuzzy 

Centers 

 

1.26 

1.31 

1.33 

1.35 

1.41 

80.00 

86.67 

87.00 

89.17 

91.0 

Table 2. Different Fuzzy Partition Centers Using FCM Model  

4.2 Training and testing the fuzzy rule based model with FCM 

The seven years data (1992-1998) are utilized for training and the three years data (1999-
2001) are utilized for testing the fuzzy rule based model with FCM. The model is assumed to 
be performing satisfactory when model efficiency coefficient (MENash) as given by equation 
(12) is greater than 90 percent, and other performance indices are also improved. Although 
arbitrary, it may be used as stopping criteria to limit the processing of large number of rules 
with increase in linguistic fuzzy variables for the inputs.  

Performance of fuzzification of inputs application rate and weighted percentage area were 
studied by assigning 3, 5, and 7 fuzzy variables without using FCM (Singh, 2008). Though 
performance of fuzzifiction with 7 variables worked better than fuzzification with 3 and 5 
variables; fuzzification by 5 fuzzy variables are comparable to fuzzification with 7 variables 
as shown in Table 3. Fuzzy rule based models with 3, 5 and 7 fuzzy variables are 
represented by Fuzzy_3M, Fuzzy_5M, and Fuzzy_7M models respectively in the Table 3. As 
3 partitions are not adequate, four fuzzy partitions were specified for the use of fuzzy rule 
based system with FCM model. The four centers as shown in Table 2, obtained using FCM 
are partitioned into four linguistic fuzzy variables as low, medium, high, and very high. A 
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sample schematic representation of membership function is shown for the input atrazine 
application rate in Figure 1. 

 

Fig. 1. A sample representation of linguistic variables membership function for first input. 

The input application season is assigned 12 fuzzy variables, S1-S12 corresponding to each 
month of a year. The output concentration measurement values of atrazine is represented by 
25 fuzzy centers by FCM model and represented by fuzzy variables, C1-C25, so that all the 
ranges of atrazine concentration measurement values  in the data set for the period 1992-
2001, is adequately represented. All the fuzzy variables in inputs and outputs are 
represented by triangular shape, except at the domain edges, where they are semi 
trapezoidal. This representation has been selected based on literature due to their 
computational efficiency (Khrisnapuram R 1998; Guillaume and Charnomordic, 2004). A 
sample representation of the membership functions is shown in Figure 1 for the first input. 
Of course, other divisions of the inputs and output domain regions and other shapes of 
membership functions are possible. The total number of rules in case of 4 linguistic variables 
for inputs application rate and weighted percentage area, and 12 fuzzy variables for seasons 
are 192. The total number of rules was much high i.e. 588 when 7 fuzzy variables were used 
for inputs application rate and weighted percentage area. The model building process is 
completed by creating combined fuzzy rule base using inputs-output pair values of training 
set data. Finally, the defuzzification converts fuzzy output produced by the fuzzy rule base 
model as crisp output corresponding to any new inputs. 
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5. Concentration measurement estimation results  

The performance of the FCM based fuzzy rule based model is evaluated based on 

performance indices as described in performance evaluation criteria. These include root 

mean square error (RMSE), correlation coefficient (R) between the actual and estimated 

monthly average concentration measurement values of atrazine herbicides, standard error 

of estimate (SEE) and MENash. The performance evaluation results of the fuzzy rule based 

model with four fuzzy variables obtained using FCM, represented as Fuzzy_4_FCM, is also 

compared with that of the fuzzy rule based models with 3, 5, 7 linguistic variables for both 

of the input 1 and input 3.  The performance of the Fuzzy_4_FCM model is also compared 

with solution results of an artificial neural network (ANN) based model using back 

propagation algorithm (Rumelhart et al. 1986) as represented by ANN_M in Table 3. 

 
 

Models 

Training Error (1992-198) Testing Error (1999-2001) 

RMS
E 

R SSE MENash RMSE R SSE 
MENas

h 

 
Fuzzy_3M 
 

1.318 0.891 1.377 0.550 0.703 0.886 0.771 0.623 

Fuzzy_5M 
 

0.836 0.969 0.837 0.894 0.455 0.952 0.498 0.855 

Fuzzy_7M 
 

0.706 0.970 0.775 0.915 0.342 0.975 0.375 0.914 

ANN_M 
 

1.153 0.918 1.264 0.752 0.906 0.759 0.993 0.446 

Fuzzy_4M_FC
M 

0.492 0.998 0.539 0.967 0.725 0.968 0.416 0.901 

Table 3. Comparison of training and testing errors for different models. 

It can be noted from the Table 3 that the error statistics are better for Fuzzy_4M_FCM model 

than those of Fuzzy_3M, Fuzzy_5M and ANN_M model in both the training and testing in 

prediction in atrazine concentration measurement values. Its performance is even better 

than Fuzzy_7M model in training. Model efficiency (MENash) in training is 94.3 percent 

whereas it is 91.5 percent for Fuzzy_7M model. Similarly, RMSE, R, and SSE values are also 

comparable. In testing, results are also comparable though error statistics for Fuzzy_7M 

model is slightly better than Fuzzy_4_FCM. Thus, the FCM optimized fuzzy membership 

functions partitions in Fuzzy_4_FCM model are performing comparable to almost double 

the fuzzy partitions without FCM in Fuzzy_7M model. Figure 2 shows better RMSE value 

by Fuzzy_4_FCM model in comparison to other models. 

It can also be noted from Table 3 that performances of fuzzy rule based model is better than 

those obtained using an ANN model with 2 inputs (atrazine application rate and weighted 

percentage area), 12 outputs (average monthly concentration measurements), and 11 hidden 

nodes (selected on the basis of experimentation) represented by ANN_M model. The poor 

performance by ANN_M model may be due to inadequate training patterns for 

experimentation, as the total number of free parameters become more than the number of 

training patterns even for 1 hidden node in hidden layer. 
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Fig. 2. Performance comparison of models. 

Scatter plots of average monthly observed and predicted atrazine concentration 
measurement in the stream for model Fuzzy_4_FCM are plotted for the testing period 1999, 
2000, and 2001. Comparison of actual and model estimated values are also presented for 
average monthly variations of atrazine concentration in the stream during the testing 
period, 1999-2001. Figure 3 represents scatter plot, and Figure 4 represents comparison of 
actual and Fuzzy_4_Model estimated values for the period 1999. Scatter plots between the 
observed and Fuzzy_4_FCM predicted average atrazine concentration measurement values 
in stream followed a 1:1 line except for a few cases of high magnitudes. The high values of 
coefficient of determination, R2 (0.933), indicate that there is a good match between the 
observed and model predicted atrazine concentration. Figure 4 shows a comparison of 
observed and, Fuzzy_4_FCM model predicted average monthly atrazine concentration 
measurement values in the stream. The observed and Fuzzy_4_FCM predicted values match 
well except for the occurrence of peak value. 
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Fig. 3. Scatter plot of observed and Fuzzy_4_FCM Model predicted average monthly 
atrazine concentration for the testing period year 1999. 
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Fig. 4. Comparison of observed and Fuzzy_4_FCM predicted average monthly atrazine 
concentration for the testing period year 1999. 

Figure 5 represents scatter plot of observed and Fuzzy_4_FCM predicted values, and Figure 

6 represents comparison of observed and Fuzzy_4_FCM predicted atrazine concentration 

values for the period 2000. Scatter plots between the observed and Fuzzy_4_FCM predicted 

average atrazine concentration measurement values in stream followed a 1:1 line with R2 

value of 0.95. In this case though initial and final months values matches well, intermediate 

months values including peak value does not mach well as shown in Figure 6.  
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Fig. 5. Scatter plot of observed and Fuzzy_4_FCM Model predicted average monthly 
atrazine concentration for the testing period year 2000. 
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Fig. 6. Comparison of observed and Fuzzy_4_FCM predicted average monthly atrazine 
concentration for the testing period year 2000. 

Figure 7 represents scatter plot of observed and Fuzzy_4_FCM predicted values, and Figure 
8 represents comparison of observed and Fuzzy_4_FCM model predicted atrazine 
concentration values for the period 2001. Scatter plots between the observed and 
Fuzzy_4_FCM predicted average atrazine concentration measurement values in stream 
followed a 1:1 line with high value R2 (0.93).  
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Fig. 7. Scatter plot of observed and Fuzzy_4_FCM Model predicted average monthly 
atrazine concentration for the testing period year 2001. 

6. Discussion of results 

The performance evaluation results presented in this study establish the potential 
applicability of the developed methodology in estimation of monthly atrazine concentration 
measurement values using fuzzy rule based models with FCM. However, the comparative  
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Fig. 8. Comparison of observed and Fuzzy_4_FCM model predicted average monthly 
atrazine concentration for the testing period year 2001. 

performance of the methodology in different evaluation periods, under or over prediction of 
peak values, fuzzy rule based model control parameters (shape, total number of fuzzy 
centers, overlaps etc. of membership functions; fuzzy set operations i.e, defuzzification 
methods etc.) needs to be investigated further. 

The performance of fuzzy rule based model with FCM is better than those without FCM 
model with even more number of fuzzy partitions. This is inferred by comparison of 
performances of Fuzzy_4_FCM model with Fuzzy_3M, Fuzzy_5M, and Fuzzy_7M models. 
In all the evaluation results obtained by Fuzzy_4_FCM model for the period 1999-2001, the 
R2 values from scatter plots, and MENash values obtained from observed and model 
predicted values are high ( around 0.9). This implies good match between the observed and 
model predicted values. The fuzzy rule with FCM model also performed better than the 
ANN based model. It establishes that the developed fuzzy rule based model with FCM is 
potentially suitable for estimation of concentration measurement values with limited data 
availability. The performances of the developed models are better in comparison to 
performance of regression models developed for the Mississippi River Systems (Battaglin 
and Goolsby, 1997). Their study show that multiple linear regression models estimate the 
concentration of selected agricultural chemicals with maximum R-squared value is 0.514, 
and in the case of atrazine, R-squared value is 0.312. In this study, almost all the developed 
models have R-squared value greater than 0.55. However, this comparison is limited as the 
White River basin considered in this study is only a part of (one of 10 basins) of Mississippi 
River Systems considered by them (Battaglin and Goolsby, 1997).  

The estimation results obtained using fuzzy rule based models are encouraging but not 
conclusive. In almost all the evaluations, though initial months and final months 
concentration measurement values matches well, the intermediate values including the peak 
values are either over predicted or under predicted except for the year 2001 where peak 
predicted value matched well with the observed value. As the intermediate months, from 
April to July observes most of the changes in atrazine observed concentration measurement 
values, the same dynamics are exactly not reflected in model predictions. Thus, though the 
FCM model works better than ANN model in case of limited data availability, its 
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performance is also affected due to limited data sets. In the present study, the inputs were 
assigned with triangular shape. Further improvement in the performance of the 
methodology may be possible with more extensive evaluations of membership functions 
shape, number of data centers for membership functions for each variables, and overlap 
between two membership functions. Present methodology utilized centroid method for 
defuzzification. Performance of other defuzzification method also need to be investigated. 
The error in prediction of peak values shows the limitation of the methodology. However, 
these results show potential applicability of the proposed methodology. The main 
advantage of the developed methodology is incorporate some prior knowledge into the 
model frame work, and its ability to perform in case of limited availability of data than other 
methods such as ANN. 

7. Conclusions 

The present study describes the framework for evaluating average monthly concentration of 
agricultural non point source pollution due to herbicide atrazine in streams by fuzzy rule 
based model with FCM utilizing limited amount of data. The values of statistical 
performance evaluation criteria indicate the model is able to simulate the behaviour of 
diffuse pollution sources from agricultural fields like attrazin in streams. The fuzzy rule 
based model with FCM performs comparatively better than the fuzzy rule based model 
without FCM and even with more fuzzy partitions. The proposed methodology also 
performs better than the ANN model when applied to the same problem. However, the 
model predicts with lesser accuracy for the intermediate months concentration 
measurement values including peak values. An extensive evaluation of the effect of more 
number of FCM based fuzzy centers and shapes of membership functions may fully 
establish the applicability of the methodology.  

However, the proposed fuzzy rule based approach with FCM uses least amount of 
information in terms of number of inputs required, incorporate prior knowledge about 
fuzzy partitions, and also uses linguistic variables which make it relatively easy to interpret 
the rules. Prior knowledge about the physical system in the form of rule base can also be 
directly incorporated in the suggested approach. This preliminary study shows that the 
developed fuzzy rule based approach with FCM is potential suited to estimation of diffuse 
pollution concentration like atrazine in streams. 
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