
Eleonora D’Andrea

Computational Intelligence for
classification and forecasting of solar
photovoltaic energy production and

energy consumption in buildings

Anno 2013

UNIVERSITÀ DI PISA

Scuola di Dottorato in Ingegneria �Leonardo da Vinci�

Corso di Dottorato di Ricerca in
Ingegneria dell�Informazione

Tesi di Dottorato di Ricerca

UNIVERSITÀ DI PISA

Scuola di Dottorato in Ingegneria “Leonardo da Vinci”

Corso di Dottorato di Ricerca in
Ingegneria dell’Informazione

Tesi di Dottorato di Ricerca

Computational Intelligence for
classification and forecasting of solar
photovoltaic energy production and

energy consumption in buildings

Autore:

Eleonora D’Andrea _________________

Relatori:

Prof. Beatrice Lazzerini _______________

Prof. Francesco Marcelloni _______________

Ing. Marco Cococcioni ________________

Anno 2013
SSD ING-INF/05

 “Non sono le specie più forti quelle
che sopravvivono e nemmeno le più

intelligenti, ma quelle in grado di
rispondere meglio al cambiamento”

“It is not the strongest of the species

that survive, nor the most intelligent, but
the one most responsive to change”

 [Charles Darwin]

II

III

Sommario

Questa tesi presenta una serie di nuove applicazioni di tecniche di
Computational Intelligence in problemi del settore energetico, con particolare
riferimento alla valutazione dell'energia prodotta da impianti fotovoltaici e alla
valutazione dei consumi energetici di edifici. Infatti, di recente, grazie anche alla
crescente evoluzione tecnologica, il settore energetico ha attirato l'attenzione della
comunità di ricerca scientifica nel proporre strumenti utili in problemi di efficienza
energetica negli edifici e nella gestione della produzione di energia solare.
Affronteremo quindi due tipologie di problemi.

Il primo problema è legato alla gestione efficiente degli impianti solari
fotovoltaici, per esempio, per controllare efficacemente le prestazioni e per la
ricerca di guasti, o per la pianificazione della distribuzione di energia elettrica in
rete. Questo problema è stato affrontato con due approcci diversi: un approccio di
previsione e un approccio di classificazione fuzzy per stimare la produzione di
energia, a partire dalla conoscenza di alcune variabili ambientali. Il sistema di
previsione sviluppato è in grado di riprodurre la curva giornaliera di energia
prodotta dai pannelli solari dell'impianto, con un orizzonte temporale di previsione
di un giorno. Il sistema sfrutta reti neurali e modelli di analisi di serie temporali. Il
sistema di classificazione fuzzy, invece, estrae una certa conoscenza linguistica
relativa alla quantità di energia prodotta dall'impianto, sfruttando una base di
regole fuzzy ottimale e impiegando algoritmi genetici. Il modello sviluppato è il
risultato di una nuova metodologia di tipo gerarchico per la costruzione di sistemi
fuzzy, che può essere applicata in molteplici settori.

Il secondo problema è legato alla efficienza energetica degli edifici, allo scopo di
ottenere benefici quali la riduzione del costo o la pianificazione del carico, ed è
stato affrontato proponendo un sistema di previsione dei consumi energetici negli
uffici. Il sistema sviluppato sfrutta una rete neurale per stimare il consumo di
energia per illuminazione in un intervallo di tempo di alcune ore, a partire da
considerazioni sulla luce naturale esterna disponibile.

IV

V

Abstract

This thesis presents a few novel applications of Computational Intelligence
techniques in the field of energy-related problems. More in detail, we refer to the
assessment of the energy produced by a solar photovoltaic installation and to the
evaluation of building’s energy consumptions. In fact, recently, thanks also to the
growing evolution of technologies, the energy sector has drawn the attention of the
research community in proposing useful tools to deal with issues of energy
efficiency in buildings and with solar energy production management. Thus, we
will address two kinds of problem.

The first problem is related to the efficient management of solar photovoltaic
energy installations, e.g., for efficiently monitoring the performance as well as for
finding faults, or for planning the energy distribution in the electrical grid. This
problem was faced with two different approaches: a forecasting approach and a
fuzzy classification approach for energy production estimation, starting from some
knowledge about environmental variables. The forecasting system developed is
able to reproduce the instantaneous curve of daily energy produced by the solar
panels of the installation, with a forecasting horizon of one day. It combines neural
networks and time series analysis models. The fuzzy classification system, rather,
extracts some linguistic knowledge about the amount of energy produced by the
installation, exploiting an optimal fuzzy rule base and genetic algorithms. The
developed model is the result of a novel hierarchical methodology for building
fuzzy systems, which may be applied in several areas.

The second problem is related to energy efficiency in buildings, for cost reduction
and load scheduling purposes, and was tackled by proposing a forecasting system
of energy consumption in office buildings. The proposed system exploits a neural
network to estimate the energy consumption due to lighting on a time interval of a
few hours, starting from considerations on available natural daylight.

VI

VII

Table of Contents

SOMMARIO III

ABSTRACT V
TABLE OF CONTENTS VII

LIST OF ACRONYMS AND ABBREVIATIONS XI
LIST OF FIGURES XIII

LIST OF TABLES XVII
INTRODUCTION 1

1 ARTIFICIAL NEURAL NETWORKS 3
1.1 Introduction 3
1.2 The biological neuron 3
1.3 An overview of neural networks 4

1.3.1 The perceptron 5
1.4 The multilayer perceptron neural network 6

1.4.1 The backpropagation training algorithm 7
1.5 Neural networks for time series forecasting 8

1.5.1 The NARX neural network 10

2 FUZZY SYSTEMS 13
2.1 Introduction 13
2.2 Overview of Fuzzy Rule-Based Classifiers 14
2.3 The implementation of a FRBC: frbc 15

2.3.1 The rule base construction 16
2.3.2 The fuzzy reasoning method 18

3 GENETIC ALGORITHMS AND HYBRID SYSTEMS 21
3.1 Introduction 21
3.2 Genetic algorithms: main concepts 21

3.2.1 GA operators 22
3.3 Hybrid systems: genetic-fuzzy systems 23

VIII

4 ONE DAY-AHEAD FORECASTING OF PV ENERGY PRODUCTION BY
MEANS OF NEURAL NETWORKS AND TIME SERIES ANALYSIS 25
4.1 Introduction 25

4.1.1 Outline of the chapter 27
4.2 Description of the solar PV dataset 27
4.3 The proposed NARX-neural network model for solar PV energy

forecasting 28
4.3.1 Choice of the structural and configuration parameters 29
4.3.2 Model refinement 31

4.4 Experimental results 33
4.4.1 Prediction of the instantaneous energy 34
4.4.2 Prediction of the accumulated energy 36
4.4.3 Discussion 41

4.5 Concluding remarks 42

5 A HIERARCHICAL APPROACH TO MULTI-CLASS FUZZY CLASSIFIERS
FOR PV ENERGY PRODUCTION 43
5.1 Introduction 43

5.1.1 Context of application 45
5.1.2 Outline of the chapter 46

5.2 Description of the real-world experimental dataset 46
5.3 A hierarchical approach to fuzzy classifier construction 47

5.3.1 First step: first-level grid partitioning 48
5.3.2 Second (iterative) step: deeper-level grid partitioning 49
5.3.3 Third step: final fuzzy model generation 50
5.3.4 GA-based parameter optimization 51

5.4 Application of the proposed methodology to the real-world dataset 52
5.4.1 First step 52
5.4.2 Second step 53
5.4.3 Third step 56
5.4.4 Genetic optimization 59

5.5 Experimental results on the PV dataset 60
5.6 Validation on benchmark datasets and discussion 61

5.6.1 Iris dataset 62

IX

5.6.2 Wisconsin breast cancer dataset 63
5.6.3 Pima Indians diabetes dataset 64
5.6.4 Wine dataset 65

5.7 Concluding remarks 66

6 NEURAL NETWORK-BASED FORECASTING OF ENERGY
CONSUMPTION DUE TO LIGHTING IN OFFICE BUILDINGS 67
6.1 Introduction 67

6.1.1. Outline of the chapter 69
6.2 Description of the building consumption dataset 69
6.3 The proposed model 70

6.3.1 Effects of climatic contest: analysis of solar irradiation 71
6.3.2 Analysis of energy consumption based on the office use 75
6.3.3 Discussion 76

6.4 Experimental results 77
6.5 Concluding remarks 79

7 THESIS CONCLUSION AND FUTURE WORK 81

ACKNOWLEDGEMENTS 83

REFERENCES 85
A HOW TO IMPLEMENT A GENERIC CLASSIFIER IN PRTOOLS 95

A.1 PRTools framework 95
A.2 Basic elements of PRTools 96

A.2.1 The dataset object 96
A.2.2 The mapping object 97

A.3 The construction of a generic trained classifier xc 98
A.3.1 The classifier constructor xc 98
A.3.2 The training phase xc_train 98
A.3.3 The mapping phase xc_map 98

A.4 The implementation of frbc in PRTools 99
A.4.1 frbc (the constructor) 99
A.4.2 frbc_train (the training function) 100
A.4.3 frbc_map (the mapping function) 101
A.4.4 frbc: some usage examples 101

X

XI

List of Acronyms and Abbreviations

Acronym Meaning
AC Alternating Current
ANN Artificial Neural Network
APE Absolute Percentage Error
AR Auto-Regressive
ARIMA Auto-Regressive Integrated Moving Average
CI Computational Intelligence
CF Certainty Factor
DB Data Base
DC Direct Current
DP Dominance Percentage
ECL Energy Consumption due to Lighting
EP Electric Power
EU European Union
FLT Fuzzy Logic Toolbox
FRBC Fuzzy Rule-Based Classifier
FRM Fuzzy Reasoning Method
FS Fuzzy System
GA Genetic Algorithm
GFS Genetic-fuzzy system
HFRBC-GA GA-optimized Hierarchical approach to Fuzzy Rule-Based

Classifiers
HVAC Heating, Ventilation and Air Conditioning
KB Knowledge Base
MAPE Mean Absolute Percentage Error
MCF Multiple Certainty Factor
MLP Multi-Layer Perceptron
MSE Mean Squared Error
NARX Non-linear Auto-Regressive with eXogenous input
PRTools Pattern Recognition Tools
PV Photovoltaic
R Coefficient of determination in Regression
RB Rule Base
RMSE Root Mean Squared Error
RT Relevance Threshold
SCF Single Certainty Factor
TD Time Delay

XII

XIII

List of Figures

Figure 1.1. A simplified model of the biological neuron. 4
Figure 1.2. The scheme of the perceptron. 5
Figure 1.3. The scheme of a MLP neural network having two inputs,

two outputs and one hidden layer with four neurons. 7
Figure 1.4. NARX model block diagram in closed loop mode. 9
Figure 1.5. The scheme of a simple NARX neural network (the figure

was produced in the Matlab® environment). 11
Figure 2.1. A fuzzy rule-based classifier. 14
Figure 2.2. An example of a fuzzy partition for the input variables, built

according to the Wang and Mendel approach. 17
Figure 3.1. The functioning of a simple GA in pseudocode. 22
Figure 4.1. Photovoltaic elements: PV cell, PV panel, and PV array. 26
Figure 4.2. Solar irradiation trend for six days of Winter. 28
Figure 4.3. Forecasting performances obtained using irradiance only over

the daytime samples for whole months (January, April, July
and October). (a) Average MSE. (b) Mean and standard
deviation of the average MSEs for each window width. 30

Figure 4.4. Forecasting scheme adopted. 31
Figure 4.5. NARX neural network model employed in the experiments

(the figure was produced in the Matlab® environment). 32
Figure 4.6. Forecasting performances obtained using irradiance and hour

inputs over the daytime samples for the months of January,
April, July and October. (a) Average MSE. (b) Mean and
standard deviation of the average MSEs for each window width. 32

Figure 4.7. Forecasting performances obtained using irradiance and hour
inputs over the daytime samples for the months of February,
March, May, June, August, September, November, and
December. (a) Average MSEs. (b) Mean and standard deviation
of the average MSEs for each window width. 33

Figure. 4.8. Results on four well performing days chosen at random.
(a) (b) (e) (f) Comparison between the real energy and the
predicted energy. (c) (d) (g) (h) Associated daytime absolute
instantaneous error. 35

Figure 4.9. Results on two atypical days chosen at random.
(a) (b) Comparison between the real energy and the predicted
energy. (c) (d) Associated daytime absolute instantaneous error. 36

XIV

Figure 4.10. Results on two unpredictable days chosen at random.
(a) (b) Comparison between the real energy and the predicted
energy. (c) (d) Associated daytime absolute instantaneous error. 36

Figure 4.11. Target and predicted daily accumulated produced energy for
Spring. 38

Figure 4.12. Target and predicted daily accumulated produced energy for
Summer. 38

Figure 4.13. Target and predicted daily accumulated produced energy for
Autumn. 39

Figure 4.14. Target and predicted daily accumulated produced energy for
Winter. 39

Figure 4.15. Error histograms for (a) Spring, (b) Summer, (c) Autumn,
and (d) Winter. 40

Figure 4.16. Error histogram for the best days of Spring (daily error lower
than 10%). 41

Figure 5.1. Scatter diagram of the PV dataset and distribution of the samples
over the three output classes (Low, Medium, High). 47

Figure 5.2. A to-subgrid area containing five univocal mapping areas
(colored areas), and the (hyper)rectangle (dashed line) including
all the samples inside the univocal mapping areas. 50

Figure 5.3. Steps of the proposed hierarchical methodology and resulting
objects. 51

Figure 5.4. Partition of the input domain by applying the k-means clustering
algorithm (with k=3) and identification of 9 areas (numbered
from 1 to 9) on the grid. 52

Figure 5.5. Scaling from a uniform partition (a) to a non-uniform one (b). In
both cases, two-sided Gaussian membership functions are used. 53

Figure 5.6. Distribution of samples on the areas of the first-level grid:
(a) total, and (b) per class (logaritmic scale on y-axis). 54

Figure 5.7. The grid partitions of the original input space obtained by
applying the first step and the first iteration of the second step of
the methodology (the dot notation is used to indicate sub-areas). 55

Figure 5.8. The grid partition of area 9.4 obtained through the second and
third iterations of the second step of the methodology. 55

Figure 5.9. Hierarchical decomposition tree. 57
Figure 5.10. Part of the final rulebase (compact notation). 58
Figure 5.11. Fuzzy sets built by the hierarchical method to model areas 1,

4, 9, and 9.4. 59
Figure 5.12. Structure of the GA chromosome used with the PV dataset. 59

XV

Figure 6.1. Statistics about energy consumption. (a) Total European energy
consumption. (b) Office buildings electric consumption. 67

Figure 6.2. Evolution of consumption (red dotted line) and irradiation (blue
solid line) from Monday May 9th to Sunday May 15th. 70

Figure 6.3. Solar irradiation and electrical consumption for four days of
June with different sky conditions: (a) two cloudy sky days, and
(b) two clear sky days. 71

Figure 6.4. Solar irradiation curves for four consecutive days of April. 72
Figure 6.5. Daily irradiation curves and corresponding typical ideal

irradiation curve (black line) for (a) May, (b) June and
(c) September. 73

Figure 6.6. Typical ideal irradiation curves for six months (April to
September). 74

Figure 6.7. (a) Typical ideal irradiation curve (magenta dotted line) and
actual irradiation curve (blue solid line) for four days of
September. (b) Difference between the two irradiation curves. 74

Figure 6.8. Evolution of the energy consumption for a typical working day.
Please note that, for the considered day, the working time ends
at 8 p.m.. 75

Figure 6.9. Identification of the time intervals over the working time. 76
Figure 6.10. Temporal evolution of the energy consumption for two

consecutive weeks of April. 76
Figure A.1. Flowchart describing the actions of the frbc constructor. 100
Figure A.2. Flowchart describing the actions of the mapping function

frbc_map. 101
Figure A.3. Decision boundaries for knnc, ldc and frbc (dashed red

line) on a two-class dataset. 102

XVI

XVII

List of Tables

Table 1.1. Some common activation functions. 7
Table 2.1. Mathematical equations for the aggregation functions. 20
Table 4.1. Parameters for the final NARX neural network model. 33
Table 4.2. Comparison between real and predicted accumulated energy. 37
Table 4.3. Comparison between the persistence method and the NARX

neural network. 40
Table 5.1. Application of the multi-class fuzzy classifier on the PV

dataset for 56 different FRMs (best results in bold). 60
Table 5.2. Final parameters of the merged fuzzy model for the

classification of solar energy production. 61
Table 5.3. Classification results on Iris dataset (best result in bold). 62
Table 5.4. Values of the GA-optimized model parameters for the

benchmark datasets. 63
Table 5.5. Classification results on Wisconsin cancer dataset (best result

in bold). 64
Table 5.6. Classification results on Pima Indians diabetes dataset (best

result in bold). 65
Table 5.7. Classification results on Wine dataset (best result in bold). 65
Table 6.1. Characteristics of the building. 69
Table 6.2. Inputs and output variables of the neural network. 77
Table 6.3. Learning parameters for the final neural network. 78
Table 6.4. Monthly performances of the forecasting system. 79

XVIII

1

Introduction

In this thesis Computational Intelligence (CI) techniques are employed in
applications regarding energy systems. Many papers exist concerning applications
of CI to perform forecasting, classification, and pattern recognition in the energy
field (e.g., heating, ventilation and air-conditioning (HVAC) systems, power-
generation, load forecasting, building’s energy consumption, wind speed
forecasting, solar irradiation estimation, etc.)

Computational intelligence includes several techniques, e.g., artificial neural
networks, genetic algorithms, expert systems, and fuzzy systems. Each kind of
technique allows building systems suited to solve a certain class of problem.
Moreover, various hybrid systems may be created, as combinations of two or more
of the systems previously mentioned, to exploit the advantages of both the
techniques simultaneously. In addition, a brief description of forecasting through
time series analysis is presented.

The thesis is organized as follows. Chapters 1 through 3 provide an overview of
the computational intelligence techniques adopted in this thesis. In particular,
Chapter 1 recalls main theory concepts about neural networks, describes the
classical multi-layer perceptron neural network and the non-linear auto-regressive
with exogenous input neural network model (NARX). In addition, some notions
about forecasting and time series analysis are briefly recalled. Chapter 2 regards
fuzzy rule-base classification systems. Particularly, the fuzzy rule-based classifier
frbc is presented, along with the fuzzy reasoning method and the methodology for
automatic generation of rules from data, that frbc adopts. Finally, Chapter 3
provides an overview about genetic algorithms and a brief description of genetic-
fuzzy hybrid systems. Chapters 4 through 6 contain the novelty of the thesis, i.e.,
the developed methodologies and the experimental results achieved. Two main
problems are addressed. First, the management of energy production in solar
photovoltaic (PV) installations, by classification and forecasting, and, second, the
forecasting of energy consumption in buildings.

The interest for the first problem arises from the necessity of forecasting and/or
classification tools for the analysis of energy production in solar PV installations.
In fact, solar energy is becoming a valid alternative to traditional energy and, as a
consequence, PV installations have spread in recent years. In addition, the
monitoring of the performance of solar panels has become a key issue for the
improvement of the efficiency of the PV installation, as well as for finding faults or
for efficiently planning the energy distribution. Among other things, PV-based
power generators are discontinuous energy sources, owing to the influence of
weather conditions. For all these reasons, a set of management tools is needed to
correctly exploit the PV installation productivity.

The problem is tackled from two different points of view. On the one hand, we
propose a general methodology to forecast solar energy production with a

2

forecasting horizon of one day. The forecasting system, presented in Chapter 4,
consists of a NARX time series analysis model implemented using a feed-forward
neural network with tapped delay lines. The system, starting from some knowledge
about solar irradiation, is able to faithly reproduce the instantaneous curve of daily
produced energy, as well as to estimate the total daily produced energy. From
another point of view, a further issue in PV energy production management is the
lack of a fuzzy approach to data classification to make the final user able to make
decisions easily regarding energy production management. In this way, even the
non-expert user of PV systems might be able to understand the results and make
smarter decisions, as we deal with class labels. Regarding this issue, we developed
in Chapter 5 a fuzzy rule-based classification system aimed to classify the energy
produced by a PV panel based on two environmental variables, i.e., the irradiation
and the temperature of the panel. At the same time, we propose a novel hierarchical
method to construct fuzzy classifiers, by performing an input domain space
analysis with the aim of generating an optimal fuzzy rule base avoiding the
generation of too many, unnecessary rules. The developed model results from the
merging of a number of fuzzy systems built on input domain regions increasingly
smaller. Each fuzzy system is developed exploiting the fuzzy rule-based classifier
frbc. The model is actually a genetic-fuzzy system, as the model parameters are
optimized by a real-coded genetic algorithm.

The motivation for dealing with the second problem, i.e., the forecasting of
energy consumption in buildings, stems from considerations about the large
amount of energy consumed in buildings, also in reference to the political
campaigns concerning energy efficiency and energy savings promoted by several
countries. The chance of knowing building’s energy consumption in real time or
even in advance could bring several benefits, such as cost reduction, energy
management and control, and load scheduling in the electrical grid. Chapter 6 is
devoted to address this problem. In particular, we refer to the electric lighting
energy consumption in offices. The reason is that it is well known that electric
lighting energy consumption is a big component of office buildings energy
consumption. The proposed method uses an artificial neural network to forecast the
average energy consumption on a time interval of a few hours, exploiting mainly
the information about natural daylight, in terms of solar irradiation. The novelty of
the proposed method stands mainly in the design of the forecasting system, which
does not need any kind of information about the building to estimate its
consumption.

Finally, Chapter 7 provides the thesis conclusions and future work, and Appendix
A reports a guideline on how to implement a generic classifier (such as frbc) in
the PRTools framework.

The research presented in this thesis was developed entirely using the toolboxes
existing in the Matlab® environment. Additionally, the PRTools toolbox was used
for pattern recognition concerns.

3

1
Artificial neural networks

1.1 Introduction

Artificial Neural Networks (ANNs) are data-driven intelligent systems having the
capability to learn, remember and generalize. They were created to reproduce the
learning process of the human brain by learning the relationship between input
parameters and output variables based on previously recorded data [13, 98].

The human brain is a complex calculator, non-linear, massively parallel with
abilities like learning, generalization and adaptability. Moreover it is fault tolerant.
It is constituted by an extremely large number of simple processing elements
(biological neurons) with many interconnections, thus being able to perform
complex computations.

Thus, artificial neural networks have been developed following the structure and
the functioning of biological neurons in the human nervous system.

Neural networks are widely applied in areas such as prediction, classification,
recognition and control. Applications of artificial neural networks are in many
fields: pattern classification, clustering, function approximation, prediction,
optimization, and control.

In this chapter, a brief introduction to artificial neural networks is presented in
Sections 1.2 and 1.3. Then, in Section 1.4 we address the multilayer perceptron
neural network and the backpropagation training algorithm. Next, in Section 1.5,
we present a description of main concepts about time series forecasting and finally
we present a neural network model suited for forecasting purposes.

1.2 The biological neuron

A neuron is a special biological cell that processes information. It is composed of
i) a cell body called soma, ii) many branched extensions called dendrites, through
which the neuron receives electricity signals from other neurons, and iii) a
filamentous extension, called axon, through which the electrical signals are
transmitted to other neurons. The point of connection between two neurons (the
terminal of the axon of one neuron and the dendrite of another one) is called
synapse. A simplified model of the biological neuron is depicted in Fig. 1.1.

As we said, a neuron receives signals (impulses) from other neurons through its

4

dendrites and transmits signals generated by its cell body along the axon. We may
refer to the dendrites as the inputs of the neuron, while to the axon as the output of
the neuron.

Figure 1.1. – A simplified model of the biological neuron.

A neuron is activated by electric impulses coming from other neurons when an
electric potential difference between the inside and the outside of the cell occurs.
Then, if the sum of received inputs exceeds a certain threshold, the neuron fires an
electrical impulse along its axon. This electrical impulse causes the release of
certain chemicals, called neurotransmitters, from the terminals of the axon, which
in turn may influence other neurons. The neurotransmitters diffuse across the
synaptic gap, to enhance or inhibit (depending on the type of the synapse) the
tendency of the receptor neuron to fire electrical impulses.

Further, the brain is able to adjust the connections between the neurons based on
its experience, that is, it is able to learn.

In the brain, the various areas cooperate, influencing each other and contributing
to the achievement of a specific task, without the need for a centralized control. In
addition, the brain is fault tolerant, that is, if a neuron or one of its connections is
damaged, the brain continues to function, although with slightly degraded
performance.

1.3 An overview of neural networks
As already stated, an ANN is a collection of simple processing units individually

interconnected. In its basic computational form, a neuron appropriately processes a
set of input signals coming from other neurons or sources [118].

ANNs resemble the human brain in two ways: first the knowledge is acquired by
the network through a learning process, i.e., the training, then it is stored by
adjusting the synaptic weights [58].

To artificially reproduce the human brain we need to build a network of very
simple elements having the same characteristics of biological neurons:

a) a parallel and distributed structure;

5

b) the capability of learning from previous experience and thus to
generalize, i.e., to produce outputs corresponding to inputs not
encountered during training;

c) a graceful degradation (fault tolerance) capability.
ANNs operate like a “black box”, in the sense that they do not require any

information about the system to represent a non-linear relationship between input
and output variables, any time a new input set is under examination.

Several algorithms exist to set the weights in order to make the outputs match the
desired result. Supervised learning algorithms adjust network weights using input-
output data. The most frequently used supervised algorithm is the well-known
backpropagation algorithm [131]. Unsupervised learning algorithms change
weight values according to input values only, so this mechanism is also called self-
organization.

1.3.1 The perceptron
The simplest form of neural network is the perceptron formed by a single

artificial neuron with adjustable synaptic weights and bias. The weights represent
connection strengths, and their values are established during the training process.
The perceptron, developed by Rosenblatt in 1958 [128], receives input signals from
other neurons through its incoming connections, it calculates the weighted sum of
the inputs (i.e., the sum of the products of the weights and the inputs) and the result
is passed through an activation function (e.g., the sigmoid function with bias b). If
this value is above b the neuron fires and takes the activated value, otherwise it
takes the deactivated value. The scheme of the perceptron is depicted in Fig. 1.2.
More in detail, the relation between inputs and output is expressed by the following
equation:

y = fb(x jwj + b
j=1

N

∑) , (1.1)

where fb is the activation function having bias b, xj, (j = 1, …, N) is the j-th input to
the neuron, and wj is the weight associated with the j-th input.

∑
x1

x2

w1
w2

y

b

xN
wN

f

Figure 1.2. – The scheme of the perceptron.

6

Due to its simplicity, the perceptron can only solve linearly separable
classification problems. However, by using more than one perceptron together, we
may correspondingly perform non-linearly separable classification problems.

The most used ANN architecture and training algorithm are, respectively, the
multi-layer feed-forward neural network, which includes one or more hidden
layers, and the Levenberg-Marquardt backpropagation (abbreviation for
“backward propagation of errors”) training algorithm, which shows good
generalization capability and simplicity [143].

In this thesis two kinds of neural networks, namely the Multi-Layer Perceptron
(MLP) neural network and the Non-linear Auto-Regressive with eXogenous input
(NARX) neural network, have been used for energy analysis, classification and
forecasting, so they will be described in depth in the following sections. Besides,
the literature about the neural network’s main concepts is very extensive [16, 46,
121, 127].

1.4 The multilayer perceptron neural network
A multilayer perceptron neural network is a feed-forward network model which

may represent a non-linear mapping between an input vector and an output vector.
It is obtained connecting an arbitrary number of perceptrons, and thus, it consists of
neurons arranged in layers, with each layer fully connected to the next one.	
 The
input signal propagates through the network in the forward direction, from the
input layer to the output layer. Each connection has a weight associated with it.	

In an MLP there are three kinds of layers: i) the input layer which receives the
input signals, ii) one or more hidden layers where the processing takes place, and
iii) the output layer which provides the output. Neurons in each layer are
characterized by a specific activation function. The input layer merely passes the
input vector to the network without any computation. Neurons in the hidden layers,
referred to as hidden neurons, usually have a non-linear activation function. The
number of hidden neurons is chosen experimentally to minimize the average error
across all training patterns.

Figure 1.3 depicts an MLP network with two inputs, two outputs, and one hidden
layer having four hidden neurons.

Multiple layers of neurons with non-linear transfer functions allow the network to
learn non-linear relationships between input and output vectors. However, the
universal approximation theorem has proved that an MLP with a single hidden
layer having the sigmoid as activation function, can almost approximate any
function that maps an input interval of real numbers to an output interval of real
numbers [32, 58]

For the output layer, linear activation functions are often used. However the
transfer function depends on the kind of the problem the MLP has to solve: a linear
transfer function is used, e.g., for function fitting problems, while a sigmoid
transfer function is more suited for pattern recognition problems to constrain the

7

output of the network to assume values in a predefined range, so as to identify
classes.

y1

Hidden layer Output layerInput layer

x1

x2 y2

Figure 1.3. – The scheme of a MLP neural network having two inputs, two outputs and one hidden

layer with four neurons.

The most commonly used activation functions are summarized in Table 1.1. In
this thesis we adopted an MLP neural network to forecast the energy consumption
in a building, as better explained in Chapter 6.

Table 1.1. – Some common activation functions.

Activation function Equation

Sigmoid
1()

1 zf z
e−

=
+

Hyperbolic tangent () tanh()f z z=

Linear ()f z az b= +

1.4.1 The backpropagation training algorithm
The most popular training technique of an MLP network is the well-known

backpropagation training algorithm [131], a supervised learning technique that
looks for the global minimum of the error function in the weight space using the
method of gradient descent.

The idea is to present the network a set of matched input and desired output
patterns, called training set. The output given from the network for each training
pattern is compared with the desired output, by evaluating the error. This error is
used to adjust the weights in the network so as to reduce the overall error of the
network.

After providing the network with a cycle of training patterns (epoch), the process

8

is repeated many times until the output of the network produces a satisfactory
error. Then, the weights are held and from now on the trained network is able to
generalize and correctly answer to new, unseen input data.

The combination of weights which minimizes the error function is considered to
be a solution of the learning problem.

The backpropagation algorithm can be executed in two versions: online or batch,
dependently on the way the network weights are adjusted. In the former, the
weights are adapted after each pattern has been presented to the network, while in
the latter, they are adapted at the end of each epoch.

The backpropagation algorithm is the most computationally straightforward
algorithm for training the multilayer perceptron [49]. Some problems may occur
during the training, thus they will be briefly described below.

The network may be trapped in a local minimum of the error function. In fact, the
error surface can contain more than one minimum, i.e., a global minimum and a
few local minima. Two learning parameters (learning rate and momentum) should
be adjusted in order to avoid the problem. The parameters act on the step size used
during the iterative gradient descent process.

Another kind of problem that may occur during the training of a neural network is
overfitting. It occurs when the error on the training set is very small, while the error
on some new patterns not presented during training is extremely large. The reason
for this is that the network has learned perfectly the training examples, but has not
learned how to generalize, thus the error on new data easily grows.

The solution to this problem is the early stopping method: this method trains the
network with only a part of the available data (training set), while the remaining
data are split into two sets, namely, validation set and test set. During the training
process, patterns from the training set are used to update the weights in the usual
way, while patterns from the validation set are presented to the network to check its
generalization capability when the training is still in progress. As soon as the error
on the validation set starts to grow, and continues to grow for a given number of
epochs, it means that overfitting has started, so the training is stopped and the
weights corresponding to the minimum validation error, before the occurrence of
overfitting, are held.

Finally the generalization capability of the trained network is tested on the test
set.

1.5 Neural networks for time series forecasting
Prediction or forecasting is a special type of dynamic filtering in which past

values of one or more time series are used to predict future values of the unknown
time series. Formally, a time series is a set of values that describes the evolution of
a phenomenon over time, stemming from a process for which a mathematical
description is unknown. Thus, usually the future behavior of a time series cannot
be exactly predicted, indeed, it can be estimated [41].

9

Several mathematical models are present in the literature to solve prediction
problems, such as regression analysis [29, 56, 81], time series analysis [57], and
neural networks [9, 96, 138].

In time series modeling, the Non-linear Auto-Regressive model with eXogenous
inputs (NARX) is an important class of discrete-time non-linear systems, where the
current value of an unknown (endogenous) time series is related to the past values
of the same series, and to the current and past values of the exogenous
(independent) time series. More in detail, this model allows to forecast the future
values of the output time series y(t), knowing the past values of the same
endogenous series y(t) and the past values of the exogenous series x(t). The
equation model is the following:

() ((1),..., (), (1),..., ())x yy t f x t x t d y t y t d= − − − − , (1.2)

where, x(t-i) and y(t-i) denote the exogenous input and the output of the model at a
previous discrete time step i, respectively, and dx and dy denote the maximum
delays considered for the two time series. Though these values can be different for
the two time series involved, usually dx = dy = d is the preferred choice.

The NARX model can be implemented in open loop mode or closed loop mode.
In the open loop mode, the system computes the output without using the feedback.
Generally, to obtain a more adaptive control, it is necessary to feed the output of
the system back as input. This type of system is called a closed loop system.

Figure 1.4 shows the model block diagram in closed loop mode. This means that
the output of the system is fed back as input.

Figure 1.4. – NARX model block diagram in closed loop mode.

The NARX model is one of the most general time series analysis models [87, 88],
as it is the straightforward generalization of the linear Auto-Regressive (AR) model
to the non-linear case.

In Equation (1.2), the forecast horizon, i.e., the number of data points to be
forecasted, is equal to one. The prediction can also involve several steps ahead. If
the time horizon is greater than one, two different forecasting schemes exist: i) an
iterative scheme, which aims to predict a variable at a given time step and the
obtained prediction is used as input for the forecasting of the next time step; ii) a
direct scheme, which aims to predict the next n time steps from the same input data
[145].

The time series prediction process usually involves 5 steps [41]:
1. preprocessing of the data: perform smoothing or normalization, remove

the outliers;

10

2. identification of the model: select the architecture, set an appropriate
number of layers and hidden neurons for each layer, set learning
parameters values;

3. training of the network (usually in open loop mode);
4. validation of the trained network: compute the error, check the prediction

ability of the network;
5. use of the network for forecasting (usually in closed loop mode).

Regarding previous step 4, several metrics exist to evaluate the error and the
goodness of the network.

The most frequently used are: the Mean Absolute Percentage Error (MAPE), the
Mean Square Error (MSE), the Root Mean Square Error (RMSE). To assess the
goodness of the forecasting model, also the coefficient of determination R2 can be
used. It indicates how well a regression line fits a set of data. It provides a measure
of how well future outcomes are likely to be predicted by the model. R2 near 1
indicates a good fitting of the model to the data, R2 closer to 0 indicates bad fitting.

The following equation expresses the coefficient of determination:

2

2 1

2

1

ˆ()
1

()

n

i i
i
n

i
i

x x
R

x x

=

=

−
= −

−

∑

∑
, (1.3)

where, n is the number of data, xi and ˆix denote the actual and predicted values of
data, and x is the mean of the actual data.

The numerator is called residual sum of squares and it is a measure of the
variability of the forecasting error. The denominator is called total sum of squares
and measures how much variation there is in the data (with respect to their mean
value).

1.5.1 The NARX neural network
ANN models may be used as alternative methods to autoregression models in

engineering analyses and predictions [77, 92]. Thanks to their ability to model
complex non-linear functions or unknown functions by learning from examples,
neural networks are particularly suited to implement NARX models.

A NARX neural network is the network used to implement a NARX model. It is
a special kind of Time Delay (TD) neural network, i.e., a feed-forward network
with a tapped delay line associated with inputs and output, particularly suited to
time-series prediction.

The non-linear function f of Equation (1.2) is generally unknown and can be
approximated, for example, by a neural network. The resulting architecture is then
called a NARX neural network and it is shown below in Fig. 1.5.

Considering Fig. 1.5, the output of the neural network is the predicted next value
in the output time series, computed as a function of the exogenous time series and

11

the output time series, which is fed back as endogenous input to the network. Two
delays are used on both the time series. The hidden layer presents ten neurons. The
associated model equation is () ((1), (2), (1), (2)).y t f x t x t y t y t= − − − −

Figure 1.5. – The scheme of a simple NARX neural network (the figure was produced in the Matlab®

environment).

In this thesis we adopted a NARX neural network used with the iterative scheme
to forecast the energy production in a photovoltaic installation, as better described
in Chapter 4.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

12

	

	

	

	

13

2
Fuzzy systems

2.1 Introduction
Fuzzy systems (FSs) are methodologies based on fuzzy set theory to represent

and process linguistic information and have been introduced by Zadeh [164].
The mathematical theory of fuzzy logic is used to simulate the process of human

reasoning, i.e., approximate reasoning. Fuzzy logic is an extension of classical
logic (in which any statement is either true or false) where several degrees of truth
are allowed [22]. A fuzzy set is a generalization of a classical set in which the
membership function is a continuous function with values in the interval [0, 1] in
place of two discrete values {0} and {1} of a classical set.

A set of fuzzy rules is used to specify an input-output mapping between the input
variables (i.e., linguistic variables) and the output class.

Each rule is represented as a conditional statement of the kind “if premise then
consequence”, where the premise and the consequence are expressed in terms of
fuzzy sets and linguistic variables. Rules are usually fixed basing on some expert’s
previous knowledge, or drawn directly from data. In fact, extracting fuzzy rules
from data allows modeling the relationships existing in the data by means of if-then
rules that are easy to understand, verify and extend [24].

Let us now spend a few words about the main benefit of fuzzy systems:
interpretability. Sometimes it is interesting not only to have an accurate classifier at
our disposal, but also to have an easily interpretable classifier capable to let
understand its operating (“white box” model). For this reason fuzzy systems are
widely adopted in real-modeling problems where vagueness and uncertainty can be
represented by using linguistic variables, instead of classical variables, thus
obtaining more interpretable results.

However, not all the fuzzy classifiers are necessarily interpretable. According to
the recent literature [7, 109], there are many concerns to be addressed and
constraints to be included during the design stage to guarantee interpretability.
Typically, interpretability of fuzzy rules depends on three issues: i) the fuzzy
partition should be both complete and distinguishable (i.e., understandable
linguistic terms should be easily assigned to the fuzzy sets of the partition); ii) the
fuzzy rules in the rule base should be consistent, i.e., there should not be any
conflicting rules; iii) the number of variables in the rule premise should be as small

14

as possible [94].
Fuzzy systems have been applied to a wide variety of fields ranging from control,

signal processing, communications, classification and soft computing.
The chapter has the following outline. Section 2.2 recalls the main concepts of

fuzzy classifiers, while Section 2.3 presents the Fuzzy Rule-Based Classifier
(FRBC) employed in this work, i.e., the generation of the rule base from data and
the fuzzy inference method adopted.

2.2 Overview of Fuzzy Rule-Based Classifiers
Fuzzy rule-based classifiers (FRBCs) consist of two main components: the

Knowledge Base (KB) and the Fuzzy Reasoning Method (FRM). The KB is made
up by a Rule Base (RB) and a Data Base (DB). The former contains a set of fuzzy
if-then rules, while the latter contains the semantic parameters of the fuzzy sets that
model the linguistic variables used in the fuzzy rules. Each rule specifies a
subspace of the pattern space using the fuzzy set in the antecedent part in the rule.
The FRM maps any input pattern X to its predicted class C using the information
provided in the KB. An FRBC scheme is represented in Fig. 2.1.

Figure 2.1. – A fuzzy rule-based classifier.

The design of a FRBC consists basically in finding a compact set of fuzzy if-then
classification rules derived from human experts or from domain knowledge, able to
model the input-output behavior of the system. The next step is to combine these
rules in order to associate a given input to a single conclusion which is the output.

In the following we show three typical formulations of fuzzy if-then rules for
classification.

Let us consider an M-class classification problem related to M classes 1{ }Mj jC = in
an F-dimensional input space, and a set of (F+1) fuzzy partitions 1(,...,)

f

f f
f QP A A= ,

f=1,…(F+1), on F input variables X1,…,Xf and one output variable X(F+1); each
partition consists of Qf membership functions. Moreover, let 1{ , }t t N

to =x be a set of N

15

input-output pairs to be classified, where 1(,...,)t t
Fx x is the feature vector associated

with pattern tx , and ot the associated class index.
Under the previous assumptions, an FRBC rule base made of a set of L rules

1{ }Lk kR = can be expressed in different ways. In the next we report the three most
common kinds of rules used for pattern classification problems [30]:

i) fuzzy rules with a single consequent class:

,1 , ,(1)

1
1 (1): ... ,

k k F k F

F
k F FR X is A and X is A X isCδ δ δ ++if then (2.1)

where k is the rule index, ,k fδ is the index of the fuzzy set to be used for

variable f in rule k, f = (1,…, F), and
,(1)k F

Cδ +
 means that the output class

associated with rule k is the one having index ,(1)k Fδ + ;
ii) fuzzy rules with a single consequent class and a single certainty factor

(SCF) kγ , i.e., the weight associated with the rule, with a value in the
interval [0, 1]:

,1 , ,(1)

1
1 (1): ... ;

k k F k F

F
k F F kR X is A and X is A X isC withδ δ δ γ

++if then (2.2)

iii) fuzzy rules with multiple consequent classes and multiple certainty
factors (MCF) j

kγ (j = 1,…, M):

,1 ,

1 1
1 (1) 1:

k k F

F M
k F F M k kR X is A and and X is A X is C C withδ δ γ γ+if then (2.3)

The degree of satisfaction
,

,
, k f
k t
f δµ of the generic condition “

,k f

f
fX is Aδ ”,

corresponding to pattern tx , is computed in the same way for the three kinds of
rules, as the membership function value associated with fuzzy set

,k f

fAδ , in the f-th

component t
fx :

, ,

,
, ()
k f k f

k t f t
f fA xδ δµ = .

2.3 The implementation of a FRBC: frbc
In this thesis, we will consider only rules with a single consequent class and a

single certainty factor (see Equation (2.2)), which represents the certainty degree of
the classification in the specified class for an input pattern belonging to the fuzzy
subspace identified by the rule antecedent. These rules provide the best tradeoff
between flexibility and complexity. Furthermore they naturally fit the Matlab®
Fuzzy Logic Toolbox (FLT) rule base structure.

The FRBC used in the present thesis, presented in [28] was developed under the
Pattern Recognition Toolbox (PRTools) [42], the de facto standard toolbox for
classification in Matlab®. frbc follows the PRTools base philosophy, e.g., use of
fast and heuristic-based training algorithms, function reuse, powerful and concise
syntax, automatic training from data, total compatibility with the Matlab®
environment. A brief description of PRTools framework and the instructions on
how to implement a new classifier in PRTools are presented in Appendix A, and

16

supporting material can be found in [42, 151].
In the following sections we explain the method employed to automatically learn

the KB form data and the general model of fuzzy reasoning used.

2.3.1 The rule base construction
The main issue in the development of fuzzy classifiers is the proper training, that

is, the creation of an efficient rule base. The rule base can be derived from the
expert previous knowledge or more easily can be derived directly from numerical
input-output pairs. In the literature, many approaches have been proposed for
generating fuzzy rules from numerical data, such as heuristic approaches [2, 70,
93], neuro-fuzzy techniques [103, 110, 111, 112, 150], clustering methods [3, 130],
and genetic algorithms [19, 51, 68, 73].

In order to meet the PRTools base philosophy (see Appendix A), we are
interested in existing batch-mode oriented approaches to automatically generate
fuzzy rules from data, that are well-assessed and widely accepted, that need few
free parameters to be specified, and that are associated with fast heuristic training
methods. In our opinion, among the approaches existing in the literature, the
technique that best meets these requirements is the Wang and Mendel method
extended to classification problems, an adaptation of the well-known Wang and
Mendel method for regression problems [154]. This method assumes that the fuzzy
partitions of the input and output variables are provided by the user. A typical and
easy way to achieve this is to resort to uniform fuzzy partitions consisting, for input
variables, of a limited number of fuzzy sets, while, for output variables, of as many
fuzzy sets as there are classes. So, the Wang and Mendel method is the training
technique available in frbc [28]. This method seems to be simpler and with less
construction time than a comparable neural network, maintaining the comparability
of the results [106]. In addition, it allows to combine in the same framework both
numerical and linguistic information [154].

In the following, the formal steps of the Wang and Mendel algorithm extended to
classification problems are briefly introduced:

STEP A. generate a uniform fuzzy partition of the input domain, made
of Qf, f= 1,…, F, fuzzy sets for each input variable f (usually
Qf = Q = 3, 5, 7 or 9);

STEP B. generate a uniform fuzzy partition of the output variable,
made of M fuzzy sets (one set for each class);

STEP C. generate an initial raw rule base (one rule for each training
pattern);

STEP D. remove duplicated rules;
STEP E. compute certainty factors;
STEP F. remove conflicting rules (i.e., rules having the same if part

but different then parts) by keeping, for each set of
conflicting rules, only the rule with the highest CF.

17

More in detail, this algorithm generates the fuzzy rule base assuming a uniform
fuzzy partition for the input variables. Thus, the domain of each input variable is
divided into 2 1Q N= + regions, typically {1,2,3,4}N∈ (STEP A). The length
and the number of the regions may be different for the considered variables. A
fuzzy membership function is then defined for each region. Typically this function
has its maximum value in the middle point of the region and assumes its minimum
value in the central points of the two neighboring regions, although different
definitions are possible. Figure 2.2 shows an example of a fuzzy partition built
according to the Wang and Mendel approach, on a generic variable y whose
domain interval [y-, y+] has been divided into Q=5 regions (N=2).

Doing so, the thresholds identify a grid on the input variable space. So, for
instance, if we have two input variables and we define two evenly spaced

thresholds for each variable, we obtain a uniform 9-area grid.

y

µ(y)

y$ y+

VL L M H VH

Figure 2.2. – An example of a fuzzy partition for the input variables, built according to the Wang and

Mendel approach.

Regarding STEP B, the fuzzy sets used to represent the output partition are
usually fuzzy singletons, as we deal with a classification problem. Since each data
pair generates a fuzzy rule in the rule base (STEP C), there will possibly be some
duplicate rules and some conflicting rules, i.e., rules having the same if parts but
different then parts. The duplicated rules are simply deleted (STEP D), while to
solve a conflict, a CF is assigned to each conflicting rule of a set. The CF is defined
so as to take into account the importance of each rule in the entire rule base (STEP
E). The winning rule, within a conflicting set, is the one that has the maximum CF.
The other rules of the set are discarded (STEP F).

From the field of data mining [5], the CF is tipically computed as the confidence
of the fuzzy association rule

kkA Cδ⇒ , corresponding to the fuzzy rule Rk: if kA
then

k
Cδ , where Ak represents the antecedent part of the fuzzy rule, and

k
Cδ the

class appearing in the consequent. The CF is calculated as follows:
, ,

: 1
,t

k

Nk t k t
k t classC tδ

γ
∈ =

= Ω Ω∑ ∑x
 (2.4)

where ,k tΩ is the strength of activation of the antecedent of rule Rk for the t-th
pattern, and N is the number of training patterns.

However, in past research, many heuristic measures have been proposed to
specify the weight of a fuzzy classification rule [72, 93, 166]. Nozaki et al. [115]

18

proposed a method of learning rule weight using Reward & Punishment, in which,
considering the classification of a pattern using the single winner FRM, the weight
of the winner rule is increased or decreased depending on whether the pattern has
been correctly classified or not. In other relevant methods [66, 72], the computation
consists of two phases. First, the certainty factor is calculated as the confidence of
the fuzzy rule (as in Equation (2.4)), then, the certainty factor is refined with a
measure that depends on the specific method, with the aim to improve the
classification performance.

We recall that any shape and number for membership functions can be selected.
Clearly, the higher the number of membership functions, the bigger the accuracy
obtained. On the other hand, a large number of membership functions leads to a
large rule base dimension and, consequently, to a higher complexity.

2.3.2 The fuzzy reasoning method
The FRM available in frbc [28] for MCF rules is a general model of fuzzy

reasoning for combining information provided by different rules. It is an extension
presented in [30] of the fuzzy classifier defined by [82].

In the following, we recall the steps of the FRM applied to each input pattern tx :

STEP 1. determine, for each rule, the strength of activation of the
antecedent, say matching degree;

STEP 2. compute, for each rule, the association degree of the pattern
with the class specified by the rule;

STEP 3. compute, for each rule, the stressed association degree by
emphasizing the association degree;

STEP 4. determine the soundness degree of the classification of the
pattern tx ;

STEP 5. assign pattern tx to the class that has the maximum soundness
degree.

For each step of the inference process, several operators can be selected, thus
giving origin to different inference methods.

In particular, as regards STEP 1, the matching degree Ω for pattern tx and rule Rk
is calculated as the AND operator (any T-norm) between the membership function
values:

,

, ,
1 , , 1,..., , 1,..., .

k f

k t F k t
f f k L t Nδµ=Ω = = =I (2.5)

The AND operators available in frbc are the minimum and the product.
In STEP 2, the association degree is computed by applying a combination

operator h to the matching degree ,k tΩ and the certainty factor γ k as follows
(possible choices for h are product and minimum):

, ,(,), 1,..., , 1,..., .k t k t
kb h k L t Nγ= Ω = = (2.6)

19

In STEP 3 the association degree is stressed by applying a stress function g so as,
e.g., to increase higher values and decrease lower ones:

, ,(), 1,..., , 1,..., .k t k tB g b k L t N= = = (2.7)

We have considered two stress functions, namely No_Stress function g1 (identity
function) and Square_SquareRoot function g2, as defined hereafter:

1() [0,1]g z z z= ∀ ∈ (2.8)
2

2

 0.5
()

 0.5 .

z if z
g z

z if z

⎧ <⎪= ⎨
≥⎪⎩

 (2.9)

In STEP 4, the soundness degree ˆtjo associated with each output class j is
computed by applying an aggregation function Γ to the t

jS positive association
degrees ,s t

ja :
,ˆ (), 1,..., , 1,...,t s t t

j j jo a s S j M= Γ = = (2.10)

where:
,1, , ,(,...,) (: 0, 1,...,).
t
jS tt k t k t

j j j ja a B B k L= > = (2.11)

We have considered seven different aggregation functions (maximum,
normalized addition, arithmetic mean, quasi-arithmetic mean, Sowa and-like, Sowa
or-like, Badd operator). Table 2.1 shows the mathematical equations of the
aggregation functions [30]. For each function we indicate the value of the free
parameter (if existent) used in the experiments.

In particular, the use of the maximum operator leads to the implementation of the
classical FRM, which classifies a new example with the consequent of the fuzzy
rule with the greatest degree of association. Although it is used by the majority of
FRBCs, it loses the information provided by other rules.

Finally, STEP 5 computes the predicted class index ˆto , associated with pattern
tx , as:

1,...,
ˆ ˆargmax ().t t

j
j M

o o
=

= (2.12)

In the present thesis, frbc has been employed to forecast the energy production
from a solar photovoltaic installation in order to help the manager of the
installation in the control and the dispatch of the energy in the electrical grid, as
better described in Chapter 5.

20

Table 2.1. – Mathematical equations for the aggregation functions.
Aggregation
function Mathematical equation Value of free

parameter

Maximum 11...
max{ ... }t

j
MAX sj M

a a
=

Γ = -

Normalized
addition 1...1

max
t t
j js s

NORMADD i ij Mi i
a a

==

Γ =∑ ∑ -

Arithmetic mean
1

t
js

t
ARIMEAN i j

i
a s

=

Γ =∑ -

Quasi-arithmetic
mean

1

1 () ,
t
j

p
s

p
QARIMEAN it

ij

a p R
s

−

=

⎡ ⎤
Γ = ⋅ ∈⎢ ⎥

⎢ ⎥⎣ ⎦
∑

p=50

Sowa and-like ΓSOWAAND =α ⋅min{a1...asjt }+ (1−α) ⋅Γ ARIMEAN , [0,1] α ∈ 0.5α =

Sowa or-like 1max{ ... } (1) ,t
j

SOWAOR ARIMEANs
a aα αΓ = ⋅ + − ⋅Γ [0,1] α ∈ 0.9α =

Badd operator 1

1 1
,

t t
j js s

p p
BADD i i

i i
a a p R+

= =

Γ = ∈∑ ∑ . p=50

21

3
Genetic algorithms and hybrid systems

3.1 Introduction
Since their first introduction by Holland in 1975 [61], genetic algorithms (GAs)

have attracted a lot of interest in the research community. GAs are search
algorithms capable of solving a wide range of problems that traditional methods
have difficulty to solve (large scale combinatorial optimization problems or
complex search space with multiple optima), by using the principles inspired by
natural genetics [37, 50, 100].

The basic idea is to describe the optimization problem and its solution with an
individual having a set of characteristics (i.e., parameters of the problems) and then
to make evolve a population of individuals toward the optimal solution for the
problem. Usually we refer to individuals with the term chromosome, and to each
characteristic with the term gene. Each chromosome is typically coded as a binary
string. However, real-coded GAs have shown better performance than binary-
coded GAs in many optimization problems [75].

GAs simulate the evolutionary cyclic process of a population of individuals, with
each cycle representing a generation. Within each generation, genetic operators are
applied to obtain a new population made of better individuals. The quality of each
individual is measured by means of a fitness function, which indicates the
adaptability of the individual to the environment, i.e., the probability to survive. In
a GA this relates to the probability to be part of the next generation population.

The main advantage of GAs is that they do not need a mathematical description
of the problem. Thanks to their nature, GAs are successfully employed in
optimization problems in many areas (e.g., economics, mathematics, computational
science, engineering) [50, 61]. GAs may be used alone or as part of hybrid systems
(e.g., genetic-fuzzy systems, neuro-genetic systems).

In this chapter, an overview of genetic algorithms along with their functioning is
presented in Section 3.2, while a brief description of hybrid systems, with
particular reference to genetic-fuzzy hybrid systems, is presented in Section 3.3.

3.2 Genetic algorithms: main concepts
A genetic algorithm requires: i) a genetic representation of the solution domain,

22

ii) a fitness function to evaluate the goodness of each solution, iii) methods and
associated probabilities values for recombining chromosomes (crossover) and
reconsider possibly useful lost genetic material (mutation), and iv) a selection
mechanism to choose the best chromosomes.

A GA works with populations of chromosomes, that evolve according to the
natural evolution, towards a better population, thus toward better solutions. In fact,
they operate simultaneously on a set of solutions rather than on one solution.

Evolution is a method of searching among a big number of solutions, by applying
genetic operators similar to the corresponding in nature. Among genetic operators
the most used are crossover, mutation and selection.

The evolution usually starts from a population of randomly generated individuals.
Each new population is built with the best individuals of previous generations
(selected according to their fitness), with the aim of propagate to next generations
the best genetic heritage.

More in detail, the evolution from one generation to the other involves three
steps. First, individuals of the current population are evaluated. Second, those with
higher fitness are selected from the current population to form a new population in
the next generation. Third, genetic operators (crossover and mutation) are applied
to selected parents to generate offspring. Then the population is evaluated again.
The algorithm terminates when a convergence criterion is met, i.e., a maximum
number of generations has been produced, or a satisfactory fitness level has been
reached for the population.

Figure 3.1 summarizes the functioning of a simple GA [140].

GA {
generate random population;
evaluate population;
while termination criterion not reached {
 select solutions for next population;
 perform crossover and mutation;
 evaluate population;
}

}

Figure 3.1. – The functioning of a simple GA in pseudocode.

3.2.1 GA operators
After the genetic representation and the fitness function are defined, a GA

initializes a population of solutions and then improves it through an iterative
application of the genetic operators. Genetic operators are used to make evolve the
current population towards a heterogeneous set of individuals in order to obtain a
global convergence and a complete exploration of the search space.

In the following, we briefly explain the GA operators: selection, crossover and

23

mutation.
Selection is the process of choosing the breeding chromosomes (mating pool) in

the current population for reproduction of individuals to be inserted in the next
population. Since it is expected that better parents generate better offspring, parent
solution chromosomes with higher fitness have a higher probability to be selected,
similarly to what happens in natural selection. Several selection operators exist,
and usually the selection probability is proportional to the fitness of the
chromosome.

Crossover is used to combine the genes of two individuals (parents) to produce a
new individual (offspring) that inherits characteristics from both parents. There are
several ways to combine parent chromosomes. Crossover usually takes place
according to a crossover probability (ranging from 0 to 1) that should ensure both
exploitation (ability of convergence) and exploration (good ability to explore the
search space). The simplest crossover is called one-point crossover: the parent
chromosomes are split into two parts at a random position and then the left part of
one is combined with the right part of the other and vice versa. Other kinds of
crossover are multi-point crossover or uniform crossover.

Mutation is merely a random modification of one or more genes in a
chromosome, to reintroduce the genetic material lost or to avoid the convergence to
local optima. The aim of this operation is to deeply modify the chromosome, so as
to explore areas of the solution space that have not yet been observed. However, to
ensure the convergence of the genetic algorithm, the mutation probability is very
low, i.e. in the range [0.001, 0.01]. In the literature several kinds of mutation exist
(e.g., uniform mutation, non-uniform mutation, etc.).

3.3 Hybrid systems: genetic-fuzzy systems
GAs are often used to produce intelligent hybrid systems. Among existing hybrid

systems, we recall only genetic-fuzzy system (GFS), as this kind of hybrid system
is the one employed in this thesis.

A GFS is a fuzzy system whose parameters are optimized by a learning process
based on a GA. Genetic learning processes can be involved in a fuzzy system at
different levels of complexity. In the literature, many paper deal with GFSs.

In the simplest case, the GA is used to optimize some free parameters of the
hybrid model [33] as done in Chapter 5 of this thesis.

In more complex cases, the GA is used to tune: i) the fuzzy partition parameters
(membership functions) of the fuzzy system, as done in [134], where a GA models
the linguistic labels of the fuzzy sets, ii) the fuzzy rule set of the fuzzy system, as
done in [90, 137], or iii) both the fuzzy partition parameters and the fuzzy rules, as
done in [165], where a GA is used to optimize shape and parameters of the fuzzy
membership functions, and number and size of the fuzzy rules.

In other approaches, a GA is used to optimize the set of rules and the fuzzy
reasoning method of the FRBC, thus producing single-objective and multi-

24

objective GFS [60, 64, 65], or it is applied to perform feature selection [152].

25

4
One day-ahead forecasting of PV energy
production by means of neural networks

and time series analysis

4.1 Introduction
Renewable energy refers to energy generated by natural sources, which are

naturally replenished, such as sunlight (solar energy), wind (eolic energy), and
tides (tidal energy).

As conventional fossil fuel energy sources (e.g., coal, oil, gas, etc.) are
diminishing and global warming is increasing [80], renewable energy, and in
particular, solar energy, is receiving heightened attention as a potentially
widespread approach to sustainable energy production [142], thus becoming a valid
alternative to traditional energy since it is considered economical and non-polluting
[160] besides practically inexhaustible [126, 142, 147, 157]. Furthermore,
according to European Union (EU), renewable energies will be able to contribute
between 33% and 40% to the total electricity production in Europe by 2020.
Particularly, photovoltaic (PV) energy could provide 12% of European electricity
demand by 2020 [43].

For these reasons PV installations have spread in recent years [116]. The solar PV
total world capacity has increased dramatically: from 9.4 GW in 2007 to 23.2 GW
in 2009, and to 70 GW in 2011 [126].

A photovoltaic installation consists of a series of solar panels that using sunlight
energy generates directly usable electricity thanks to the PV effect. A PV panel
(see Fig. 4.1) is composed in its turn of individual PV cells. Since a single PV
panel can produce only a limited amount of power, normally several panels are
connected together to form a generation system called PV array, to which an
inverter is connected that measures the production power of that array, and
converts the DC power in AC power, as requested by the electrical network. Due to
their modularity, PV installations can be configured in almost any way to supply
most loads. Generally, a PV installation includes one or more PV arrays, an
inverter for each array, batteries, and wiring to connect all the PV installation [15,
125].

With the diffusion of PV systems the monitoring of the performance of solar
panels has become a key issue, so as to detect efficiency losses or effectively plan

26

the energy distribution, for instance in smart grid installations.
This can be done by estimating the forecasted energy and comparing it with the

real produced energy.

PV Panel

PV Cell

PV Array

-
+

Inverter

Figure 4.1. – Photovoltaic elements: PV cell, PV panel, and PV array.

However the main drawback of solar energy is its availability due to the
unpredictability nature of solar irradiation.

Although a lot of people work in this research area, they are mainly concerned
with forecasting solar radiation [12, 95, 96, 100, 107], whereas only a few are
concerned with the forecasting of solar energy production directly.

The literature related to the renewable energy field presents many approaches to
forecasting load, wind speed or solar irradiation. The most widely used techniques
include regression methods [29, 56, 81], neural networks [9, 96, 138], and time
series analysis [57]. However most of the existing methodologies present some
drawbacks such as high average accuracy error, dependence on the particular
design of the PV installation, and inability to provide real-time prediction [13, 119,
123].

The methodology proposed in this chapter represents a flexible and easy-to-use
methodological approach to the forecasting of energy production in solar PV
installations, using time series analysis and neural networks. The aim is to develop
and validate a one day-ahead forecasting model by adopting an artificial neural
network with tapped delay lines to implement the NARX time series model for the
prediction of the energy production of the following day. The potential benefits of
having energy production predictability are obvious: knowing the energy
production ahead of time is useful in automatic power dispatch and load
scheduling, and energy control [139].

The goal of the proposed approach is twofold. On the one hand, energy
production forecasting is important for improving the efficiency of the PV
installation, as well as for finding faults. On the other hand, energy production

27

forecasting is vital for efficiently planning the energy distribution [31]. In
particular, the chance to forecast the energy production up to 24 hours can become
of the utmost importance in decision-making processes, with particular reference to
grid-connected photovoltaic plants. Moreover, this approach could be particularly
useful in smart grid systems, which are able to make better operational decisions
using ahead predictions [122].

Variability of weather, in particular of solar irradiation, is maybe the main
difficulty faced by PV installation operators [86] so that good forecasting tools are
required for the appropriate integration of renewable energy into the power system
[81]. Among various prediction models, such as analytic, stochastic, and empirical,
neural networks are fairly able to correctly model the nonlinear nature of dynamic
processes. Actually, an artificial neural network is able to reproduce an empirical,
possibly nonlinear, relationship between some inputs and one or more outputs [14].
Forecasting is one of the most interesting nonlinear applications of neural
networks. Indeed, the measurements of environmental parameters are generally
provided in the form of time series which are suitable to use neural networks for
prediction purposes [17]. Moreover, neural networks are fault tolerant, i.e., are able
to handle noisy or incomplete data [77].

4.1.1 Outline of the chapter
The chapter has the following structure. Section 4.2 describes the experimental

data collected from two PV installations located in Italy, Section 4.3 presents the
proposed methodology to correctly set up the NARX-neural network model for
forecasting the solar energy production. Section 4.4 presents and discusses the
achieved results. Finally, concluding remarks are provided in Section 4.5.

4.2 Description of the solar PV dataset
The available data were collected from two PV ground installations of solar

panels 500 meters far away from each other, located in Apulia, Italy. We employed
data only from one installation for the development of the model, as, under
conditions of proper working, we can assume that the two installations are
correlated. We then successfully tested the developed model also on the second
installation.

According to the literature, the two most significant environmental parameters
are temperature and irradiation on the solar panels [9, 80, 81]. The first one refers
to the surface of the panel exposed to the sunlight, while the second one is the
quantity of sun radiation incident on the panel with respect to the whole surface of
the panel and to all the electromagnetic spectrum frequencies.

Actually, we employed only the irradiation input, similarly to what happens in
PV plant sizing, since the total solar radiation is considered as the most important
parameter in the performance prediction of renewable energy systems [99]. The
first input, instead, was used only for offline checks. Figure 4.2 shows the

28

irradiation trend for six consecutive days of Winter. Days 1, 2, 5, and 6 correspond
to clear or partly cloudy days, while days 3 and 4 correspond to completely
overcast days. The output parameter is the produced energy from each PV
installation. Data, including also the sampling timestamp (date and time), were
collected every 15 minutes during 1 year, from October 2009 to September 2010.

1 2 3 4 5 6
0

100

200

300

400

500

600

700

800

900

Irr
ad

ia
tio

n
(W

/m
2)

Days of Winter
Figure 4.2. – Solar irradiation trend for six days of Winter.

4.3 The proposed NARX-neural network model for solar PV energy
forecasting

The proposed methodology presented in [26, 27] aims to provide an easy-to-use
tool for correctly configuring the best predictor for energy production in a PV
installation based only on the collected historical data, with no concern about
possible relationships between plant attributes (like positions, construction, etc.)
and predictor parameters. More in detail, we aim to forecast the energy production
up to 24 hours, given the environmental parameters of an appropriate number of
previous days that compose the training window.

We decided to implement the NARX model (see Chapter 1) using a feed-forward
neural network with tapped delay lines, having one hidden layer. The hidden
neurons are characterized by a hyperbolic tangent sigmoid function while the
output neuron has a linear transfer function.

The tasks to be performed are basically the following: i) choice of the training
window width; ii) choice of the sampling frequency; iii) choice of the number of
delays; iv) choice of the number of hidden neurons. In the following we will use
the term structural parameters to refer to the number of hidden neurons and the
number of delay elements, and the term configuration parameters to mention the
training window width and the sampling frequency.

Based on heuristic considerations, we propose: i) to consider the training window
width as a multiple of the day, ii) to use balanced training sets obtained by

29

randomly extracting the same number of training samples from each day of a
window, and iii) to assess the performance of the NARX model based on the mean
performance obtained on all the predicted days within periods of one month. This
last choice aims to avoid the strong dependence of the performance results,
achieved by a given neural network, on the particular day to be predicted (which
might be atypical).

In the following we will describe the operation steps for the development of the
neural model.

4.3.1 Choice of the structural and configuration parameters
Based on the previous considerations, we make use of training windows having

width w from a minimum of 7 days to a maximum of 30 days before the predicted
day. Furthermore, for the sake of simplicity, we kept the 15 minute sampling
frequency.

As previously stated, we decided to take into account the mean performance
obtained on all the predicted days within periods of one month. We considered one
month for each season. More in detail, we performed the experiments on the days
of the first complete month of each season (e.g., being the beginning of winter on
December 21st, January is chosen as the first complete month of winter), having a
total of four months.

We heuristically decided to try a number of hidden neurons (h) ranging from 8 to
20 with step 1, and a number of delays (d) ranging from 3 to 10 with step 1.

Each kind of experiment has been repeated 30 times, once fixed the neural
network configuration and structure, to mitigate the effects, in terms of
convergence, of the random initialization typical of neural networks.

For each month considered, we found a set of windows that appear most often,
i.e., at least in a given percentage (80% in our case) of the trials of each
experiment, as the best windows among the 24 possible windows. This set is w = 9,
12, 15, 18, 21.

The best results were obtained with a neural network with 10 hidden neurons, and
3 delay elements on both the exogenous (irradiation) and endogenous (produced
energy) variables. These values represent the best compromise between efficiency
and simplicity. In particular, to set the number of delays to 3 means to use the
information pertinent to the three quarters of hour immediately before each
predicted sample.

We used the Mean Square Error (MSE) defined in Equation (4.1), where ti and oi
are, respectively, the target and predicted instantaneous energy values of sample i,
and S is the number of samples of the considered day:

2

1

1 () .
S

i i
i

MSE t o
S =

= −∑ (4.1)

Figure 4.3(a) shows the results related to window widths equal to 9, 12, 15, 18
and 21 days, respectively, for the four months. For each window width the figure

30

shows the MSE made during the daytime (hours of daylight, approximately from 6
a.m. to 8 p.m.) of each predicted day, averaged over all the days of the considered
month.

To compare the performances of the different neural models related to the five
considered windows, we have evaluated the mean value and the standard deviation
of the previously computed average MSEs for each window width over the four
months. Figure 4.3(b) shows the mean value and the standard deviation of the five
neural models (corresponding to the five windows) over the four months (January,
April, July and October). As we can easily observe in Fig. 4.3(b), the worst
window is that with 9 days width, so we decided to discard it.

Regarding the number of delays, as stated before, we chose to use 3 delays.
Actually, we have experimentally found that, by increasing the number of delays,
we can slightly improve the performance of the network. Anyhow, this depends on
the window width value chosen and on the month considered, therefore it makes no
sense to increase the complexity of the network. In a sense, we may say that the
window width w lets the network be “aware” of the specific season or more in
general the temporal context, while the number of delays d lets the network detect
the particular real-time climatic variation. Figure 4.4 illustrates the iterative
forecasting scheme employed.

January April July October
0.05

0.25

0.5

1

1.5

2

2.5

x 106

Month

A
ve

ra
ge

 M
S

E
 o

ve
r d

ay
tim

e
sa

m
pl

es

9 days
12 days
15 days
18 days
21 days

(a)

9 days 12 days 15 days 18 days 21 days
0.5

1

2

4

6

8

10

12

14
x 105

window width

M
ea

n
an

d
st

an
da

rd
 d

ev
ia

tio
n

va
lu

es
 fo

r w
in

do
w

wi
dt

h

mean value
standard deviation value

(b)

Figure 4.3. – Forecasting performances obtained using irradiance only over the daytime samples for
whole months (January, April, July and October). (a) Average MSE. (b) Mean and standard deviation

of the average MSEs for each window width.

Moreover, we have experimentally found that there does not exist an optimum
value of w effective for all the seasons. Nevertheless, we have realized that in most
cases, (about) 10 days is the minimal window width able to provide the network
with the correct temporal context (season). In fact, the typical way to provide data
for solar energy climatology has monthly, annual and 10-days granularity [74].

The previous result has been confirmed by repeating the experiments on the
remaining months of each season.

31

Training window (w days) Test day

d delays test sample

Figure 4.4. – Forecasting scheme adopted.

4.3.2 Model refinement
The goal of this phase is to propose a way to improve the model performance by

trying to resolve possible irregularities present in the data collected from the
specific PV installation.

During the experiments we noticed the presence of error spikes corresponding to
days having a mean MSE sensibly higher than the other days of the same month.
The position of these spikes (and the related days) is not fixed as the window width
varies. More precisely, if a given day shows a high error for a specific window
maybe the following day shows a similar high error for a different window.

So, to resolve this irregularity of the model, we decided to add one more input
parameter to improve the performance, and, at the same time, to favor the
regularization of the occurrence of the previous error spikes.

As we have a timestamp associated with each sample, we decided to add the hour
input, maintaining fixed the structural parameters of the network. In fact, given a
temporal context (e.g., a season or a month), the daily irradiation values at the
same time of the day tend to be very similar, especially considering the values far
from the maximum (approximately corresponding to midday).

Stated in other terms, by adding the hour input, we want to let the network be
more aware of the concept of succession of samples during the day, with the hour
representing the specific time at which the samples have been collected, so as to
exploit some kind of regularity in the sun irradiation cycle.

So we performed the previous experiments with one more input, i.e., the hour
input.

The resulting network model is depicted in Fig. 4.5. The model has 2 inputs, 10
hidden neurons with hyperbolic tangent sigmoid transfer function and 1 output
with linear transfer function; the output is fed back as input; 3 delays are used on
all the inputs. W and b represent, respectively, the weight matrix and the bias.

We found that the network that employs irradiation and hour inputs performs
better compared to the one that uses only the irradiation input (see Fig. 4.6). We
have measured a performance improvement of about one order of magnitude for all
window widths.

Figure 4.6(a) shows the daytime MSEs of each predicted day, averaged over all
the days of the considered month and related to window widths equal to 12, 15, 18
and 21 days, respectively, while Fig. 4.6(b) shows the mean value and the standard
deviation of the average MSEs for the four months (January, April, July and
October). From Fig. 4.6(b) we can notice that the best window width is w=15 as it

32

corresponds to the lowest mean value and standard deviation, although the three
window widths 12, 15 and 18 are comparable with each other. On the other hand,
these three windows are sensibly better than w=21. For this reason we decided to
eliminate w=21 from further analysis.

We performed a following assessment phase to attempt to select the best window
width w, among the previous three found (12, 15, 18), for the particular temporal
context (season). We carried out our experiments on the remaining months of each
season.

Figure 4.5. – NARX neural network model employed in the experiments (the figure was produced in

the Matlab® environment).

January April July October

0.125
0.25

0.5

1

1.5

2

2.5

3

x 105

Month

A
ve

ra
ge

 M
S

E
 o

ve
r d

ay
tim

e
sa

m
pl

es

12 days
15 days
18 days
21 days

(a)

12 days 15 days 18 days 21 days
0

5

10

15
x 104

Training window width

M
ea

n
an

d
st

an
da

rd
 d

ev
ia

tio
n

va
lu

es
 fo

r w
in

do
w

wi
dt

h

Mean value
Standard deviation value

(b)

Figure 4.6. – Forecasting performances obtained using irradiance and hour inputs over the daytime
samples for the months of January, April, July and October. (a) Average MSE. (b) Mean and

standard deviation of the average MSEs for each window width.

Figure 4.7(a) shows the goodness of the adopted methodology on the remaining
months. The achieved performance is in line with the previous results. As we can
see, the optimal window width results to be 15 days. Figure 4.7(b) shows the mean
value and the standard deviation of the average MSEs for the three windows over
the remaining eight months (February, March, May, June, August, September,
November, and December).

From Fig. 4.7(b) we can notice that the best window width is w=15 as it
corresponds to the lowest mean value although the standard deviation is slightly

33

higher than that of 12 days. On the other hand, the differences among the three
window widths are in fact negligible. For practical reasons, in the experiments
described in the next section we decided to adopt w=15.

Table 4.1 summarizes the parameter values of the chosen final configuration.

February March May June August Sep. Nov. Dec.

0.5
1

2

3

4

5

6

7

8
x 104

Month

Av
er

ag
e

M
SE

 o
ve

r d
ay

tim
e

sa
m

pl
es

12 days
15 days
18 days

(a)

12 days 15 days 18 days
0

0.5

1

1.5

2

2.5

3

3.5
x 104

Training window width

M
ea

n
an

d
st

an
da

rd
 d

ev
ia

tio
n

va
lu

es
 fo

r w
in

do
w

wi
dt

h

Mean value
Standard deviation value

(b)

Figure 4.7. – Forecasting performances obtained using irradiance and hour inputs over the daytime
samples for the months of February, March, May, June, August, September, November, and

December. (a) Average MSEs. (b) Mean and standard deviation of the average MSEs for each
window width.

Table 4.1. – Parameters for the final NARX neural network model.
Parameter Value
Structural parameters
Number of hidden layers 1
Number of hidden neurons (h) 10
Number of delay elements (d) 3

Transfer functions
Hyperbolic tangent sigmoid (hidden
layer), linear (output layer)

Training algorithm Levenberg-Marquardt
Maximum number of learning epochs 30
Early stopping criterion 6 validation failures
Exogenous input variables irradiation, hour
Endogenous input variable produced energy
Configuration parameters
Training window width (w) 15 days
Sampling frequency (s) 15 minutes

4.4 Experimental results
The analysis described in the previous section shows that the neural network with

10 neurons in the hidden layer and 3 delay elements is the best structure for the
proposed problem. Moreover, the best performance was obtained employing the
hour input along with the irradiation input.

34

Finally, we have also verified that the best results were achieved using training
window widths of 12, 15 or 18 days. As already stated, we adopted w=15.

In the following two sub-sections we analyze, respectively, the prediction of the
instantaneous energy on the continuous daily horizon and the prediction of the total
(accumulated) energy produced over the whole day.

4.4.1 Prediction of the instantaneous energy
Since the goal of the following experiments is the comparison between the target

produced energy and the predicted energy on the continuous daily horizon
consisting of samples taken every 15 minutes, we considered the unsigned absolute
instantaneous error for all samples of a day.

For the aim of these experiments we need to take into account the presence of
“missing” days in the used dataset. A “missing” day is a day in which the system
was down or under maintenance. Of course, meteorological changes possibly
occurred during missing days cannot be correctly modeled by the forecasting
system with the consequence that the prediction of one or more days following a
missing one may produce high errors. In the following, we will distinguish two
different categories of badly performing days, called, respectively, atypical days
and unpredictable days. The difference between the two types of bad days is,
respectively, the absence or presence of at least one missing day in the training
window.

Figures 4.8-4.10 show the comparison, sample by sample, between the real
energy (target) and the predicted energy of some randomly chosen days of the year.
More in detail, Fig. 4.8 regards four days chosen at random among well performing
days, Fig. 4.9 regards two days chosen at random among atypical days, while Fig.
4.10 concerns two randomly extracted unpredictable days. Each of these figures
shows also the unsigned absolute instantaneous error, made on each sample of the
day. We can notice that the performance error in Figs. 4.8(c), 4.8(d), 4.8(g), 4.8(h)
is quite small with respect to the nominal energy production values shown in Figs.
4.8(a), 4.8(b), 4.8(e), 4.8(f).

In Fig. 4.9 we can see two examples of badly performing days (atypical days),
having the predicted energy curve with a quite irregular trend. With the aim of
interpreting these results, we checked the data at our disposal and we found out that
the bad performance of the atypical days under consideration might be due to a
rapid change in the panel temperature values. In fact, if rapid changes in solar
radiation or temperature occur during the predicted day, the produced power can
sensibly change and the prediction error might increase [18, 135].

Figure 4.10 shows two examples of badly performing days (unpredictable days),
which present a noticeably evident difference between real and predicted energies.

By analyzing the results achieved in this sub-section, we can conclude that,
regarding the atypical days, the forecasting performance could be sensibly
improved only if we had a trustworthy prediction of changes in the panel
temperature values at our disposal. On the other hand, as far as unpredictable days

35

are concerned, improved forecasting performance could be easily achieved by
using a complete dataset without missing days.

February 27th

6:00 8:00 10:00 12:00 14:00 16:00 18:00
0

50

100

150

200

250

Time

P
V

 e
ne

rg
y

(k
W

h)

Target
Predicted

(a)

6:00 8:00 10:00 12:00 14:00 16:00 18:00
0

20

40

60

Time

A
bs

ol
ut

e
er

ro
r

(k
W

h)

Daytime absolute error

(c)

March 19th

6:00 8:00 10:00 12:00 14:00 16:00 18:00
0

50

100

150

200

250

Time

P
V

 e
ne

rg
y

(k
W

h)

Target
Predicted

(b)

6:00 8:00 10:00 12:00 14:00 16:00 18:00
0

5

10

15

20

25

Time

A
bs

ol
ut

e
er

ro
r (

kW
h)

Daytime absolute error

(d)

June 1st

6:00 8:00 10:00 12:00 14:00 16:00 18:00
0

50

100

150

200

250

Time

PV
 e

ne
rg

y
(k

W
h)

Target
Predicted

(e)

6:00 8:00 10:00 12:00 14:00 16:00 18:00
0

10

20

Time

A
bs

ol
ut

e
er

ro
r

(k
W

h)

 Daytime absolute error

(g)

July 23rd

6:00 8:00 10:00 12:00 14:00 16:00 18:00
0

50

100

150

200

Time

P
V

 e
ne

rg
y

(k
W

h)

Target
Predicted

(f)

6:00 8:00 10:00 12:00 14:00 16:00 18:00
0

5

10

15

20

25

Time

Ab
so

lu
te

 e
rro

r (
kW

h)

Daytime absolute error

(h)

Figure. 4.8. – Results on four well performing days chosen at random. (a) (b) (e) (f) Comparison
between the real energy and the predicted energy. (c) (d) (g) (h) Associated daytime absolute

instantaneous error.

36

March 15th

6:00 8:00 10:00 12:00 14:00 16:00 18:00
0

50

100

150

200

250

Time

P
V

 e
ne

rg
y

(k
W

h)

Target
Predicted

(a)

6:00 8:00 10:00 12:00 14:00 16:00 18:00
0

50

100

150

200

Time

A
bs

ol
ut

e
er

ro
r (

kW
h)

Daytime absolute error

(c)

August 31st

6:00 8:00 10:00 12:00 14:00 16:00 18:00
0

50

100

150

200

250

Time

P
V

 e
ne

rg
y

(k
W

h)

Target
Predicted

(b)

6:00 8:00 10:00 12:00 14:00 16:00 18:00
0

20

40

60

80

Time

A
bs

ol
ut

e
er

ro
r (

kW
h)

Daytime absolute
error

(d)

Figure 4.9. – Results on two atypical days chosen at random. (a) (b) Comparison between the real
energy and the predicted energy. (c) (d) Associated daytime absolute instantaneous error.

August 20th

6:00 8:00 10:00 12:00 14:00 16:00 18:00
0

100

200

300

Time

P
V

 e
ne

rg
y

(k
W

h)

Target
Predicted

(a)

6:00 8:00 10:00 12:00 14:00 16:00 18:00
0

20

40

60

80

100

Time

A
bs

ol
ut

e
er

ro
r (

kW
h)

Daytime absolute error

(c)

October 26th

6:00 8:00 10:00 12:00 14:00 16:00 18:00
0

50

100

150

200

Time

P
V

 e
ne

rg
y

(k
W

h)

Target
Predicted

(b)

6:00 8:00 10:00 12:00 14:00 16:00 18:00
0

20

40

60

80

100

Time

A
bs

ol
ut

e
er

ro
r (

kW
h)

Daytime absolute error

(d)

Figure 4.10. – Results on two unpredictable days chosen at random. (a) (b) Comparison between the
real energy and the predicted energy. (c) (d) Associated daytime absolute instantaneous error.

4.4.2 Prediction of the accumulated energy
Usually in the renewable energy field, and in particular in PV plants, the total

(accumulated) produced energy is considered instead of the instantaneous produced
energy. So we take into account also the daily accumulated produced energy.
Among other things, this typically allows to achieve an error reduction at the end
of the day due to a compensation effect.

Table 4.2 compares the daily accumulated energy values predicted by the

37

network with the real ones for the eight test days referred to above. In addition, we
have considered the Absolute Percentage Error (APE) for each test day according
to the equation: APE =100 ⋅(t − o) / t , where t and o are, respectively, the real and
predicted daily accumulated energy.

Table 4.2. – Comparison between real and predicted accumulated energy.

Predicted day
Accumulated energy (kWh)

APE (%)
Real Predicted

February 27th 5110 4915.59 3.80
March 19th 5999 6062.04 1.05
June 1st 6556 6277.71 4.24
July 23rd 5779 5652.25 2.19
March 15th 6455 6414.31 0.63
August 31st 4784 5006.53 4.65
August 20th 5821 7788.51 33.8
October 26th 3254 4617.11 41.9

As we can see from Table 4.2, using the accumulated energy we obtain an

acceptable error for all the considered days, independently of the dynamic behavior
of the curve representing the instantaneous predicted energy, with a maximum
value of 4.65% for August 31st.

We can observe that an apparently quite bad day, e.g., the 15th of March (Figs.
4.9(a) and 4.9(c)), has actually achieved the best performance among all the eight
days (absolute percentage error less than 1%) thanks to the compensation effect.

To evaluate the accuracy of the proposed model, we computed the accumulated
energy for each day of the four seasons and we compared it with the target
accumulated energy.

Figures 4.11-4.14 shows the comparison between the real and predicted daily
accumulated energy, with reference to all days of the four seasons. Please note that
the figures may refer to a different number of days due to the lack of data pertinent
to days in which the system was down or under maintenance.

From Figs 4.11-4.14, we can see that the predicted energy generally fits quite
well the target energy although error spikes may appear. Once again, the bad
performance of the badly performing days might be due to rapid changes in solar
radiation or temperature during the predicted day [74, 135], or to the presence of
missing days in the training window.

Furthermore, we computed the error made on each season as the average of the
errors made on the daily accumulated energy values pertinent to the days of that
season.

We used the Mean Absolute Percentage Error (MAPE) defined in Equation (4.2),
where ti and oi are, respectively, the target and predicted accumulated energy
values of day i, and N is the number of forecasted days of the season:

1

100 .
N

i i

i i

t o
MAPE

N t=

−
= ⋅∑ (4.2)

38

0 10 20 30 40 50 60 70 80 90
1000

2000

3000

4000

5000

6000

7000

Day of Spring

Ac
cu

m
ul

at
ed

 e
ne

rg
y

(k
W

h)

Target
Predicted

Figure 4.11. – Target and predicted daily accumulated produced energy for Spring.

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

Day of Summer

Ac
cu

m
ul

at
ed

 e
ne

rg
y

(k
W

h)

Target
Predicted

Figure 4.12. – Target and predicted daily accumulated produced energy for Summer.

Table 4.3 compares our method with the classical persistence method, which
provides as forecasting value the last known value of the time series. The table
shows the seasonal MAPEs made by the persistence method and by the neural
model in the prediction of the daily accumulated energy values over all days of
each season. It can be seen that the persistence method achieves results
significantly worse than our neural network-based NARX model for all the four
seasons.

The results achieved by the neural model compare favorably (even though
obtained on different datasets and with a different technique) with those obtained

39

in [162], where the average prediction error per day from April to September is
about 26% of the measured power.

0 10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

6000

7000

Days of Autumn

Ac
cu

m
ul

at
ed

 e
ne

rg
y

(k
W

h)

Target
Predicted

Figure 4.13. – Target and predicted daily accumulated produced energy for Autumn.

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

Day of Winter

Ac
cu

m
ul

at
ed

 e
ne

rg
y

(k
W

h)

Target
Predicted

Figure 4.14. – Target and predicted daily accumulated produced energy for Winter.

Finally, with the aim of investigating the seasonal MAPE in Table 4.3, in Fig.
4.15 we show the error histograms related to the APE made on the daily
accumulated energy for the four seasons.

Each seasonal histogram shows the frequency with which an error value is made
in the considered season, i.e., how many days of that season collected that error
value.

40

Figure 4.15(a) shows that in 52 Spring days, which represent more than 60% of
all the considered Spring days (see Fig. 4.11), the error made is lower than 10%,
while only a few days have errors significantly higher. Similarly, from Figs.
4.15(b), 4.15(c), 4.15(d), we can see that, respectively, 27, 36 and 29 days (i.e.,
39%, 51% and 50% of the considered days for that season, respectively (see Figs.
4.12, 4.13, 4.14)) produce an error lower than 10%. Regarding higher errors the
same considerations as those made for Spring hold.

Table 4.3. – Comparison between the persistence method and the NARX neural network.

Predicted season
MAPE (%)

Persistence method
MAPE (%)

NARX neural network
Spring 31.16 12.2
Summer 38.13 21.1
Autumn 84.59 26
Winter 77.84 23.9

Spring

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

Absolute Pecentage Error on daily accumulated energy (%)

Fr
eq

ue
nc

y

Days of Spring

(a)

Summer

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Absolute Pecentage Error on daily accumulated energy (%)

Fr
eq

ue
nc

y

Days of Summer

(b)

Autumn

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

Absolute Pecentage Error on daily accumulated energy (%)

Fr
eq

ue
nc

y

Days of Autumn

(c)

Winter

0 20 40 60 80 100 120
0

5

10

15

20

25

30

Absolute Pecentage Error on daily accumulated energy (%)

Fr
eq

ue
nc

y

Days of Winter

(d)

Figure 4.15. – Error histograms for (a) Spring, (b) Summer, (c) Autumn, and (d) Winter.

In order to correctly interpret the results shown above we have tried to identify
which are the days that produce the worst errors, e.g., errors higher than 30% for

41

Spring, or higher than 40% for Autumn. We have found out that almost all these
days follow immediately (after one or two days) a “missing” day, that is a day in
which the system was down or under maintenance. As already stated, missing days
are not included in the used dataset, so that their information cannot be used by the
forecasting system. As a consequence, the prediction of one or more days
following a missing one may produce high errors, especially when there have been
meteorological changes that result not to be correctly modeled.

In Fig. 4.16 we show the error histogram related to the APE made on the daily
accumulated energy for the best days of Spring (those corresponding to an error
lower than 10%). Similar histograms (not shown) can be obtained for Summer,
Autumn and Winter.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

Absolute Pecentage Error on daily accumulated energy (%)

Fr
eq

ue
nc

y

Best days of Spring

Figure 4.16. – Error histogram for the best days of Spring (daily error lower than 10%).

Finally, we tested the developed forecasting system on the second PV installation
obtaining practically the same results as those shown above (the differences are so
negligible to make the presentation of such results unnecessary).

Based on the previous considerations, we can observe that the compensation
effect resulting from the use of the daily accumulated energy makes the developed
forecasting system suitable to be effectively and profitably used for one day-ahead
forecasting of energy production.

4.4.3 Discussion
In the previous sections we have shown that a powerful nonlinear forecasting

technology (neural networks), employed within a NARX model, is able to predict
the energy production in a PV installation, provided that (see Table 4.1):

• the right exogenous inputs are used (irradiance and hour of the day);
• the right NARX model is used (i.e., the correct number of tapped delays d);
• the right neural network structure is used (particularly, the number of

hidden neurons h);
• the right training window size (w) is adopted;
• the right sampling frequency (s) is used.

In our experience the other neural network parameters (namely, training

42

algorithm, maximum number of learning epochs, early stopping criterion, etc.)
have a lower impact on the forecasting performance.

The proposed methodology does not depend on the characteristics of the specific
PV installation, such as geographical location, panel’s inclination, etc. Its degrees
of freedom make it suitable to be applied to any other PV installation.

4.5 Concluding remarks
In this chapter we have presented a general methodology to solve a problem of

one day-ahead forecasting of solar energy production. We implemented the time
series analysis model NARX by means of a feed-forward neural network with
tapped delay lines. In the training process we use the solar irradiation data and the
hour as exogenous inputs, and the PV energy production data as endogenous input.

Experimental results have showed that the proposed neural network can faithfully
reproduce the curve of daily produced energy so as to predict the daily
accumulated energy with seasonal mean absolute percentage errors ranging from a
minimum of 12.2% (Spring) to a maximum of 26% (Autumn). These results were
achieved despite the presence of missing days (about 21% of the days of one year)
in the used training windows. The proposed methodology has been validated by
showing that it significantly outperforms the persistence method, a frequently used
benchmark in this kind of applications.

Future work will focus on integrating the proposed system with a weather
forecasting system, so as to estimate directly the environmental variables. This
could be useful when the input data are not available and anyway could increase
the prediction performance.

Moreover, due to the good results obtained, we may extend the forecasting
horizon to a multiple of the day, so as to strengthen the long-term forecasting
analysis. Similarly, we may change the actual forecast time-step of 15 minutes to
hourly time-steps.

The forecasting system resulting from the proposed methodology could be
profitably used to control the energy distributing grid. Indeed, since PV-based
power generators are discontinuous, being influenced by weather conditions, this
discontinuity has to be mitigated using alternative power sources, like gas turbines
and thermal power plants, which have short start-up time (of the order of a few
hours). This means that knowing the energy produced by a grid-connected PV
installation 24 hours ahead of time is enough to prepare the start-up of such
alternative power sources. The importance of the present study stems exactly from
this consideration. In addition, it is widely recognized that an accurate forecasting
tool for energy production is a key component of a smart grid, especially when
coupled with an energy consumption predictor.

43

5
A hierarchical approach to multi-class fuzzy

classifiers for PV energy production

5.1 Introduction
In the last two decades fuzzy rule-based systems have been extensively applied to

pattern classification thanks to their capability to achieve good trade-offs between
accuracy and interpretability [45, 76, 90, 129, 134]. In particular, interpretability of
a fuzzy rule-based system is typically measured in terms of complexity of the rule
base, and depends on such factors as comprehensibility of fuzzy partitions of the
domains of the involved linguistic variables, number of input variables, number of
conditions in the antecedent of each rule, and number of fuzzy rules. In its simplest
form, a fuzzy rule-based classifier is a system consisting of fuzzy if-then rules
having a class label as consequent.

When designing a fuzzy classifier two main issues must be considered: fuzzy
classifier identification and fuzzy parameter optimization. Major issues in fuzzy
classifier identification are i) how to choose the membership functions of linguistic
variables, ii) how to generate the fuzzy rules, and iii) how to determine the output
class.

A large number of methods for extracting fuzzy rules directly from numerical
data have been proposed, thus making prior knowledge about the data unnecessary.
These methods include heuristic procedures [2, 63, 70, 114, 156], neuro-fuzzy
techniques [79, 102, 103, 111, 146, 150], clustering methods [3, 130], genetic
algorithms [8, 19, 51, 52, 65, 68, 71, 133, 137, 165], fuzzy decision trees [21, 155,
163], and data mining techniques [38, 39, 62, 71].

The antecedent part of fuzzy rules may contain single-dimensional fuzzy sets
obtained by partitioning each input dimension. Antecedent fuzzy sets may, e.g.,
have pre-specified linguistic values with fixed membership functions obtained by
homogeneously partitioning each axis of the pattern space [67] or may be
purposely defined by domain experts. Alternatively, multi-dimensional antecedent
fuzzy sets may be generated by applying a clustering algorithm to sample input-
output data [2, 3]. Sometimes, these multi-dimensional antecedent fuzzy sets are
projected onto each axis of the input space to improve the interpretability of the
clusters produced [129, 136]. In all cases, the output class associated with each
fuzzy subset (either grid cell, identified by the partitions on the input dimensions,

44

or cluster) of the pattern space is derived from the training samples belonging to
that subset.

Of course, the performance of a fuzzy rule-based classifier (FRBC) depends on
the grain size of the fuzzy partition of the pattern space: a too coarse fuzzy partition
may cause many misclassifications while a too fine fuzzy partition may miss to
generate fuzzy if-then rules due to lack of training samples in the corresponding
areas of the input space. A possible solution is to simultaneously use different
partitions with different resolutions at the expense of a high number of fuzzy rules,
especially in high-dimensional spaces [70]. A different solution is selective
partitioning, in which the input regions where classes overlap are further
partitioned with a higher resolution level [103].

Other alternatives are possible. E.g., Ait Kbir et al. [6] propose the construction
of a compact fuzzy classification system by using a method of hierarchical fuzzy
partition based on 2N-tree recursive decomposition of the feature space. In [54], a
hierarchical fuzzy partition is generated independently over each dimension in an
ascending way by aggregating fuzzy sets. In [85], the authors adopt a fuzzy entropy
measure to partition the pattern space into non-overlapping decision regions and to
select relevant features for classification purposes. In [47], a hierarchical fuzzy
rule-based classification system is proposed for imbalanced datasets. Basically a
finer granularity of the fuzzy partitions is applied in the boundary areas between
the classes.

As far as fuzzy parameter optimization is concerned, several optimization
techniques have been applied to set the fuzzy system parameters based on the
training samples. These include the type and shape of fuzzy membership functions,
and the number and structure of fuzzy rules. E.g., genetic algorithms [67], and
evolutionary multi-objective approaches [68, 69, 71] are adopted to cope with the
combinatorial explosion of the number of rules. In [165], the authors adopt a
simultaneous genetic algorithm-based optimization of fuzzy partitions, shape and
parameters of fuzzy membership functions, number and size of fuzzy rules. In
[134], interval-valued fuzzy sets with a post-processing genetic tuning step of their
parameters are used to model the linguistic labels. Li et al. [90] propose a hybrid
co-evolutionary genetic algorithm for learning approximate fuzzy rules, by using a
q-nearest neighbor replacement method to coevolve a population of rules, and a
local search method. A classifier is built by extracting rules with minimal
redundancy from the final population. Setnes et al. [137] apply fuzzy clustering to
produce an initial TSK fuzzy rule set, then they use a real-coded GA to
simultaneously optimize the rule antecedents and the consequents. Wu et al. [159]
adopt a functional-link-based neural fuzzy network where the consequence of each
rule is a nonlinear combination of the input variables. Tung et al. [148] propose the
self-organizing Yager-based hybrid neural fuzzy inference system: initial clusters
are found in the input-output space by means of the Gaussian Discrete Incremental
Clustering technique, and fuzzy rules are generated through the Wang and Mendel
method. Wang et al. [153] apply the Mapping-Constrained Agglomerative
clustering method to identify the cluster configuration of a given dataset for the

45

construction of an initial classifier structure. The linear and nonlinear parameters of
the classifier are then optimized, respectively, by a recursive least squares
algorithm and a modified Levenberg-Marquardt algorithm. Ishibuchi et al. [73]
propose the combination of two fuzzy genetic learning approaches (i.e., Michigan
and Pittsburgh) into a single hybrid algorithm for designing fuzzy rule-based
classifiers. Abonyi et al. [4] use a decision tree-based initialization of the fuzzy
rule-based classifier for feature selection and initial partitioning of the input
domains. The initial fuzzy classifier is optimized by similarity-driven rule
reduction and a multi-objective genetic algorithm based on redundancy and
accuracy. Heuristic methods for rule weight specification are proposed in [72]. In
[115], an adaptive method based on reward and punishment is applied to
automatically adjust the weights of fuzzy rules. In [167], a hill-climbing search
algorithm is adopted for learning rule weights.

In this chapter we propose an easy-to-use approach for extracting fuzzy rules
from available data by employing the Wang and Mendel algorithm for the
generation of the rule base. The fuzzy system developed in [33] is obtained
exploiting a hierarchical scheme, as a combination of fuzzy models built on input
domain regions increasingly smaller, according to a multi-level grid-like partition.
Only the necessary partitions are built, in order to avoid the explosion of the
number of rules with the increase of the hierarchical level. The fuzzy system
employs the fuzzy rule-based classifier frbc [28], presented in Section 2.3. The
optimal values of some key parameters of the proposed method are found by means
of a real-coded genetic algorithm.

5.1.1 Context of application
To illustrate the proposed approach we refer to a real-world dataset consisting of

input/output pairs collected from a photovoltaic (PV) installation: the inputs are the
temperature of the solar panel and the irradiation, the output is the produced
energy.

The reason for this is the following. PV installations (see Section 4.1) are
typically used as energy sources for the electric grid. Major issues in electric grid
management (in particular, smart grids) are efficiency and reliability, which
require, among other things, fast and easy understanding by the grid operator of
both the electricity demand and the electricity supply (energy production). With the
aim of helping the grid operator to promptly make his/her decisions, we propose to
model in linguistic terms the decision process and the elements on which that
process operates, as previously done in [34, 35]. More precisely, we deal with this
issue as a fuzzy classification problem. We divide the values of energy production
into three classes (low, medium, high), each modeled by a fuzzy set. We also model
the environmental variables (namely, temperature and irradiation) as linguistic
variables. Then we build fuzzy rules directly from data so as to associate pairs of
values of the two environmental variables with a specific value of produced
energy. In this way, the manager of a PV plant can gain enough information from

46

the system so as to perform appropriate functional operations for the installation,
even if the exact energy production value is not known [55].

The proposed approach is also applied to some well-known benchmark datasets
and the results are compared with those obtained by other authors using different
techniques.

5.1.2 Outline of the chapter
The chapter has the following structure. Section 5.2 describes the real-world

experimental data used to illustrate the proposed method; Section 5.3 introduces
the proposed hierarchical approach to fuzzy classifier construction; Sections 5.4
and 5.5 present the application of the methodology to the real-world dataset and the
obtained results. Finally, Section 5.6 is devoted to validate our classifier, by
comparing it with other classifiers present in the literature on some benchmark
classification problems, namely the Fisher’s Iris data, the Wine data, the Wisconsin
breast cancer data and the Pima Indians diabetes data. Lastly, concluding remarks
are provided in Section 5.7.

5.2 Description of the real-world experimental dataset
The real-world data used to highlight the characteristics of the proposed method

for building fuzzy classifiers were collected during five months (from March to
July 2009) from a PV installation, consisting of an array of solar panels, located in
Italy. The nominal power of this PV installation measured by the associated
inverter is 6.45 KW. Data were collected every day during daylight, with a
sampling frequency of 15 minutes.

As stated previously, among the environmental data, temperature of the solar
panel and irradiation play the most significant role to evaluate the energy
production of a PV installation [9, 80, 81], so they are chose as input parameters
(see Section 4.2. for a more detailed description).

The output parameter is the energy production related to the PV array and
measured by the associated inverter.

Data have been adapted in order to use them in a fuzzy classification problem, as
explained in the following. Before beginning the data analysis, we needed to
transform the energy numerical values into class labels. For the sake of simplicity,
we operated a uniform partition on the output domain by identifying three intervals
corresponding to three output classes (Low, Medium, High energy production,
M=3). Then, we associated each output pattern with the energy label corresponding
to its interval. In Fig. 5.1 we can see the scattering of the dataset (7303 samples)
over the two dimensions and the distribution of the samples over the three output
classes.

47

0 200 400 600 800 1000

0

10

20

30

40

50

60

Irradiation (W/m2)

Te
m

pe
ra

tu
re

 (°
C

)

Low
Medium
High

Figure 5.1. – Scatter diagram of the PV dataset and distribution of the samples over the three output

classes (Low, Medium, High).

5.3 A hierarchical approach to fuzzy classifier construction
In this section we introduce the proposed methodology [33], which consists of a

first step, a second iterative step and a final third step. Let us make some general
considerations before describing each step in greater detail. Both in the first step
and at each iteration of the second step we build a grid, respectively, on the whole
input space and on a portion of the input space. Whatever the case, our aim is to
find univocal mapping areas, i.e., input areas mostly containing patterns associated
with the same class label. For each such area, an appropriate number of training
samples are randomly extracted and used to generate fuzzy rules that model that
area. Since we are interested in collecting training samples according to the real
distribution of the available input patterns in relation with each output class,
whenever we need to construct a grid in the input portion under consideration we
should adopt an ad hoc non-uniform partition, e.g., based on the distribution of the
input samples in the feature space. On the other hand, the frbc method expects a
uniform partition of the input space. Thus, for a good compromise between
efficiency and computational cost, we chose to perform a non-uniform grid
partitioning of the original input space only in the first step, while we decided to
adopt uniform grid partitioning of the relevant input area in all iterations of the
subsequent second step. Of course, appropriate scaling will let the non-uniform
grid partition correspond to an equivalent uniform partition used by the frbc
system.

In practice, our objective is to split the input domain into univocal mapping areas
with possibly different grain size, and to build a separate set of fuzzy rules to
model each such area. Let us now describe more thoroughly the three steps of the

48

methodology.

5.3.1 First step: first-level grid partitioning
In the first step, applied to the original input space, we carry out the following

actions:
i) we apply the k-means clustering algorithm [91] separately to each input

dimension;
ii) we use the separation thresholds between the clusters for:

ii.1) building a non-uniform grid (made of k×k areas) in the input space,
and

ii.2) constructing a non-uniform fuzzy partition on each input
dimension consisting of k membership functions;

iii) we analyze separately each area of the grid previously built in order to
discriminate among insignificant, univocal mapping and to-subgrid areas.
More precisely,

iii.1) an insignificant area is any grid area A containing a total number
NA of input samples below a predefined first-step relevance
threshold RT1 (the value of RT1 depends on the specific problem
under consideration); each such area is eliminated from further
consideration;

iii.2) a univocal mapping area A is any non-insignificant area in which
there exists a dominant majority class, i.e, the class associated with
the majority of the samples falling in that area, such that the
number AN

+ of majority class samples is greater than, or equal to, a
given percentage, say first-step dominance percentage (DP1), of
the numerousness NA of samples falling in A;

iii.3) each non-univocal and non-insignificant grid area is called to-
subgrid area: each such area will undergo the second iterative step;

iv) for each univocal mapping area A, a random extraction of
min(,)aK perc N S+= ⋅ majority class samples is performed, with perc,

appropriately chosen, representing a percentage of AN
+ , and S, appropriately

chosen, being a problem-dependent upper bound of samples of the same
class that can be extracted from the same area. The extracted samples will
be used to generate, through frbc, the pertinent fuzzy classification rules
that model the considered area;

v) we build the first-level fuzzy model by training frbc with all the samples
extracted from all the univocal mapping areas previously found.

To complete the description of the first step of the methodology we must mention
that, since we use the Wang and Mendel method implemented in frbc, which
builds a uniform fuzzy partition of each input feature space, two more operations
must be performed within action ii), namely:

49

ii.3) for each input feature we build a uniform fuzzy partition,
consisting of k fuzzy sets, using the Wang and Mendel method
implemented in frbc;

ii.4) for each input feature, we use non-uniform scaling to transform the
previous uniform partition into the corresponding non-uniform
partition (built at stage ii.2): all the feature values are scaled from
their original interval to the new interval, maintaining the
proportionality.

5.3.2 Second (iterative) step: deeper-level grid partitioning
The second step is applied to each to-subgrid area, which has been found either in

the first step or at any iteration of the second step itself. For a given to-subrid area
A we perform the following actions:

i) we build a uniform hard partition (consisting of k intervals) on each
dimension of A, so as to construct a deeper-level uniform grid of the area
itself;

ii) we identify the insignificant, univocal mapping and to-subgrid areas inside
the new grid. Similarly to what done before, first we eliminate from further
consideration any insignificant area of the new grid, by using the second-
step relevance threshold 2

iRT , with i, 1i ≥ , representing the iteration
number of the second step; then we identify the univocal mapping areas
based on the second-step dominance percentage 2

iDP with i, 1i ≥ , having
the same meaning as before; finally, each to-subgrid area of the new grid
will undergo the second iterative step, thus giving origin to one more
iteration. Of course, second-step relevance thresholds 2

iRT , 1i ≥ , will
typically decrease with the increase of the iteration number i, while
second-step dominance percentages 2

iDP , 1i ≥ , may vary according to the
iteration number i;

iii) we identify the minimum (hyper)rectangle (see Fig. 5.2) containing all the
samples falling inside the univocal mapping areas included in A; we
construct a uniform fuzzy partition, consisting of k membership functions,
on each dimension of the (hyper)rectangle, thus producing a fuzzy partition
of the (hyper)rectangle itself; then we generate a deeper-level fuzzy model
for the (hyper)rectangle by training frbc with an appropriate number

min(,)aK perc N S+= ⋅ of majority class samples extracted from each
univocal mapping area a related to the hyper(rectangle).

50

Figure 5.2. – A to-subgrid area containing five univocal mapping areas (colored areas), and the

(hyper)rectangle (dashed line) including all the samples inside the univocal mapping areas.

5.3.3 Third step: final fuzzy model generation
In the third step, we generate the final fuzzy model, called merged fuzzy model, as

the union of the first-level fuzzy model and all the deeper-level fuzzy models built
during the hierarchical process. The fuzzy sets for each input variable of the
merged fuzzy model are the union of the fuzzy sets (for that input) of all the
models built. The merged fuzzy rule base is the union of the rule bases of all the
fuzzy models.

We observe that there may be input domain regions modeled by more than one
fuzzy set (e.g., the larger one built at first level analysis and the narrower, and
therefore more specific ones, built at higher level analysis).

Figure 5.3 depicts the steps described above and shows the objects resulting from
each step.

In this way the final fuzzy model is obtained through a hierarchical process, by
merging fuzzy models built on input domain regions increasingly smaller, as the
result of the construction of appropriate grids on the pertinent areas of the input
domain. The objective is to exploit the input domain space in an effective way,
avoiding unnecessary analysis and thus the generation of too many, irrelevant
rules. The proposed hierarchical method allows us to extract an ad hoc training
dataset, so as to build the final frbc system as well as possible. This is a key
feature when dealing, e.g., with non-uniformly distributed data. Actually, with
reference to the used real-world dataset, months and days within a month may be
typically different, due to the highly variable climatic conditions, so a random

51

selection of training samples would not meet efficient training requirements.

1. First-level grid
partitioning

repeat until a
to-subgrid area is

found

2. Deeper-level grid
partitioning

3. Combination of the first-
level fuzzy model and the
deeper-level fuzzy models

deeper-level
fuzzy models

first-level fuzzy
model

merged fuzzy
model

Figure 5.3. – Steps of the proposed hierarchical methodology and resulting objects.

5.3.4 GA-based parameter optimization
A genetic algorithm (GA) is an optimization process based on the mechanics of

natural selection and genetics to produce better populations, according to a fitness
function. Generally, GAs start with a randomly generated initial population of
chromosomes, representing candidate solutions to the problem at hand, and evolve
toward populations having a better fitness by applying genetic operators such as
crossover and mutation.

We apply a GA to optimize the following parameters (i refers to the iteration
number of the second step): the relevance thresholds RT1 and 2

iRT , 1i ≥ , the

dominance percentages DP1 and 2
iDP , 1i ≥ , the maximum number S of samples

extracted from a given grid area (valid for the first step and all iterations of the
second step), the minimum rule weight w (valid for the first step and all iterations
of the second step), and the rule weight modifiers 1wΔ and 2

iwΔ , 1i ≥ . In
particular, the last two parameters aim, respectively, to control the complexity of
the whole rule base, and to enhance/inhibit the influence of the rules of a given
step/iteration. The maximum number of iterations is fixed heuristically.

We adopt real-coded chromosomes. The range of possible values of each gene is
chosen in heuristic way based on the specific dataset under consideration. When
appropriate, integer approximations of real numbers are adopted. The fitness
function is the classification error of the fuzzy classifier.

52

5.4 Application of the proposed methodology to the real-world
dataset

In this subsection we show the application of our methodology to the PV dataset.
For the sake of simplicity, we adopt k=3 in the k-means algorithm. Further, we
consider the percentage perc of majority class samples to extract from each
univocal mapping area equal to 70%.

5.4.1 First step
In this step, we perform the actions described in Section 5.3.1. Figure 5.4 shows

the non-uniform partitions obtained by the k-means algorithm (k=3) on the input
features and the scattering of the original dataset over the three output classes on
the 9 areas of the grid. In the figure, i1 and i2, and t1 and t2 represent, respectively,
the separation thresholds for irradiation and temperature. The number on each area
identifies the grid area. As we expected, two areas were found to be insignificant
(areas 3 and 7). Insignificant areas correspond, for instance, to incompatible or
unusual input conditions, such as high irradiance and low temperature at the same
time, or vice versa.

i1 i2

t1

t2

Irradiation (W/m2)

Te
m

pe
ra

tu
re

 (°
C

)

Low Medium High

9

54

7 8

6

1 2 3

Figure 5.4. – Partition of the input domain by applying the k-means clustering algorithm (with k=3)

and identification of 9 areas (numbered from 1 to 9) on the grid.

Figures 5.5(a) and 5.5(b) show, respectively, the uniform partition built on one
input feature (irradiation) space by frbc, and the corresponding non-uniform
partition based on the k-means algorithm. Both partitions consist of two-sided
Gaussian membership functions. We chose two-sided Gaussian membership
functions in the first level of analysis since they are known to be very accurate,
provide complete coverage of the modeled space, and allow easy scaling from the
uniform partition to the non-uniform one. Similar considerations hold for the

53

temperature input.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1
Non uniform (k-means) partition

(b)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1
Uniform partition

(a)

Figure 5.5. – Scaling from a uniform partition (a) to a non-uniform one (b). In both cases, two-sided

Gaussian membership functions are used.

Next, we need to take into account separately each area of the grid previously
built, in order to discriminate among insignificant, univocal mapping and to-
subgrid areas. The bar diagrams in Figs. 5.6(a) and 5.6(b) shows the distribution of
the samples in the areas of the first-level grid. Fig. 5.6(a) simply indicates the
numerousness of the samples in each area, whereas Fig. 5.6(b) shows the class
distribution in each area (for better clarity, we used a logarithmic scale on the y-
axis). As we can see only a few regions present samples from one class, while the
other regions present samples belonging to at least two classes.

With reference to Fig. 5.7, which shows the first-level and second-level grid
partitions, two areas (i.e., 3 and 7) are found to be insignificant and so they are
discarded. Areas 1, 4, 6 and 8 are univocal mapping areas, that is, we can find
samples mostly from one class. In particular, Low energy class samples in areas 1
and 4, Medium energy class samples in area 8, and High energy class samples in
area 6. Each such area is candidate to represent a possible input state for the
system. Finally, to-subgrid areas 2, 5 and 9 are marked for further analysis.

5.4.2 Second step
During this step, we analyze each to-subgrid area (in this case, areas 2, 5 and 9 in

Fig. 5.7) in a similar way as done in the previous step with the following
differences:

• the initial partition built on each dimension is a uniform hard partition
instead of non-uniform;

• the deeper-level fuzzy model is built on the minimum (hyper)rectangle
containing the univocal mapping areas included in the to-subgrid area

54

under consideration;
• the fuzzy partitions are made of Gaussian membership functions.

The process is repeated until no area needs to be further divided.

1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y
pe

r a
re

a

Area identifier
(a)

1 2 3 4 5 6 7 8 9
100

101

102

103

104 1st level grid analysis

Fr
eq

ue
nc

y
pe

r c
la

ss
 p

er
 a

re
a

(lo
g

sc
al

e)

Area identifier

Low
Medium
High

(b)

Figure 5.6. – Distribution of samples on the areas of the first-level grid: (a) total, and (b) per class
(logaritmic scale on y-axis).

55

1

7

4

8

3

9.1

9.4

Low energy Medium energy High energy

insignificant

insignificant

5.4
5.7

5.1

to-subgrid

to-subgrid

2.7
to-subgrid

insig.

insig.insig.insig.

insig.insig. insig.

6
to-subgrid

to-subgrid

to-subgrid

9.2 9.3

9.5 9.6

9.7 9.8 9.9

5.8 5.9
5.6
5.3

5.5
5.2

Irradiation

i1 i2

Temperature

t2

t1
univocal mapping

univocal mapping

univocal mapping

univocal mapping

univ. map. univ. map. univ. map.

univ. map.univ. map.

univ. map. univ. map.

univ. map.

univ. map.

univ. map. univ. map.

univ. map.

univ. map.

univ. map.
2.8

Tmax

Tmin
Imin Imax

Figure 5.7. – The grid partitions of the original input space obtained by applying the first step and the
first iteration of the second step of the methodology (the dot notation is used to indicate sub-areas).

9.4.7

9.4.4 9.4.5

9.4.3

9.4.8

9.4.1 9.4.2

univocal mapping

insignificantinsignificant

univocal mappingunivocal mapping

univocal mapping

insig. insig. insig.

insig.

Low energy Medium energy High energy

9.4.9.1

9.4.6.7 9.4.6.8

9.4.6.4 9.4.6.5

9.4.9.8 9.4.9.9

9.4.9.2 9.4.9.3

9.4.6.9

9.4.6.6

9.4.6.2

univ. map. univ. map.

univ. map. univ. map.

univ. map.

univ. map.

univ. map.

univocal mapping

9.4.6.1
univ. map.

univ. map.
9.4.9.7

Irradiation

Temperature

i2
t2+ Tmax-t2

3 i2+ Imax-i2
3

Tmax- Tmax-t2
3

Figure 5.8. – The grid partition of area 9.4 obtained through the second and third iterations of the

second step of the methodology.

Figure 5.8 shows the grid partitioning for the second and third iterations of the
second step in sub-area 9.4 (which is marked “to-subgrid” in Fig. 5.7). Two areas,
namely 9.4.6 and 9.4.9, are marked to-subgrid, so a further analysis level is
required. In the third iteration of the second step only insignificant and univocal
mapping areas are found, so the analysis of area 9.4 and its sub-areas ends at this

56

iteration. We wish to highlight dot notation used, e.g., A.a is used to indicate a sub-
area a inside a given area A.

Figure 5.9 shows the hierarchical decomposition tree representing the analysis
performed on the PV dataset: the tree shows four levels of analysis, which imply
three repetitions of the second step of the methodology. More in detail, in Fig. 5.9,
the root, labeled “start”, represents the whole input domain space, while each node
represents an input domain subspace increasingly smaller with the hierarchy level.
Dashed line rectangles close up insignificant areas; solid line (colored) rectangles
represent univocal mapping areas, while double solid line rectangles correspond to
to-subgrid areas.

For each to-subgrid area found at a given analysis level, a partition is built on that
to-subgrid area in the following analysis level. For example, three to-subgrid areas
are found at first level (namely, areas 2, 5 and 9), thus three corresponding
partitions will be built at second level within each level: each partition is identified
by an order number (which is the same as the order number of the corresponding
to-subgrid area in the preceding hierarchical level); so, with reference to Fig. 5.9,
the first partition at the second level (consisting of to-subgrid area 7, insignificant
areas 1, 2, 3, 4, 5, 6 and 9, and univocal mapping area 8) is pertinent to area 2, the
second partition is related to area 5, finally, the third partition regards area 9.

Each set of univocal mapping areas represents a leaf in the decomposition tree.
For each leaf, a fuzzy model frbc is built, for a total of 23 fuzzy models. We
observe that the decomposition of a grid area may actually not generate any fuzzy
system, e.g., due to the lack of significant sub-areas found with the decomposition.

5.4.3 Third step
In the third step we build the final fuzzy model, by merging the 23 fuzzy models

previously generated. The merged fuzzy model consists of 83 rules and 51 and 38
fuzzy sets, respectively, for the irradiation input variable and the temperature input
variable.

The generic k-th rule has the following format (see Equation (2.2)):

Rk: If irradiation is l_p_labelI and temperature is l_p_labelT then energy is
labelE with kγ ,

where, with reference to Fig. 5.9, l is the level in the decomposition tree, p is the
order number of the partition on level l, labelI, labelT and labelE are the labels
associated, respectively, with irradiation, temperature and energy, and can be,
separately, either “Low”, “Medium” or “High”.

So, e.g., the rule:

If irradiation is 2_3_Low and temperature is 2_3_Medium then energy is
Medium with 0.39,

identifies a region of the input domain, to which the labels ‘2_3_Low’ for
irradiation and ‘2_3_Medium’ for temperature correspond. The consequent class

57

for the output variable energy is ‘Medium’ with a certainty factor of 0.39.

Figure 5.9. – Hierarchical decomposition tree.

st
ar

t

Fi
rs

t l
ev

el

Se
co

nd
 le

ve
l

Th
ir

d
le

ve
l

3,
7

2
1,

4,
6,

8
5

9

1-
6,

9
7

4

1-
9

2,
3,

5,
6,

8,
9

1
2,

3,
5-

9

Fo
ur

th
 le

ve
l

1
7

2,
3,

6,
9

1,
4,

7
1,

3,
4,

6,
7,

9

7
5

8

1,
2,

4-
6

3,
7-

9

1-
3,

7-
9

4-
6

4

2
9

8

7,
8

9
6

1-
5

4

1-
9

1-
3,

5-
9

1-
9

1
4-

6
2-

9
1-

3,
7-

9

in
si

gn
ifi

ca
nt

 a
re

a(
s)

se
t o

f u
ni

vo
ca

l m
ap

pi
ng

 a
re

a(
s)

(f
uz

zy
 m

od
el

)

to
-s

ub
gr

id
 a

re
a

8

5
8

2
9

2
1,

3-
6,

8
5

3-
6,

9
1,

2,
7,

8
4-

6
1-

3,
7-

9

4-
6,

8
1-

3,
7,

9

1,
3,

4,
6,

7

1-
3,

8,
9

4-
7

1-
3,

7-
9

4-
6

1-
6

7-
9

58

More precisely, ‘2_3_Low’ means that the considered region of the input domain
is the low part of the irradiation input in the third partition built at the second level.
Similarly, ‘2_3_Medium’ means that the considered region of the input domain is
the medium part of the temperature input in the third partition among the second
level partitions. Thus, referring to Fig. 5.9, the rule corresponds to the partition of
area 9.

In Fig. 5.10 we show a subset of the rule base of the merged fuzzy model. More
in detail, we show 11 rules: i) the first-level rules regarding areas 1 and 4, ii) the
second-level rules regarding the partition of area 9, iii) the third-level rules
regarding the partition of area 9.4. Please note the use of a compact notation: irr,
temp and en stand for irradiation, temperature and energy, respectively, while L, M
and H refer to Low, Medium and High, respectively.

Figure 5.11 shows the fuzzy sets present in the rules of Fig. 5.10, used to model
the linguistic variables irradiation and temperature, respectively.

Hereafter we explain the interpretation of the rules in Fig. 5.10. The rules of the
first level refer to the initial input domain partition. More in detail, rules R1 and R2
refer to areas 1 and 4, respectively (see Fig. 5.11). The rules of the second level
refer, as said earlier, to area 9. The rules of the third level refer to area 9.4. Indeed,
considering, e.g., rule R44, we can easily see, from the used fuzzy set labels
(‘3_6_L’ for irr and ‘3_6_L’ for temp), that we are referring to the sixth partition
built at the third level (see Figs. 5.8 and 5.9).

As we can see, the final fuzzy system contains a reasonable number of easily
interpretable linguistic rules.

Some first-level rules
R1: If irr is L and temp is L then en is L with 1.45
R2: If irr is L and temp is M then L with 1.45
. . .
Some second-level rules
R16: If irr is 2_3_L and temp is 2_3_H then en is M with 0.45
R17: If irr is 2_3_M and temp is 2_3_L then en is H with 0.45
R18: If irr is 2_3_M and temp is 2_3_M then en is H with 0.44
R19: If irr is 2_3_M and temp is 2_3_H then en is H with 0.44
R20: If irr is 2_3_H and temp is 2_3_M then en is H with 0.45
. . .
Some third-level rules
R44: If irr is 3_6_L and temp is 3_6_L then en is M with 0.85
R45: If irr is 3_6_L and temp is 3_6_M then en is M with 0.85
R46: If irr is 3_6_L and temp is 3_6_H then en is M with 0.85
R47: If irr is 3_6_M and temp is 3_6_H then en is M with 0.79
. . .

Figure 5.10. – Part of the final rulebase (compact notation).

59

Figure 5.11. – Fuzzy sets built by the hierarchical method to model areas 1, 4, 9, and 9.4.

5.4.4 Genetic optimization
With reference to the PV dataset, based on heuristic considerations, we

considered four hierarchical levels, i.e., three iterations of the second step of the
methodology. Thus, a chromosome contains the following real genes
(corresponding to the parameters to optimize): i) the relevance thresholds 1RT and

2
iRT , i=1, 2, 3, ii) the dominance percentages 1DP and 2

iDP , i=1, 2, 3, iii) the
maximum number S of samples extracted, iv) the minimum rule weight w, and v)
the weight modifiers 1wΔ and 2

iwΔ , i=1, 2, 3.

For the sake of simplicity, in the experiments we set 3 2 1
2 2 2RT RT RT= = and

3 2 1
2 2 2DP DP DP= = . Figure 5.12 depicts the final structure of the chromosome.

RT1 DP1 S w �w1 �w2
1 �w2

2 �w2
3RT2

1 DP2
1

Figure 5.12. –Structure of the GA chromosome used with the PV dataset.

60

5.5 Experimental results on the PV dataset
In the experiments, conducted in Matlab®, on the PV dataset we started by fixing

the GA-optimized model parameters based on heuristic considerations. Then, we
chose the fuzzy inference process parameters of the fuzzy model based and on a
preliminary analysis (see Table 5.1) in which we tried all the 56 possible inference
process parameters configurations. Each configuration was tested 10 times on 10
different test sets randomly generated from the available data. Table 5.1 shows the
maximum correct classification values.

Then, we performed the genetic optimization. We used stochastic uniform
selection, scattered crossover with probability 0.8, and uniform mutation with
probability 0.01. The population consisted of 30 individuals and the maximum
number of generations was 300. These values are shown in Table 5.2, which
summarizes the values for the final rule base parameters, the fuzzy inference
process parameters, the GA parameters and the GA-optimized model parameters.

For each chromosome, we used the values of the genes of that chromosome to
perform 30 experiments on 30 different training and test sets randomly generated
from the available data. Finally we computed the fitness as the mean correct
classification value on the 30 test sets. The best chromosome achieved a mean
classification performance of 97.38%, with a maximum classification performance
of 97.91%. The model parameters contained in the best chromosome are shown in
Table 5.2.

Table 5.1. – Application of the multi-class fuzzy classifier on the PV dataset for 56 different FRMs
(best results in bold).

Aggregation
function Stress function

And operator, Implication operator
Minimum,

Product
Product,
Product

Product,
Minimum

Minimum,
Minimum

Badd operator
stress 97.32 97.05 96.78 97.01
no stress 97.41 97.13 96.78 97.1

Normalized addition
stress 97.32 97.05 96.78 97.01
no stress 97.41 97.13 96.78 97.11

Arithmetic mean
stress 97.30 97.17 96.82 97.07
no stress 97.53 97.34 96.93 97.11

Maximum
stress 97.11 97 96.7 97.09
no stress 97.11 97 96.7 97.09

Sowa Or-like
stress 97.11 97 96.7 97.09
no stress 97.11 97 96.7 97.09

Sowa And-like
stress 97.53 97.17 96.82 97.07
no stress 97.30 97.34 96.93 97.11

Q.-arithmetic mean
stress 97.11 97 96.72 97
no stress 97.11 96.97 96.72 97.07

61

Table 5.2. – Final parameters of the merged fuzzy model for the classification of solar energy
production.

Parameter name Value
Final rule base parameters
Number of input variables F = 2
Number of fuzzy sets per input variable Q1 = 51, Q2 = 38
Shape of fuzzy sets Two-sided Gaussian, Gaussian
Number of output classes M = 3
Number of rules L = 83
Fuzzy inference process parameters
AND operator (T-norm) minimum
Implication (h) operator product
Stress function, g Square_SquareRoot (see Equation (2.17))
Aggregation function, Γ Sowa and-like (see Table 2.1)

GA parameters
Selection stochastic uniform
Crossover scattered (PC = 0.8)
Mutation uniform (PM = 0.01)
Number of individuals per population 30
Maximum number of generations 300
GA-optimized model parameters

Relevance thresholds RT1 = 15, 3 2 1
2 2 2RT RT RT= = = 2

Dominance percentages DP1 = 80%, 3 2 1
2 2 2DP DP DP= = = 50%

Maximum number of samples extracted S = 145

Minimum rule weight w = 0.95

Weight modifiers Δw1 = 0.45, Δw2
1 = -0.55, Δw2

2 = -0.15, Δw2
3 = 0

The available data at our disposal consisted of 7303 samples; based on the

parameter values in Table 5.2, only 2614 (about 36%) of them were used for
training.

5.6 Validation on benchmark datasets and discussion
This section aims to validate the proposed hierarchical methodology for building

fuzzy classifiers. We apply the fuzzy system built following our approach (called
HFRBC-GA from now on) to some well-known benchmark datasets, namely, the
Fisher’s Iris data, the Wisconsin breast cancer data, the Pima Indians diabetes data,
and the Wine data (all available at the UCI machine learning repository [48]). We
compare the mean classification performance achieved by our method in 30
executions with those obtained by other classifiers in the literature on the above-
mentioned datasets.

62

5.6.1 Iris dataset
The Iris dataset is a commonly used benchmark for classification problems [85,

161] and it consists of 150 samples belonging to three different species of Iris
flower, namely, Setosa, Virginica, and Versicolor. Each sample is represented by
four numerical features: petal length, petal width, sepal length and sepal width. The
dataset is perfectly balanced with respect to the classes.

We applied our method to this dataset and we compare our results with those
achieved by some authors in the literature [4, 6, 73, 85, 90, 134, 137, 148, 153,
159].

Table 5.3 shows the results achieved by the aforementioned authors on the Iris
dataset along with our results (first row of Table 5.3). For each system we report
the mean number of rules generated, the number of features used for classification,
the total number of fuzzy sets employed for all features, and the mean test set
accuracy. Sometimes, where appropriate, we show also the maximum test set
accuracy (in brackets). In the table we used the symbol ‘-’ when no information is
available. Please, note that in the first column of this table and the following ones
we adopt the model acronym used by the author(s), if available; otherwise, we
introduce a new acronym in quotation marks.

In this and in the following experiments, we adopted the forward feature selection
to decrease the input space dimensionality. The two features used by our method
are sepal length and sepal width.

The table shows that our method achieved the mean accuracy of 100%.
The values of the GA-optimized model parameters for the Iris dataset and the

others benchmark datasets are shown in Table 5.4.

Table 5.3. – Classification results on Iris dataset (best result in bold).

Model
Mean #
rules

Features
Total #
fuzzy sets

Mean (max.) test
set accuracy (%)

HFRBC-GA 7.1 2 6 100

“Fuzzy DT” [4] 3 4 - 96.11

“HFP-2n tree” [6] 392 4 - 95.83

HGBML [73] 10 4 - 94.67

FEBFC [85] - 4 - 96.7

HCGA [90] 3.3 - - 96.22

FH-GBML [134] - 4 12 97.33

“TSK-GA” [137] 3 4 12 99.4

SoHyFIS-Yager [148] 16.33 4 - 95.66 (97.98)

SANFIS [153] 3 4 11 97.47

FNFN [159] 3.4 4 12 98.1

63

Table 5.4. – Values of the GA-optimized model parameters for the benchmark datasets.
GA-optimized model parameters Value
Iris dataset

Relevance Thresholds RT1 = 5, RT2
1 = 3

Dominance percentages DP1 = 80%, 1
2DP = 50%

Maximum number of samples extracted S = 6

Minimum rule weight w = 0.6

Weight modifiers Δw1 = 0.23, Δw2
1 = 0, Δw2

2 = 0, Δw2
3 = 0

Wisconsin breast cancer dataset

Relevance Thresholds RT1 = 4, RT2
1 = 7

Dominance percentages DP1 = 80%, DP2
1 = 50%

Maximum number of samples extracted S = 12

Minimum rule weight w = 0.99

Weight modifiers Δw1 = 0.17, Δw2
1 = -0.02, Δw2

2 = 0, Δw2
3 = 0

Pima Indians diabetes dataset

Relevance Thresholds RT1 = 5, RT2
1 = 2

Dominance percentages DP1 = 80%, DP2
1 = 50%

Maximum number of samples extracted S = 12

Minimum rule weight w = 0.77

Weight modifiers Δw1 = 0.47, Δw2
1 = -0.17, Δw2

2 =0, Δw2
3 = 0

Wine dataset

Relevance Thresholds RT1 = 8, RT2
1 = 9

Dominance percentages DP1 = 80%, DP2
1

 = 50%

Maximum number of samples extracted S = 6

Minimum rule weight w = 0.99

Weight modifiers Δw1 = 0.28, Δw2
1 = -0.06, Δw2

2 = 0, Δw2
3 = 0

5.6.2 Wisconsin breast cancer dataset
The Wisconsin breast cancer dataset contains 699 samples representing two kinds

of cancer (Benign, Malignant). The dataset involves nine features (clump
thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion,
single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and
mitoses) and it is unbalanced (458 benign cancer samples, 241 malignant cancer
samples). Since 16 samples contain missing values, we actually used 683 samples.

Table 5.5 shows the results achieved by our classifier (first row) and those of
some models available in the literature [4, 39, 47, 54, 73, 85, 90, 134, 153, 159].

64

We achieved a mean classification accuracy of 98.32% with a maximum
classification accuracy of 98.44% outperforming the other models (except for
[54]). However, we adopted fewer features than [54]. The values of the GA-
optimized model parameters of the methodology are shown in Table 5.4.

The three features employed in our experiments are clump thickness, uniformity
of cell size, and bare nuclei.

Table 5.5. – Classification results on Wisconsin cancer dataset (best result in bold).

Model
Mean #
rules

Features
Total #
fuzzy sets

Mean (max.) test
set accuracy (%)

HFRBC-GA 14.7 3 9 98.32 (98.44)

“Fuzzy DT” [4] 2 2 3 96.82

ABA [39] - - - 95.10

HFRBCS [47] - 9 - 88.24

HFP [54] 7.8 5 - 98.4

HGBML [73] 20 9 - 96.68

FEBFC [85] - 6 - 95.14

HCGA [90] 3.1 - - 96.09

FH-GBML [134] - 9 - 95.75

SANFIS [153] 2 9 18 96.3

FNFN [159] 1.6 9 - 98.3

5.6.3 Pima Indians diabetes dataset
The Pima Indian diabetes dataset contains 768 samples belonging to two different

classes (Diabetes positive, Diabetes negative) and described by eight features
(number of times pregnant, plasma glucose concentration, diastolic blood pressure,
triceps skin fold thickness, 2-Hour serum insulin, body mass index, diabetes
pedigree function, and age). The dataset presents a significant class overlap [Chang
20] that usually makes it difficult to obtain high classification accuracy.

The dataset is unbalanced (268 diabetes positive samples, 500 diabetes negative
samples).

Table 5.6 shows the achieved results (first row) compared with some models
found in the literature [4, 39, 47, 73, 134].

Our mean accuracy, obtained using only three features, outperforms all the
models considered. We achieved a mean classification accuracy of 78.31% with a
maximum of 80.30%. The three features are: number of times pregnant, plasma
glucose concentration, and diabetes pedigree function. The values of the GA-
optimized model parameters tailored to this classification problem are shown in
Table 5.4.

65

Table 5.6. – Classification results on Pima Indians diabetes dataset (best result in bold).

Model
Mean #
rules

Features
Total #
fuzzy sets

Mean (max.) test
set accuracy (%)

HFRBC-GA 63.6 3 90 78.31 (80.30)

“Fuzzy DT” [4] 11.2 8 - 73.05

ABA [39] - - - 74.8

HFRBCS [47] - 8 - 68.72

HGBML [73] 20 8 - 75.83

FH-GBML [134] - 8 - 75.91

5.6.4 Wine dataset
The Wine dataset contains 178 samples representing Italian wines belonging to

three different cultivars. Each wine is described by thirteen features resulting from
chemical analysis (alcohol, malic acid, ash, alcalinity of ash, magnesium, total
phenols, flavanoids, non flavanoid phenols, poanthocyanins, color intensity, hue,
OD280/OD315 of diluted wines, and proline). The class balancing is the following:
59, 71, and 48.

Table 5.7 (first row) shows that the results we achieved using only three features
outperform all the considered models [4, 54, 72, 73, 90, 134, 137, 153, 159].

The three features considered are alcohol, flavanoids, and non flavanoid phenols.
We achieved a mean classification accuracy of 99.41% with a maximum of 100%.
The values of the GA-optimized parameters of the methodology tailored to the
Wine classification problem are shown in Table 5.4.

Table 5.7. – Classification results on Wine dataset (best result in bold).

Model Mean #
rules # Features Total #

fuzzy sets
Mean (max.) test set
accuracy (%)

HFRBC-GA 10.2 3 9 99.41 (100)

“Fuzzy DT” [4] 3.6 13 - 91.22

HFP [54] 6.8 4 - 89.2

HGBML [73] 10 13 - 95.06

“RW” [72] 15 13 - 95.51

HCGA [90] 4.9 - - 95.66

FH-GBML [134] - 13 - 93.79

“TSK-GA” [137] 3 9 21 98.3

SANFIS [153] 3 13 34 99.4

FNFN [159] 1.2 13 - 99.1

66

5.7 Concluding remarks
In this chapter we have proposed a hierarchical method to construct a fuzzy

classifier by merging fuzzy systems built on input domain regions increasingly
smaller, as the result of the creation of appropriate grids on the input domain. The
aim is to exploit the easiness of use and the interpretability of the fuzzy approach
along with a methodology of input domain space analysis which builds an optimal
fuzzy rule base avoiding the generation of too many, unnecessary rules. The model
parameters are optimized by a real-coded GA.

We developed a fuzzy classifier aimed at classifying the energy produced by a
PV panel as either low, medium, or high based on the irradiation and the
temperature of the panel. Experimental results have showed mean and maximum
classification performances of 97.38% and 97.91%, respectively, on the test sets of
30 repetitions of the classification experiment.

The performance of the proposed approach has also been successfully validated
by building fuzzy classifiers for some well-known benchmark datasets. The
achieved results outperform those obtained by other methods found in the
literature.

67

6
Neural network-based forecasting of energy

consumption due to lighting in office buildings

6.1 Introduction
Energy consumption in buildings is one of the fastest growing sectors. It is

estimated that the amount of the energy currently consumed in the European
buildings is about 40–45% of the total European energy consumption [40, 44], as
shown in Fig. 6.1(a). Buildings include shops, houses, offices, etc., but office
buildings represent the largest share. In particular, as regards electricity
consumption in office buildings (see Fig. 6.1(b)), earlier works have shown that
electric lighting is a big component of electricity consumption: it accounts for
about 25% of total electricity consumption [44, 83, 158]. The remainder 75% is
due to HVAC (Heating, Ventilation, and Air Conditioning) and office equipment
(PCs, printers, etc.).

(a) (b)

Figure 6.1. – Statistics about energy consumption. (a) Total European energy consumption. (b) Office
buildings electric consumption.

Although the electric power consumption due to lighting is not the highest one in
a building, it is present throughout the working day and it deserves to be taken into
account alone for forecasting purposes as it represent one quarter of the total office
electric consumption.

The potential benefits of knowing energy consumption, in real time or even in

68

advance, can be useful for several purposes, ranging from cost reduction, improved
energy control, and smarter load scheduling in the electric grid, especially in the
case of smart grids. In addition, the European Commission has adopted a plan to
reduce energy consumption of 20% by 2020 [43, 44, 97], by promoting energy
efficiency, so the possibility of energy consumption forecasting is of the utmost
importance.

On the one hand, electric Energy Consumption due to Lighting (ECL) could be
directly estimated knowing the lighting equipment: the kind and the number of
lights existing in the office and their operating time. From another point of view,
one could expect that the amount of ECL should be inversely proportional to the
amount of natural daylight in the office, so electric ECL could be estimated starting
from some knowledge about natural daylight. In this case, we need to know i) the
global solar irradiation model, ii) the position of the building, its orientation with
respect to the path of the sun, and the kind of glazed surfaces (i.e., windows effect
of shading devices), iii) the weather conditions, in particular the sky conditions,
which can influence the measured value of solar irradiation and thus the quantity of
daylight available, and subsequently the values of energy consumption in buildings
[78].

Actually, the main problem of such models is that all this kinds of information
are not always easy to achieve. In addition, we need to take into account the
unpredictable component given by occupants’ needs and behavior regarding the
use of lights.

Hence, we propose a way of estimating the electric ECL, using mainly the solar
irradiation data and assuming a fairly good behavior of the occupants, already
discussed in [36]. By “good behavior” we mean a rational, “green” behavior of
people that try to assure the necessary visual comfort inside the office [59, 113] by
paying attention to energy savings.

Several techniques have been traditionally used for energy use forecasting.
Among them, we can recall some time series analysis classical techniques such as
ARIMA [1, 132] and regression [23, 104, 120]. Unfortunately, the correlation
between solar irradiation and electric energy consumption is highly nonlinear, thus
making classical techniques not well suited to solve this kind of problems. So in
the last few years there has been a growing interest in computational intelligence
tools, in particular, neural networks [25, 53, 105, 144, 158], expert systems [124],
genetic algorithms [149], and hybrid systems, i.e., systems resulting, e.g., from the
integration of neural networks and fuzzy logic [108, 117, 141]. In particular, the
literature has demonstrated the superior capability of neural networks over
conventional methods, thanks to the high potential to model non-linear processes,
such as individual buildings energy consumption [78].

Hence, in this chapter, we propose an artificial neural network model to forecast
the electric ECL of a small office building, starting from some knowledge about
the external daylight, without having to know any kind of information about the
building, the lighting equipment, and the occupancy of the office, as usually

69

happens when using simulation tools. In fact, to have to know in advance all these
kinds of information may be a drawback [59]. The two key points of the
methodology are: i) the construction of a proper reference solar irradiation curve,
and ii) the division of the working day into an appropriate number of time
intervals.

6.1.1. Outline of the chapter
This chapter is organized as follows. Section 6.2 describes the experimental

dataset concerning an office building located in Italy, Section 6.3 presents the
proposed model to predict the electrical ECL. More in detail, first, we describe the
analysis and elaboration of data, and then, we discuss the design of the forecasting
model by setting the values of some model parameters. Section 6.4 shows the
performed experiments and the achieved results, and, finally, Section 6.5 provides
concluding remarks and future work.

6.2 Description of the building consumption dataset
The data used in this work were collected from the sensors of an office building

located in Tuscany, Italy. The data were measured every 15 minutes during six
months, from April to September 2011 and consisted of i) solar irradiation outside
the building, measured by a meteorological station, ii) sampling timestamp (date
and time), and iii) lighting electricity consumption, expressed in terms of active
power averaged over 15-minute intervals, measured by a multimeter and related to
the use of lights in four rooms.

In addition, we acquire from data one more input: the day of the week, in order to
model further cyclic activities, such as cleaning tasks, periodic meetings, etc. We
chose not to use an explicit information regarding the kind of day (working or
weekend) in order to maintain the model as general as possible.

Table 6.1. – Characteristics of the building.

Characteristic name Characteristic value

Location Tuscany, Italy

Office specifications Ground floor, four rooms

Obstacles An obstacle (a tree) obscures the irradiation sensor
at about 10 a.m.

Usual office (business) operation hours
Monday to Friday: 9 a.m.–9 p.m.;
Otherwise: closed (occasionally open for
maintenance)

Cleaning schedule
Tuesday to Friday (7 a.m.–8 a.m.) and
on Saturday morning (the actual time is not fixed)

The input variables of the model are the results of a processing made on the

70

available data, as better explained in the following. The output variable is the
average active power over intervals of a few hours (time interval), which is known
to be the real power transformed into work and represents the real consumption of
the time interval. Moreover, we had some information about the cleaning schedule,
the working hours, and the presence of obstacles in front of the irradiation sensor
(see Table 6.1). These data helped us to correctly analyze and interpret the
experimental results.

6.3 The proposed model
The proposed model consists of an artificial neural network and aims at

forecasting the energy consumption of an office building, over intervals of a few
hours, due to lighting.

As we are concerned with a small office, we deal with very small values of
consumption if compared with those found in the literature, which are related to
big buildings or include the total HVAC systems consumption. Furthermore, the
values we are concerned with are highly irregular.

The correlation between solar irradiation and electric energy consumption is not
straightforward. Actually, when a building is in use, the intensity and the stability
of the solar irradiation can be considered as the factors that have the greatest
influence on the decrease and increase in lighting consumption. By intensity we
mean the absolute value of irradiation at every considered instant. It is obvious that
the artificial lights are used because the value of the lighting is not enough inside
the building. If in a hypothetical case the solar irradiation had the same time
evolution every day, the electric power consumption would not vary significantly
from one day to another. Actually, the electric power consumption trend presents
many differences between days as Fig. 6.2 clearly shows.

M T W T F S S
0

250

500

750

1000

Day of week

Irr
ad

ia
tio

n
(W

/m
2)

0

500

1000

1500

Av
er

ag
e

ac
tiv

e
po

w
er

 (W
)

ConsumptionIrradiation

Figure 6.2. – Evolution of consumption (red dotted line) and irradiation (blue solid line) from

Monday May 9th to Sunday May 15th.

Figure 6.2 shows the evolution of the electrical consumption and solar irradiation
for seven days of a typical Spring week (from May 9th, Monday, to May 15th,

71

Sunday). Please note the partial and total absence of consumption on Saturday and
Sunday, respectively.

Therefore we need to make some considerations to exploit the available data so
as to reproduce the relation between solar irradiation and electrical lighting
consumption.

6.3.1 Effects of climatic contest: analysis of solar irradiation
The first consideration regards the analysis of the solar irradiation trend. Solar

irradiation and thus daylight availability and intensity mainly depend on
geographic latitude and on climatic contest. In particular, latitude-related variations
are caused by changes in the sun position in the sky with the latitude during the day
or during the year. Climate-related variations, also called sky conditions, can be
classified as clear, partly cloudy, and overcast [84, 89] and may deeply affect
energy consumption, as shown in Fig. 6.3.

We noticed that cloudy sky days (Fig. 6.3(a)) present quite a lot of variations in
the solar irradiation values (probably due to weather fluctuations, such as clouds
moving caused by the wind), and to these days correspond a mostly irregular and
pretty high electrical consumption. Instead, clear sky days (Fig. 6.3(b)),
characterized by a regular solar irradiation trend, present a regular and lower
electrical consumption. Besides, we have confirmed the above mentioned
hypothesis, by considering the average daily consumptions (e.g., 640 W on
Wednesday 8th, and 359 W on Thursday 16th).

Tuesday 7 Wednesday 8
0

500

1000

Irr
ad

ia
tio

n
(W

/m
2)

Cloudy sky days

Tuesday 7 Wednesday 8
0

500

1000

1500

Av
er

ag
e

ac
tiv

e
po

we
r (

W
)

Thursday 16 Friday 17
0

500

1000

Irr
ad

ia
tio

n
(W

/m
2)

Clear sky days

Thursday 16 Friday 17
0

500

1000

1500

Av
er

ag
e

ac
tiv

e
po

we
r (

W
)

ConsumptionConsumption

Solar irradation Solar irradiation

 (a) (b)

Figure 6.3. – Solar irradiation and electrical consumption for four days of June with different sky
conditions: (a) two cloudy sky days, and (b) two clear sky days.

It is clear that there is a relation between the daily solar irradiation trend and the
electrical consumption due to the use of lighting. It seems that if external daylight
is enough, lights in the office are less used.

Moreover, another consideration regarding solar irradiation is the following. We
found that, given the same sky conditions in two consecutive days of a given
climatic period, the daily solar irradiation curve slightly changes from one day to

72

the following (see the first three days in Fig. 6.4). On the other hand, if the sky
conditions in the considered climatic period change, the irradiation curves differ
from each other to a greater extent (see the last day in Fig. 6.4). In any case, over
periods of about one month, most daily irradiation curves appear to be very close to
each other. In addition, a month can be considered as an important time unit from
the weather point of view [74], and works in the literature often deal with monthly
analysis [10, 11].

14 15 16 17

100

300

500

700

900

Days of April

Irr
ad

ia
tio

n
(W

/m
2)

 Actual irradiation

Figure 6.4. – Solar irradiation curves for four consecutive days of April.

Based on these considerations, we can consider a single solar irradiation
reference curve for each month, by simply using the curve that best approximates
all the curves of the month. From now on we will call this curve ideal typical
irradiation curve. Figure 6.5(a), 6.5(b) and 6.5(c) show the ideal typical irradiation
curve for May, June, and September respectively. More precisely, from an
operation point of view, for each month we have performed the following steps.
After superimposing the irradiation curves relative to all days of that month (as
done in Fig. 6.5), we have noticed that most curves almost coincide, in the sense
that their difference is very small in all points. So, after removing the few curves
that represent outliers, we have generated the curve that best approximates all the
involved curves.

In Fig. 6.6 we show the typical ideal irradiation curves for the six months
available, from April to September. In Figs. 6.5 and 6.6 we can also notice that the
discontinuity present in all curves at about 10 a.m., due to the presence of a tree
that obscures the irradiation sensor, slightly changes as a result of the movement of
the sun. Our choice to keep this discontinuity in the ideal typical curves stems from
the will to use this curve to faithfully model the particular spatial context of the
considered building.

We may say that the reference solar irradiation curve represents the typical day of
the month. So we can use the typical ideal irradiation curve to characterize each
day in the month or distinguish among the different kinds of days. More precisely,
we exploit the difference between the ideal curve and the actual daily irradiation
curve, so as to highlight how the considered day differs from the typical day of that
month.

73

6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
0

200

400

600

800

1000

Hour of day

Irr
ad

ia
tio

n
(W

/m
2)

May

daily irradiation curves
typical irradiation curve

(a)

6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
0

200

400

600

800

1,000

Hour of day

Irr
ad

ia
tio

n
(W

/m
2)

June

daily irradiation curves
typical irradiation curve

(b)

6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

200

400

600

800

900

Hour of day

Irr
ad

ia
tio

n
(W

/m
2)

September

daily irradiation curves
typical irradiation curve

(c)

Figure 6.5. – Daily irradiation curves and corresponding typical ideal irradiation curve (black line)
for (a) May, (b) June and (c) September.

Figures 6.7(a) and 6.7(b) show the typical ideal irradiation curves and actual
irradiation curves for four days (from Tuesday September 6th to Friday September
9th) and the corresponding differences, respectively. The third day (i.e., September

74

8th) in Fig. 6.7(b) presents a very small difference so we may consider that day as a
typical day. In fact, the actual irradiation curve perfectly follows the ideal curve.
On the contrary, the other days of Fig. 6.7 present a not negligible difference
between the ideal and actual irradiation curve, so we can use this difference
between the daily actual irradiation curve and the typical ideal curve as further
input parameter to our system, as better explained in the following.

6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
0

100

200

300

400

500

600

700

800

900

Hour of day

Irr
ad

ia
tio

n
(W

/m
2)

April
May
June
July
August
September

Figure 6.6. – Typical ideal irradiation curves for six months (April to September).

Tuesday 6 Wednesday 7 Thursday 8 Friday 9
0

200

400

600

800

1000

Days of September

Irr
ad

ia
tio

n
(W

/m
2)

Actual Irradiation
Ideal Irradiation

(a)

Tuesday 6 Wednesday 7 Thursday 8 Friday 9

-500

-400

-300

-200

-100

0

100

200

Days of September

Irr
ad

ia
tio

n
di

ffe
re

nc
e

(W
/m

2)

Difference between actual and ideal solar irradiation

(b)

Figure 6.7. – (a) Typical ideal irradiation curve (magenta dotted line) and actual irradiation curve
(blue solid line) for four days of September. (b) Difference between the two irradiation curves.

75

6.3.2 Analysis of energy consumption based on the office use
The third consideration concerns the analysis of the energy consumption in

relation with the specific use of the office taken into account.
Figure 6.8 shows the evolution of the energy consumption during a typical

working day in terms of average active power. The working time goes from 9 a.m.
to 9 p.m., so we have considered the energy consumption in this time interval, even
though the presence of a spike at about 8 o’clock in correspondence of the cleaning
time of the office.

6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Hour of day

Av
er

ag
e

ac
tiv

e
po

we
r (

W
)

Daily consumption of Wednesday June 1st

Figure 6.8. – Evolution of the energy consumption for a typical working day. Please note that, for the
considered day, the working time ends at 8 p.m..

We have tried to split the working day into a small number of intervals with the
aim of taking into account the use of the office building in the various parts of the
day. In order to identify the most appropriate number of these intervals, we have
tried several combinations and we finally found out that the working time can be
profitably subdivided into three intervals of four hours each, as shown in Fig. 6.9.
We used the average value within each considered time interval instead of all the
instantaneous values because this is the usual practice found in the literature,
although relative to daily average values [158].

Our goal is to predict the average energy consumption of a given time interval
based on information pertinent to the previous interval. Of course, in order to
perform the prediction of the electrical consumption related to the first interval, we
added a service interval, called interval 0, from 5 a.m. to 9 a.m. (the dotted interval
in Fig. 6.9).

Finally, by analyzing the energy consumption, we found daily and weekly
cyclicity in the data. Figure 6.10 shows the ECL in two consecutive weeks of
April, randomly selected among the available data. From Monday (Mo) to Friday
(Fr) there is a considerable variability of electric power consumption in the
working hours, and on Saturdays (Sa) there is only consumption in a little span of
one hour. In addition, in four days a week (from Tuesday (Tu) to Friday) and on
Saturday morning at a non-fixed time, there is a spike, relative to a high electric
power use for about one hour outside of the working time in correspondence with
the cleaning time of the office. Clearly, on Sundays (Su) the energy consumption is

76

completely absent.

6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Hour of day

Av
er

ag
e

ac
tiv

e
po

w
er

 (W
)

Daily consumption of Wednesday June 1st

9 a.m. - 1 p.m.
1 p.m. - 5 p.m.

5 p.m. - 9 p.m.

Figure 6.9. – Identification of the time intervals over the working time.

Mo Tu We Th Fr Sa Su Mo Tu Ww Th Fr Sa Su
0

200

400

600

800

1000

1200

1400

1600

1800

Day of week

Av
er

ag
e

ac
tiv

e
po

we
r (

W
)

Figure 6.10. – Temporal evolution of the energy consumption for two consecutive weeks of April.

6.3.3 Discussion
After the processing of data we are now able to design the forecasting model, by

setting the values of the model parameters, and by fixing the inputs and the output
of the network.

Regarding the values of the model parameters, we can state that:
a) the climatic period considered to build the reference irradiation curve

is, as stated before, one month;
b) the dimension of each time interval is four hours. So, being the

working day of twelve hours, we split each day in three intervals.
The input parameters to our system are the following: i) day, ii) month, iii) time

(hour and minutes), iv) mean difference between actual and ideal irradiation for the
considered time interval, v) instantaneous difference between actual and ideal
irradiation at that time, vi) average actual irradiation for the considered interval.
All these input parameters are pertinent to a given time interval. The output
parameter from our system is the average energy consumption, expressed in terms

77

of average active power, for the following interval. Table 6.2 shows the inputs and
output of the system, and their units of measurement.

Table 6.2. – Inputs and output variables of the neural network.

Variable name Unit of measurement

Input variables
Day Encoding: from 1 to 7

Month Encoding: from 1 to 12

Timestamp (hour, minute) Encoding: hour:minute

Mean difference for the considered time interval
between actual irradiation and ideal irradiation W/m2

Difference between actual and ideal irradiation for
the considered timestamp W/m2

Average actual irradiation for the considered time
interval W/m2

Output variable
Average energy consumption for the following time
interval W

6.4 Experimental results
We used a feed-forward neural network having one hidden layer, to implement

the proposed approach in Matlab®. The transfer functions for the hidden neurons
and the output neuron are, respectively, hyperbolic tangent sigmoid and linear
functions.

By using a trial-and-error strategy, we tried different neural configurations by
varying the number of hidden neurons from 10 to 30 with step 1. For each of the
training, validation and test sets, the same number of, respectively, training,
validation and test samples is randomly extracted for each month so as not to create
unbalanced sets. The percentages of samples extracted for each month are 60%,
10% and 30%, respectively, for the three sets.

Each kind of experiment has been repeated 30 times. The best configuration
resulted to be a neural network with 28 hidden neurons in the hidden layer. Table
6.3 summarizes the parameter values of the chosen neural configuration.

The aim of the performed experiments was the comparison between the average
actual electrical consumption in a given time interval and the average predicted
electrical consumption in the same interval.

For each month, we computed the average Mean Squared Error (MSE) on all the
intervals of the days of the month, according to the following equation:

2

1

1 (() ())
N

act pred
i

MSE EC i EC i
N =

= −∑ , (6.1)

78

with N representing the number of intervals of the considered month, and ECact
and ECpred being the average actual electrical consumption and the average
predicted electrical consumption respectively, for each considered interval. Then,
so as to obtain fair values, we repeated the same experiment 30 times with different
training and test sets and we averaged the MSEs obtained over the 30 trials, by
obtaining an average error MSEav for each month.

Table 6.3. – Learning parameters for the final neural network.

Parameter Value

Number of hidden layers 1
Number of hidden neurons 28
Hidden Layer tansfer function Hyperbolic tangent sigmoid
Output Layer tansfer function Linear
Training algorithm Levemberg-Marquardt
Number of training samples 60% of available data
Number of validation samples 10% of available data
Number of test samples 30% of available data

Furthermore, in order to make the error easier to understand, we computed for

each month the corresponding average RMSE (Root Mean Squared Error),
RMSEav, and the normalized RMSE (RMSEn) given by the following equation:

av
n

av

RMSERMSE
EP

= , (6.2)

where EPav is the average electric power for the considered month, i.e., the average
consumption of the month.

Table 6.4 shows the average monthly MSE (MSEav), the corresponding RMSE
(RMSEav), the monthly average electric power (EPav), and the normalized RMSE
(RMSEn), for the six months. Please note that in the available data there are some
missing days in correspondence with sensor maintenance. In particular, there are 6,
1, 6 and 6 missing days for April, May, August and September. Obviously, these
numbers have been taken into account for computing the MSE values.

As we can see from Table 6.4, we achieve good results for April, May, June and
July. Poorer results are obtained in August and September. In both cases, the high
error is most likely due to the presence of frequent weather changes within the
same day, as we observed by analyzing the irradiation curves of August and
September. In such conditions the electric power consumption can be sensibly
different from what expected, thus causing an increased prediction error. Further,
in August, we must also take into account the partial, non-regular daily occupancy
of the office building during summer vacation, as testified by the low monthly
electric lighting consumption. This situation obviously increases the prediction
error.

79

Therefore, we can state that the RMSE error ranges from 4.84% to 38.27% of the
monthly average electric power, with an average value of 17.25%. In absolute
terms, the minimum and maximum RMSEs are 18.45 W and 110.05 W, obtained
for August and September, respectively.

Finally, to assess our results we applied the persistence method, which assumes
as target value to forecast the average energy consumption of a given interval, the
average energy consumption of the same interval of the previous day. We achieved
an average monthly MSE one order of magnitude greater than the values shown in
Table 6.4.

Table 6.4. – Monthly performances of the forecasting system.

Month MSEav RMSEav (W) EPav (W) RMSEn (%)

April 548.1 23.41 483.13 4.84
May 2058.9 45.37 408 11.12
June 2647.3 51.45 487 10.56
July 1816.8 42.62 307.24 13.87
August 340.72 18.45 48.23 38.27
September 12113 110.05 443.23 24.83

6.5 Concluding remarks
In this chapter a novel method to predict the ECL, mainly based on solar

irradiation, has been described. The forecasting system predicts the average active
power in a given time interval of the working day exploiting the difference between
a reference ideal irradiation curve (pertinent to the specific month) and the actual
irradiation curve in the previous time interval . In this way the electric energy
consumption is essentially influenced by the quantity of available external daylight.

We used a feed-forward artificial neural network, which was applied to a case
study concerning a small office building located in Italy. In the experiments, made
on the data pertinent to six months, the average RMSE error represents 17.25% of
the monthly average electric power.

As a future work, we are planning to extend the presented analysis to the heating
and cooling consumption, in order to build a monitoring and simulation tool able to
estimate the total HVAC consumption of an office building.

Moreover, it could be interesting to integrate the proposed system with a weather
forecasting system, so as to estimate directly the solar irradiation values.

80

81

7
Thesis conclusions and future work

The aim of this thesis was the design and the development of some
Computational Intelligence novel methodologies for applications regarding energy
systems. More in detail, two main problems have been addressed. First, the
management of energy production in solar PV installations, by classification and
forecasting, second, the forecasting of energy consumption in buildings.

In the early chapters, we recalled the main concepts about artificial neural
networks, fuzzy rule-based classification systems, and hybrid systems exploiting
genetic algorithms. In addition, we revised some notions about forecasting and
time series analysis. In the following chapters, we presented the developed
methodologies applied to the problems described above.

Regarding the management of energy production in solar PV installations, we
faced the problem by building a one day-ahead energy production forecasting
model. The model, resulting from a flexible and easy-to-use approach, uses the
NARX time series analysis model and a neural network with tapped delay lines to
reproduce the curve of daily produced energy starting from some knowledge about
solar irradiation. Despite the existence of some methods for energy forecasting
problems, the main novelty of our approach is the proposal of a general
methodology, consisting of a sequence of steps to perform in order to find the
optimal structure of the neural network (particularly, number of hidden neurons
and number of delay elements) and the best configuration of the neural predictor
(namely, the training window width and the sampling frequency). As a future
work, thanks to the good results obtained, we may extend the forecasting horizon
to a multiple of the day, so as to strengthen the long-term forecasting analysis.
Besides, it would be of interest to integrate the proposed system with a weather
forecasting system, so as, e.g., to estimate directly the environmental variables.

The management of energy production in solar PV installations can be tackled
also from a different point of view, that is, as a fuzzy classification problem of
energy production, given the values of the irradiation and the temperature of the
panel, so as to linguistically describe how the inputs of the fuzzy classification
system (i.e., the temperature of the PV panel and the solar irradiation) relate to the
class (low, medium, high) of the energy production. The main advantages of our
approach are easier interpretability and versatility, as we deal with class labels. In
addition, the model parameters are optimized by means of a genetic algorithm. The

82

fuzzy classifier results from the union of fuzzy systems (frbc), built on input
regions increasingly smaller, according to a hierarchical multi-level grid-like
partition. Only the necessary partitions are built, in order to guarantee high
interpretability and to avoid the explosion of the number of rules as the hierarchical
level increases. The fuzzy classifier was also successfully applied to several
benchmark datasets, thus proving the validity of the methodology.

Lastly, we address the problem of the forecasting of energy consumption due to
lighting in office buildings. The system was developed as a feed-forward artificial
neural network, which predicts the energy consumption related to a few hours,
using some knowledge about external daylight, without having to know any kind of
information about the building. As a future work, we aim to build a system for
estimating the total HVAC consumption of an office building, by extending the
analysis to the heating and cooling consumption. Furthermore, it would be of
interest to build a simulation tool to simulate energy optimization actions.

83

Acknowledgement

We wish to acknowledge Samares, Via Giuntini, 25, 56023, Navacchio di
Cascina, Pisa (Italy), for having provided the sets of experimental data used in this
thesis, namely three PV dataset related to three different PV installations sited in
Italy, and the energy consumption dataset related to an office building located in
Italy.

84

85

References

[1] Abdel-Aal R.E., Al-Garni A.Z., “Forecasting monthly electric energy consumption in eastern
Saudi Arabia using univariate time-series analysis”, Energy, vol. 22, n. 11, 1997, pp. 1059–
1069.

[2] Abe S., Lan M.-S., “A method for fuzzy rules extraction directly from numerical data and its
application to pattern classification”, IEEE Transanctions on Fuzzy Systems, vol. 3, n. 1, 1995,
pp. 18–28.

[3] Abe S., Thawonmas R., “A fuzzy classifier with ellipsoidal regions”, IEEE Transactions on
Fuzzy Systems, vol. 5, n. 3, 1997, pp. 358–368.

[4] Abonyi J., Roubos J.A., Szeifert F., “Data-driven generation of compact, accurate, and
linguistically sound fuzzy classifiers based on a decision-tree initialization”, International
Journal of Approximate Reasoning, vol. 32, n. 1, 2003, pp. 1–21.

[5] Agrawal R., Srikant R., “Fast algorithms for mining association rules”, Proceedings of the 20th
International Conference on Very Large Databases, Santiago, Chile, 1994, pp. 487–499.

[6] Ait Kbir M., Benkirane H., Maalmi K., Benslimane R., “Hierarchical fuzzy partition for pattern
classification with fuzzy if-then rules”, Pattern Recognition Letters, vol. 21, 2000, pp. 503–509.

[7] Alonso J.M., Magdalena L., González-Rodríguez G., “Looking for a good fuzzy system
interpretability index: an experimental approach”, Journal of Approximate Reasoning, vol. 51,
n. 1, 2009, pp. 115–134.

[8] Angelov P.P., Buswell R.A., “Automatic generation of fuzzy rule based models from data by
genetic algorithms”, Information Sciences, vol. 150, n. 1–2, 2003, pp. 17–31.

[9] Ashraf I., Chandra A., “Artificial neural network based models for forecasting electricity
generation of grid connected solar PV power plant”, International Journal of Global Energy,
vol. 21, n. 1–2, 2004, pp. 119–130.

[10] Azadeh A., Ghaderi S.F., Sohrabkhani S., “A simulated-based neural network algorithm for
forecasting electrical energy consumption in Iran”, Energy Policy, vol. 36, n. 7, 2008, pp. 2637–
2644.

[11] Azadeh A., Ghaderi S.F., Sohrabkhani S., “Forecasting electrical consumption by integration of
Neural Network, time series and ANOVA”, Applied Mathematics and Computation, vol. 186,
n. 2, 2007, pp. 1753–1761.

[12] Azadeh A., Maghsoudi A., Sohrabkhani S., “An integrated artificial neural networks approach
for predicting global radiation”, Energy Conversion and Management, vol. 50, n. 6, 2009,
pp. 1497–1505.

[13] Barbounis T.G., Theocharis J.B., Alexiadis M.C., Dokopoulos P.S., “Long-term wind speed and
power forecasting using local recurrent neural network models”, IEEE Transactions on Energy
Conversion, vol. 21, n. 1, 2006, pp. 273–284.

[14] Benghanem M., Mellit A., Alamri S.N., “ANN-based modelling and estimation of daily global
solar radiation data: A case study”, Energy Conversion and Management, vol. 50, n. 7, 2009,
pp. 1644–1655.

[15] Bhattacharya T.K., Design and development of solar photovoltaic systems, vol. 1, New
Delhi: Publications & Information Directorate, 1991.

[16] Bishop C., Neural networks for pattern recognition, Oxford University Press, Oxford, UK,
1995.

[17] Cadenas E., Rivera W., “Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using
artificial neural networks”, Renewable Energy, vol. 34, n. 1, 2009, pp. 274–278.

[18] Caputo D., Grimaccia F., Mussetta M., Zich R.E, “Photovoltaic plants predictive model by
means of ANN trained by a hybrid evolutionary algorithm”, Proceedings of the 2010

86

International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July
2010, pp. 1–6.

[19] Casillas J., Cordón O., del Jesus M.J., Herrera F., “Genetic feature selection in a fuzzy rule-
based classification system learning process for high-dimensional problems”, Information
Sciences, vol. 136, n. 1–4, 2001, pp. 135–157.

[20] Chang X., Lilly J.H., “Evolutionary design of a fuzzy classifier from data”, IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, n. 4, 2004, pp. 1894–1906.

[21] Chen Y., Wang T., Wang B., Li Z., “A Survey of fuzzy decision tree classifier”, Fuzzy
Information and Engineering, vol. 1, n. 2, 2009, pp. 149–159.

[22] Cherkassky V., “Fuzzy Inference Systems: A Critical Review”, in Computational Intelligence:
soft computing and fuzzy-neuro integration with applications, pp. 177-197, O. Kaynak et
al., Springer Berlin Heidelberg, 1998.

[23] Cherkassky V., Chowdhury S.R., Landenberger V., Tewari S., Bursch P., “Prediction of electric
power consumption for commercial buildings”, Proceedings of the 2011 International Joint
Conference on Neural Networks (IJCNN), 31 July–5 August 2011, pp. 666–672.

[24] Chiu S., “Extracting fuzzy rules from data for function approximation and pattern
classification”, ch. 9 in Fuzzy Information Engineering: A Guided Tour of Applications, D.
Dubois, et al., John Wiley and Sons, 1997.

[25] Chow T.W.S., Leung C.T., “Neural network based short-term load forecasting using weather
compensation”, IEEE Transactions on Power Systems, vol. 11, n. 4, 1996, pp. 1736–1742.

[26] Cococcioni M., D'Andrea E., Lazzerini B., “24-hour-ahead forecasting of energy production in
solar PV systems”, Proceeding of the 11th International Conference on Intelligent Systems
Design and Applications (ISDA), Córdoba, Spain, 22–24 November 2011.

[27] Cococcioni M., D'Andrea E., Lazzerini B., “One day-ahead forecasting of energy production in
solar photovoltaic installations: An empirical study”, Intelligent Decision Technologies, vol. 6,
2012, pp. 1–14.

[28] Cococcioni M., D'Andrea E., Lazzerini B., “Providing PRTools with fuzzy rule-based
classifiers”, Proceedings of the 2010 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), Barcelona, Spain, 18–23 July 2010, pp. 1–8.

[29] Cococcioni M., D'Andrea E., Lazzerini B., Volpi S.L., “Short-time forecasting of renewable
production energy in solar photovoltaic installations”, Proceedings of 2010 International
Conference on Competitive and Sustainable Manufacturing, Products and Services (APMS),
Como, Italy, 11–13 October 2010b.

[30] Cordón O., del Jesus M.J., Herrera F., “A proposal on reasoning methods in fuzzy rule-based
classification systems”, International Journal of Approximate Reasoning, vol. 20, n. 1, 1999,
pp. 21–45.

[31] Costa A., Crespo A., Navarro J., Lizcano G., Madsen H., Feitosa E., “A review on the young
history of the wind power short-term prediction”, Renewable and Sustainable Energy Reviews,
vol. 12, 2008, pp. 1725–1744.

[32] Cybenko G., “Approximations by superimpositions of sigmoidal functions”, Mathematics of
Control, Signals and Systems, vol. 2, n. 4, 1989, pp. 303–314.

[33] D'Andrea E., Lazzerini B., “A hierarchical approach to multi-class fuzzy classifiers”, Expert
Systems with Applications, 2013, vol. 40, n. 9, 2013, pp. 3828-3840.

[34] D'Andrea E., Lazzerini B., “Computational intelligence techniques for solar photovoltaic system
applications”, Proceedings of the 2nd Conference on Sustainable Internet and ICT for
Sustainability (SustainIT), Pisa, Italia, 4–5 October 2012c.

[35] D'Andrea E., Lazzerini B., “Fuzzy forecasting of energy production in solar PV systems”,
Proceeding of the 2012 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
Brisbane, Australia, 10–15 June 2012, pp. 1–8.

[36] D'Andrea E., Lazzerini B., Leon del Rosario S., “Neural network-based forecasting of energy

87

consumption due to electric lighting in office buildings”, Proceedings of the 2nd Conference on
Sustainable Internet and ICT for Sustainability (SustainIT), Pisa, Italia, 4–5 October 2012b.

[37] Davis L., Handbook of Genetic Algorithms, Van Nostrand Reinhold, 1991.
[38] De Cock M., Cornelis C., Kerre E.E., “Elicitation of fuzzy association rules from positive and

negative examples”, Fuzzy Sets and Systems, vol. 149, n. 1, 2005, pp. 73–85.
[39] del Jesus M.J., Hoffmann F., Navascues L.J. Sanchez L., “Induction of fuzzy-rule-based

classifiers with evolutionary boosting algorithms”, IEEE Transactions on Fuzzy Systems,
vol. 12, n. 3, 2004, pp. 296–308.

[40] Doukas H., Patlitzianas K.D., Iatropoulos K., Psarras J., “Intelligent building energy
management system using rule sets”, Building and Environment, vol. 42, n. 10, 2007, pp. 3562–
3569.

[41] Drossu R., Obradovic Z., “Rapid design of neural networks for time series prediction”, IEEE
Computational Science and Engineering, vol. 3, n. 2, 1996, pp. 78–89.

[42] Duin R.P.W., Juszczak P., de Ridder D., Paclik P., Pekalska E., Tax D.M.J., PRTools: The
Matlab Toolbox for Pattern Recognition (http://www.prtools.org/), 2004, version 4.2.3.

[43] EREC (European Renewable Energy Council), “Renewable Energy Technology Roadmap: 20%
by 2020”, Brussels, 2010.

[44] European Commission, “Energy 2020: A strategy for competitive, sustainable and secure
energy”, COM(2010), Brussels, 2010.

[45] Fakhrahmad S.M., Zare A., Zolghadri Jahromi M., “Constructing accurate fuzzy rule-based
classification systems using apriori principles and rule-weighting”, in Intelligent Data
Engineering and Automated Learning, pp. 547–556, H. Yin et al., Springer Berlin
Heidelberg, 2007.

[46] Fausett L., Fundamentals of neural networks, Prentice Hall, Englewood Cliffs, N.J., 1994.
[47] Fernández A., del Jesus M.J., Herrera F., “Hierarchical fuzzy rule based classification systems

with genetic rule selection for imbalanced data-sets”, International Journal of Approximate
Reasoning, vol. 50, n. 3, 2009, pp. 561–577.

[48] Frank A., Asuncion A., UCI Machine Learning Repository (http://archive.ics.uci.edu/ml).
Irvine, CA: University of California, School of Information and Computer Science, 2010.

[49] Gardner M.W., Dorling S.R., “Artificial neural networks (the multilayer perceptron). A review
of applications in the atmospheric sciences”, Atmospheric Environment, vol. 32, n. 14–15,
pp. 2627–2636,

[50] Goldberg D.E., Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, 1989.

[51] Gómez-Skarmeta A.F., Valdés M., Jiménez F., Marín-Blázquez J.G., “Approximative fuzzy
rules approaches for classification with hybrid-GA techniques”, Information Sciences, vol. 136,
n. 1–4, 2001, pp. 193–214.

[52] Gonzalez A., Perez R., “SLAVE: A genetic learning system based on an iterative approach”,
IEEE Transactions on Fuzzy Systems, vol. 7, n. 2, 1999, pp. 176–191.

[53] Gonzalez-Romera E., Jaramillo-Moran M.A., Carmona-Fernandez D., “Monthly electric energy
demand forecasting based on trend extraction”, IEEE Transactions on Power Systems, vol. 21,
n. 4, 2006, pp. 1946–1953.

[54] Guillaume S., Charnomordic B., “Generating an interpretable family of fuzzy partitions from
data”, IEEE Transactions on Fuzzy Systems, vol. 12, n. 3, 2004, pp. 324–335.

[55] Gutiérrez P.A., Salcedo-Sanz S., Hervas-Martinez C., Carro-Calvo L., Sanchez-Monedero J.,
Prieto L., “Evaluating nominal and ordinal classifiers for wind speed prediction from synoptic
pressure patterns”, Proceedings of the 11th International Conference on Intelligent Systems
Design and Applications (ISDA), Córdoba, Spain, 22–24 November 2011, pp. 1265–1270.

[56] Haida T., Muto S., “Regression based peak load forecasting using a transformation technique”,

88

IEEE Transactions on Power Systems, vol. 9, n. 4, 1994, pp. 1788–1794.
[57] Hamilton J.D., Time series analysis, Princeton University Press, 1994.
[58] Haykin S.S., Neural networks. A comprehensive foundation, Second Edition, Prentice-Hall,

New Jersey, 1999.
[59] Hernandez Neto A., Sanzovo Fiorelli F.A., “Comparison between detailed model simulation and

artificial neural network for forecasting building energy consumption”, Energy and Buildings,
vol. 40, n. 12, 2008, pp. 2169–2176.

[60] Herrera F. “Genetic Fuzzy systems: Taxonomy, current research trends and prospects”,
Evolutionary Intelligence, vol. 1, 2008, pp. 27–46.

[61] Holland J.H., Adaptation in Natural and Artificial Systems, University of Michigan Press,
1975.

[62] Hu Y.-C., Tzeng G.-H., “Elicitation of classification rules by fuzzy data mining”, Engineering
Applications of Artificial Intelligence, vol. 16, n. 7–8, 2003, pp. 709–716.

[63] Huang C., Moraga C., “Extracting fuzzy if-then rules by using the information matrix
technique”, Journal of Computer and System Sciences, vol. 70, n. 1, 2005, pp. 26–52.

[64] Ishibuchi H., Kuwajima I., Nojima Y., “Effectiveness of designing fuzzy rule-based classifiers
from Pareto-optimal rules”, 2008 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), Hong Kong, China, 1–6 June 2008, pp.1185–1192.

[65] Ishibuchi H., Murata T., Turksen I.B., “Single-objective and two objective genetic algorithms
for selecting linguistic rules for pattern classification problems”, Fuzzy Sets and Systems,
vol. 89, n. 2, 1997, pp. 135–150.

[66] Ishibuchi H., Nakashima T., “Effect of rule weights in fuzzy rule-based classification systems”,
IEEE Transactions on Fuzzy Systems, vol. 9, n. 4, 2001, pp. 506–515.

[67] Ishibuchi H., Nakashima T., Murata T., “Performance evaluation of fuzzy classifier systems for
multidimensional pattern classification problems”, IEEE Transactions on Systems, Man, and
Cybernetics – Part B: Cybernetics, vol. 29, n. 5, 1999, pp. 601–618.

[68] Ishibuchi H., Nakashima T., Murata T., “Three-objective genetics-based machine learning for
linguistic rule extraction”, Information Sciences, vol. 136, n. 1–4, 2001, pp. 109–133.

[69] Ishibuchi H., Nojima Y., Kuwajima I., “Evolutionary multiobjective design of fuzzy rule-based
classifiers”, in Computational Intelligence: a compendium, pp. 641–685. J. Fulcher et al.,
Springer Berlin Heidelberg, 2008.

[70] Ishibuchi H., Nozaki K., Tanaka H., “Distributed representation of fuzzy rules and its
application to pattern classification”, Fuzzy Sets and Systems, vol. 52, 1992, pp. 21–32.

[71] Ishibuchi H., Yamamoto T., “Fuzzy rule selection by multi-objective genetic local search
algorithms and rule evaluation measures in data mining”, Fuzzy Sets and Systems, vol. 141,
2004, pp. 59–88.

[72] Ishibuchi H., Yamamoto T., “Rule weight specification in fuzzy rule-based classification
systems”, IEEE Transactions on Fuzzy Systems, vol. 13, n. 4, 2005, pp. 428–435.

[73] Ishibuchi H., Yamamoto T., Nakashima T., “Hybridization of fuzzy GBML approaches for
pattern classification problems”, IEEE Transactions on Systems, Man, and Cybernetics – Part
B: Cybernetics, vol. 35, n. 2, 2005, pp. 359–365.

[74] Ivancheva J., Koleva E., “An estimation of the global solar radiation over Bulgaria”,
Proceedings of International Conference on Water Observation and Information System for
Decision Support (BALWOIS), Ohris, Republic of Macedonia, 27–31 May 2008.

[75] Janikow C.Z., Michalewicz Z., “An experimental comparison of binary and floating point
representations in genetic algorithms”, Proceedings of the 4th International Conference on
Genetic Algorithms, San Diego, CA, July1991, pp. 31-36.

[76] Jin Y., “Fuzzy modeling of high-dimensional systems. Complexity reduction and
Iinterpretability improvement”, IEEE Transactions on Fuzzy Systems, vol. 1, 2000, pp. 212–

89

221.
[77] Kalogirou S.A., “Applications of artificial neural-networks for energy systems”, Applied

Energy, vol. 67, n. 1–2, 2000, pp. 17–35.
[78] Karatasou S., Santamouris M., Geros V., “Modeling and predicting building’s energy use with

artificial neural networks: methods and results”, Energy and Buildings, vol. 38, 2006, pp. 949–
958.

[79] Kasabov N., “Learning fuzzy rules and approximate reasoning in fuzzy neural networks and
hybrid systems”, Fuzzy Sets and Systems, vol. 82, n. 2, 1996, pp. 135–149.

[80] Kottas T.L., Boutalis Y.S., Karlis A.D., “New maximum power point tracker for PV arrays
using fuzzy controller in close cooperation fuzzy cognitive networks”, IEEE Transactions on
Energy Conversion, vol. 21, n. 3, 2006, pp. 793–803.

[81] Kudo M., Takeuchi A., Nozaki Y., Endo H., Sumita J., “Forecasting electric power generation
in a photovoltaic power system for an energy network”, Electrical Engineering in Japan,
vol. 167, n. 4, 2009.

[82] Kuncheva L.I., “On the equivalence between fuzzy and statistical classifiers”, International
Journal of Uncertainty Fuzziness and Knowledge-Based Systems, vol. 4, n. 3, 1996, pp. 245–
253.

[83] Lam J.C., Chan R.Y.C., Tsang C.L., Li D.H.W., “Electricity use characteristics of purpose-built
office buildings in subtropical climates”, Energy Conversion and Management, vol. 45, n. 6,
2004, pp. 829–844.

[84] Lam J.C., Li D.H.W., “Luminous Efficacy of daylight under different sky conditions”, Energy
Conversion and Management, vol. 37, n. 12, 1996, pp. 1703–1711.

[85] Lee H.-M., Chen C.-M., Chen J.-M., Jou Y.-L., “An efficient fuzzy classifier with feature
selection based on fuzzy entropy”, IEEE Transactions on Systems, Man, and Cybernetics – Part
B: Cybernetics, vol. 31, n. 3, 2001, pp. 426–432.

[86] Lei M., Shiyan L., Chuanwen J., Hongling L., Yan Z., “A review on the forecasting of wind
speed and generated power”, Renewable and Sustainable Energy Reviews, vol. 13, n. 4, 2009,
pp. 915–920.

[87] Leontaritis I.J., Billings S.A., “Input-output parametric models for non-linear systems. Part I:
deterministic non-linear systems”, International Journal of Control, vol. 41, n. 2, 1985,
pp. 303–328.

[88] Leontaritis I.J., Billings S.A., “Input-output parametric models for non-linear systems. Part II:
stochastic non-linear systems”, International Journal of Control, vol. 41, n. 2, 1985, pp. 329–
344.

[89] Li D.H.W., Lam J.C., “An analysis of climatic parameters and sky condition classification”,
Building and Environment, vol. 36, n. 4, 2001, pp. 435–445.

[90] Li M., Wang Z., “A hybrid coevolutionary algorithm for designing fuzzy classifiers”,
Information Sciences, vol. 179, n. 12, 2009, pp. 1970–1983.

[91] MacQueen J.B., “Some Methods for classification and Analysis of Multivariate Observations”,
Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley,
CA, 1967, vol. 1, pp. 281–297.

[92] Makridakis S.G., Wheelwright S.C., Hyndman R.J., Forecasting: methods and applications,
Third Edition, Wiley, 1998.

[93] Mansoori E.G., Zolghadri Jahromi M., Katebi S.D., “A weighting function for improving fuzzy
classification systems performance”, Fuzzy Sets and Systems, vol. 158, n. 5, 2007, pp. 583–591.

[94] Marques Nogueira T., de Arruda Camargo H., “Fuzzy rule base generation through conditional
clustering”, 19th Brazilian Symposium on Artificial Intelligence (SBIA), Salvador, Brazil, 26-30
October 2008.

[95] Marquez R., Coimbra C.F.M., “Forecasting of global and direct solar irradiance using stochastic
learning methods, ground experiments and the NWS database”, Solar Energy, vol. 85, n. 5,

90

2011, pp. 746–756.
[96] Martin L., Zarzalejo L.F., Polo J., Navarro A., Marchante R., Cony M., “Prediction of global

solar irradiance based on time series analysis: Application to solar thermal power plants energy
production planning”, Solar Energy, vol. 84, n. 10, 2010, pp. 1772–1781.

[97] Mateo F., Carrasco J.J., Sellami A., Millán-Giraldo M., Domínguez M., Soria-Olivas E.,
“Machine learning methods to forecast temperature in buildings”, Expert Systems with
Applications, vol. 40, n. 4, 2013, pp. 1061–106.

[98] McCulloch W.S., Pitts W., “A logical calculus of ideas immanent in nervous activity”, The
bulletin of mathematical biophysics, vol. 5, n. 4, 1943, pp. 115–133.

[99] Mellit A., Benghanem M., Kalogirou S.A., “An adaptive wavelet-network model for forecasting
daily total solar-radiation”, Applied Energy, vol. 83, n. 7, 2006, pp. 705–722.

[100] Mellit A., Massi Pavan A., “A 24-h forecast of solar irradiance using artificial neural network:
Application for performance prediction of a grid-connected PV plant at Trieste, Italy”, Solar
Energy, vol. 84, n. 5, 2010, pp. 807–821.

[101] Mitchell M., An introduction to genetic algorthms, MIT press, 1998.
[102] Mitra S., Hayashi Y., “Neuro-fuzzy rule generation: survey in soft computing framework”,

IEEE Transactions on Neural Networks, vol. 11, n. 3, 2000, pp. 748–768.
[103] Mitra S., Kuncheva L.I., “Improving classification performance using fuzzy MLP and two-level

selective partitioning of the feature space”, Fuzzy Sets and Systems, vol. 70, 1995, pp. 1–13.
[104] Moghram I., Rahman S., “Analysis and evaluation of five short-term load forecasting

techniques”, IEEE Transactions on Power Systems, vol. 4, n. 4, 1989, pp. 1484–1491.
[105] Mohamed E.A., Mansour M.M., El-Debeiky S., Mohamed K.G., “Egyptian unified grid hourly

load forecasting using artificial neural network”, International Journal of Electrical Power &
Energy Systems, vol. 20, n. 7, 1998, pp. 495–500.

[106] Monfared M., Rastegar H., Kojabadi H.M., “A new strategy for wind speed forecasting using
artificial intelligent methods”, Renewable Energy, vol. 34, 2009, pp. 845–848.

[107] Mubiru J., Banda E.J.K.B., “Estimation of monthly average daily global solar irradiation using
artificial neural networks”, Solar Energy, vol. 82, n. 2, 2008, pp. 181–187.

[108] Nadimi V., Azadeh A., Pazhoheshfar P., Saberi M., “An adaptive-network-based fuzzy
Inference system for long-term electric consumption forecasting (2008–2015): A case study of
the Group of Seven (G7) industrialized nations: U.S.A., Canada, Germany, United Kingdom,
Japan, France and Italy”, Proceedings of the 2010 Fourth UKSim European Symposium on
Computer Modeling and Simulation (EMS), Pisa, Italy, 17–19 November 2010, pp. 301–305.

[109] Nauck D., “GNU fuzzy”, Proceedings of 2007 International Conference on Fuzzy Systems
(FUZZ-IEEE), London, UK, 23–26 July 2007, pp. 1–6.

[110] Nauck D., Kruse R. “NEFCLASS-J – A JAVA-based soft computing tool”, in Intelligent
Systems and Soft Computing, pp. 139–160, B. Azvine et al., Springer Berlin Heidelberg,
2000.

[111] Nauck D., Kruse R., “A neuro-fuzzy method to learn fuzzy classification rules from data”,
Fuzzy Sets and Systems, vol. 89, n. 3, 1997, pp. 77–288.

[112] Nauck D., Kruse R., “NEFCLASS - A neuro-fuzzy approach for classification of data”,
Proceedings of 1995 ACM Symposium on Applied Computing, Nashville, TN, 1995, pp. 461–
465.

[113] Nicol J., Humpreys M., “Adaptive thermal comfort and sustainable thermal standards for
buildings”, Energy and Buildings, vol. 34, n. 6, 2002, pp. 563–572.

[114] Nozaki K., Ishibuchi H., Tanaka H., “A simple but powerful heuristic method for generating
fuzzy rules from numerical data”, Fuzzy Sets and Systems, vol. 86, n. 3, 1997, pp. 251–270.

[115] Nozaki K., Ishibuchi H., Tanaka H., “Adaptive fuzzy rule-based classification systems”, IEEE
Transactions on Fuzzy Systems, vol. 4, n. 3, 1996, pp. 238–250.

91

[116] Oliver M., Jackson T., “The market for solar photovoltaics”, Energy Policy, vol. 27, 1999,
pp. 371–385.

[117] Padmakumari K., Mohandas K.P., Thiruvengadam S., “Long term distribution demand
forecasting using neuro fuzzy computations”, International Journal of Electrical Power &
Energy Systems, vol. 21, n. 5, 1999, pp. 315–322.

[118] Panda S.S., Chakraborty D., Pal S.K., “Drill wear prediction using neural network
architectures”, International Journal of Knowledge-based and Intelligent System, vol. 12, n. 5–
6, 2008, pp. 327–338.

[119] Paoli C., Voyant C., Muselli M., Nivet M., “Solar radiation forecasting using ad-hoc time series
preprocessing and neural networks”, Solar Energy, vol. 84, n. 12, 2010, pp. 2146–2160.

[120] Papalexopoulos A.D., Hesterberg T.C., “A regression-based approach to short-term system load
forecasting”, IEEE Transactions on Power Systems, vol. 5, n. 4, 1990, pp. 1535–1547.

[121] Patterson D.W., Artificial neural networks. Theory and applications, Prentice Hall, Simon &
Schuster, Singapore, 1996.

[122] Potter C.W., Archambault A., Westrick K., “Building a smarter smart grid through better
renewable energy information”, Proceedings of 2009 Power Systems Conference and
Exposition (PSCE), IEEE/PES, Seattle, WA, 15–18 March 2009, pp. 1–5.

[123] Pousinho H.M.I., Mendes V.M.F., Catalão J.P.S., “Neuro-fuzzy approach to forecast wind
power in Portugal”, Proceedings of 2010 International Conference on Renewables Energies and
Power Quality (ICREPQ), Granada, Spain, 23–25 March 2010, pp. 1–4.

[124] Rahman S., Hazim O., “A generalized knowledge-based short-term load-forecasting technique”,
IEEE Transactions on Power Systems, vol. 8, n. 2, 1993, pp. 508–514.

[125] Ramakumar R., Bigger J.E., Photovoltaic systems, IEEE Proceedings, vol. 81, n. 3, 1993,
pp. 365–77.

[126] REN21, “Renewables 2012 Global Status Report”, Paris: REN21 Secretariat, France, 2012.
[127] Rojas R., Neural networks. A systematic introduction, Springer, Berlin, 1995.
[128] Rosenblatt F., Principles of neurodynamics: perceptrons and the theory of brain

mechanisms, Spartan Books, Washington D.C., 1962.
[129] Roubos H., Setnes M., “Compact and transparent fuzzy models and classifiers through iterative

complexity reduction”, IEEE Transactions on Fuzzy Systems, vol. 9, n. 4, 2001, pp. 516–524.
[130] Roubos J.-A., Setnes M., Abonyi J., “Learning fuzzy classification rules from labeled data”,

Information Sciences, vol. 150, 2003 pp. 77–93.
[131] Rumelhart D.E., Hinton G.E., Williams R.J., “Learning representations by back-propagating

errors”, Nature, vol. 323, 1986, pp. 533–536.
[132] Saab S., Badr E., Nasr G., “Univariate modeling and forecasting of energy consumption: the

case of electricity in Lebanon”, Energy, vol. 26, n. 1, 2001, pp. 1–14.
[133] Sánchez L., Couso I., Corrales J.A., Cordón O., del Jesus M.J., Herrera F., “Combining GP

operators with SA search to evolve fuzzy rule based classifiers”, Information Sciences, vol. 136,
n. 1–4, 2001, pp. 175–191.

[134] Sanz J., Fernández A., Bustince H., Herrera F. “A genetic tuning to improve the performance of
fuzzy rule-based classification systems with interval-valued fuzzy sets: degree of ignorance and
lateral position”, International Journal of Approximate Reasoning, vol. 52, 2011, pp. 751–766.

[135] Senjyu T., Takara H., Uezato K., Funabashi T., “One-hour-ahead load forecasting using neural
network”, IEEE Transactions on Power Systems, vol. 17, n. 1, 2002, pp. 113–118.

[136] Setnes M., Babuska R., Verbruggen B., “Rule-based modeling: precision and transparency”,
IEEE Transactions on Systems, Man, and Cybernetics – Part C: Applications and Reviews,
vol. 28, n. 1, 1998, pp. 165–169.

[137] Setnes M., Roubos H. “GA-fuzzy modeling and classification: complexity and performance”,
IEEE Transactions on Fuzzy Systems, vol. 8, n. 5, 2000, pp. 509–522.

92

[138] Sfetsos A., “A novel approach for the forecasting of mean hourly wind speed time series”,
Renewable Energy, vol. 27, n. 2, 2002, pp. 163–174.

[139] Song Y.D., “A new approach for wind speed prediction”, Wind Engineering, vol. 24, n. 1, 2000,
pp. 35–47.

[140] Srinivas M., Patnaik L.M., “Genetic algorithms: a survey”, Computer, vol. 27, n. 6, 1994,
pp. 17–26.

[141] Srinivasan D., Swee T.S., Cheng C.S. Chan E.K., “Parallel neural network-fuzzy expert system
strategy for short-term load forecasting: system implementation and performance evaluation”,
IEEE Transactions on Power Systems, vol. 14, n. 3, 1999, pp. 1100–1106.

[142] Sukamongkol Y., Chungpaibulpatana S., Ongsakul, W., “A simulation model for predicting the
performance of a solar photovoltaic system with alternating current loads”, Renewable Energy,
vol. 27, 2002, pp. 237–258.

[143] Sulaiman S.I., Rahman T.K.A., Musirin I., Shaari S., “Performance analysis of two-variate
ANN models for predicting the output power from grid-connected photovoltaic system”,
International Journal of Power, Energy and Artificial Intelligence (IJPEAI), vol. 2, n. 1, 2009,
pp. 72–76.

[144] Taylor J.W., Buizza R., “Neural network load forecasting with weather ensemble predictions”,
IEEE Transactions on Power Systems, vol. 17, n. 3, 2002, pp. 626–632.

[145] Troncoso Lora A., Riquelme J.C., Martìnez Ramos J.L., Riquelme Santos J.M., Gomez
Exposito A., “Influence of kNN-based load forecasting errors on optimal energy production”, in
Progress in Artificial Intelligence, pp. 189–203, F.M. Pires et al., Springer Berlin Heidelberg,
2003.

[146] Tsang E.-C.-C., Wang X.-Z., Yeung D.-S., “Improving learning accuracy of fuzzy decision
trees by hybrid neural networks”, IEEE Transactions on Fuzzy Systems, vol. 8, n. 5, 2000,
pp. 601–614.

[147] Tsoutsosa T., Frantzeskakib N., Gekas V., “Environmental impacts from the solar energy
technologies”, Energy Policy, vol. 33, 2005, pp. 289–296.

[148] Tung S.W., Queck C., Guan C., “SoHyFIS-Yager: A self-organizing Yager based hybrid neural
fuzzy inference system”, Expert Systems with Applications, vol. 39, 2012, pp. 12759–12771.

[149] Tzafestas S., Tzafestas E., “Computational Intelligence Techniques for Short-Term Electric
Load Forecasting”, Journal of Intelligent & Robotic Systems, vol. 31 n. 1, 2001, pp. 7–68.

[150] Uebele V., Abe S., Lan M.-S., “A neural network based fuzzy classifier”, IEEE Transactions on
Systems, Man and Cybernetics, vol. 25, n. 2, 1995, pp. 353–361.

[151] van der Heijden F., Duin R.P.W., De Ridder D., Tax D.M.J., Classification, Parameter
Estimation and State Estimation: An Engineering Approach Using MATLAB, John Wiley
& Sons, 2004.

[152] Vieira S., Sousa J.M.C., Runkler T.A., “Multi-criteria ant feature selection using fuzzy
classifiers”, in Swarm Intelligence for Multi-objective Problems in Data Mining, pp. 19–36,
C.A. Coello Coello et al., Springer Berlin Heidelberg, 2009.

[153] Wang J.-S., Lee C.S.G., “Self-adaptive neuro-fuzzy inference systems for classification
applications”, IEEE Transactions on Fuzzy Systems, vol. 10, n. 6, 2002, pp. 790–802.

[154] Wang L.-X., Mendel J.M., “Generating fuzzy rules by learning from examples”, IEEE
Transactions on Systems, Man, and Cybernetics, vol. 22, n. 6, 1992, pp. 1414–1427.

[155] Wang X.-Z., Tsang E.C.C., Yeung D.-S., “A comparative study on heuristic algorithms for
generating fuzzy decision trees”, IEEE Transactions on Systems, Man and Cybernetics– Part B:
Cybernetics, vol. 31, n. 2, 2001, pp. 215–226.

[156] Wang X.-Z., Wang Y.-D., Xu X.-F., Ling W.-D., Yeung D.-S., “A new approach to fuzzy rule
generation: Fuzzy extension matrix”, Fuzzy Sets and Systems, vol. 123, n. 3, 2001, pp. 291–306.

[157] Wilamowski B.M., Li X., “Fuzzy system based maximum power point tracking for PV system”,
28th IEEE Annual Conference of the Industrial Electronics Society (IECON), Sevilla, Spain, 5–

93

8 November 2002, vol. 4, pp. 3280–3284.
[158] Wong S.L., Wan K.K.W., Lam T.N.T., “Artificial neural networks for energy analysis of office

buildings with daylighting”, Applied Energy, vol. 87, n. 2, 2010, pp. 551–557.
[159] Wu C.-F., Lin C.-J., Lee C.-Y., “A functional neural fuzzy network for classification

applications”, Expert Systems with Applications, vol. 28, 2011, pp. 6202–6208.
[160] Xie H., Liu L., Ma. F., Fan H., “Performance prediction of solar collectors using artificial neural

networks”, Proceedings of 2009 International Conference on Artificial Intelligence and
Computational Intelligence (AICI), Shanghai, China, 2009, pp. 573–576.

[161] Xiong N., Litz L., Ressom H., “Learning premises of fuzzy rules for knowledge acquisition in
classification problems, knowledge and information systems”, vol. 4, n. 1, 2002, pp. 96–111.

[162] Yona A., Senjyu T., Saber A.Y., Funabashi T., Sekine H., Chul-Hwan K., “Application of
neural network to 24-hour-ahead generating power forecasting for PV system”, Proceedings of
Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in
the 21st Century, Pittsburgh, Pennsylvania, 20–24 July 2008, pp. 1–6.

[163] Yuan Y., Shaw M. “Induction of fuzzy decision trees”, Fuzzy Sets and Systems, vol. 69. n. 2,
1995, pp. 125–139.

[164] Zadeh L.A., “Fuzzy sets”, Information and Control, vol. 8, n. 3, 1965, pp. 338–353.
[165] Zhou E., Khotanzad A., “Fuzzy classifier design using genetic algorithms”, Pattern

Recognition, vol. 40, 2007, pp. 3401–3414.
[166] Zolghadri Jahromi M., Mansoori E.G., “Weighting fuzzy classification rules using receiver

operating characteristics (ROC) analysis”, Information Sciences, vol. 177, n. 11, 2007,
pp. 2296–2307.

[167] Zolghadri Jahromi M., Taheri M. “A proposed method for learning rule weights in fuzzy rule-
based classification systems”, Fuzzy Sets and Systems, vol. 159, 2008, pp. 449–459.

94

95

A
How to implement a generic classifier in PRTools

First we introduce the PRTools framework1, then, the basic elements of PRTools,
namely the dataset and mapping objects, in the sense of object oriented
programming (OOP), and then we recall the phases for building a new generic
classifier. Lastly we show the main steps of the implementation in PRTools of the
classfier frbc presented in Chapter 2.

A.1 PRTools framework
The Pattern Recognition Toolbox (PRTools) is the de-facto standard toolbox for

classification in Matlab, and is freely available for academic research. It offers
many classifiers, like linear and quadratic discriminant classifiers, decision trees
and neural networks. In addition, many base functions are available for training
and testing classifiers, and plotting of decision boundaries. Furthermore, many
types of feature selection (e.g., individual, forward, backward, branch-and-bound)
could be performed. In the following, we outline main characteristic of PRTools.

PRTools follows a base philosophy that is:
a) powerful and concise syntax-oriented: PRTools exploits the Matlab

support to object-oriented programming and overloads many operators
(plus, times, disp, etc.). In this way, the syntax associated with the training
of a classifier and its test is very concise. Operator concatenation also
allows for an even more concise syntax: many basic tasks can be
performed by including operators and objects into a single expression;

b) command line-oriented: PRTools is not equipped with a graphical user
interface: each task can be performed by entering command line
instructions at the Matlab prompt or by using scripts/functions;

c) multiple test set-oriented: PRTools decouples the training phase from the

1 For a detailed documentation see: i) van der Heijden F., Duin R.P.W., De Ridder D., Tax D.M.J.,
Classification, Parameter Estimation and State Estimation: an Engineering Approach Using
MATLAB, John Wiley & Sons, 2004, and ii) Duin R.P.W., Juszczak P., de Ridder D., Paclik P.,
Pekalska E., Tax D.M.J., PRTools: The Matlab Toolbox for Pattern Recognition
(http://www.prtools.org/), 2004, version 4.2.3.

96

test phase. To this aim, it maintains the data structure representing the
input-output mapping learnt during training, so that this mapping can
subsequently be exploited to test the classifier on as many test sets as
needed;

d) oriented to the reuse of existing Matlab toolboxes: PRTools does not intend
to reinvent the wheel: if something is already available in Matlab then it
reuses it. For instance, neural network-based classifiers exploit the Matlab
Neural Networks Toolbox;

e) oriented to as few free parameters as possible: classification algorithms
may have a lot of free parameters to be set by the user. PRTools tends to
limit the number of these parameters as much as possible, by privileging
algorithms that need as few parameters as possible, and/or default
(sometimes optimized) values for most of them;

f) oriented to fast and heuristic-based training algorithms: the goal of
PRTools is not to provide the most accurate results, achieved by means of
very complex optimization methods, such as simulated annealing,
evolutionary algorithms, swarm intelligence, etc. Instead, it frequently uses
good heuristics to determine good classifiers quite quickly. For instance,
treec, which is the PRTools implementation of decision trees, does not
involve global optimization meta-heuristics, but instead it uses well-
assessed and efficient heuristics;

g) data-driven oriented: PRTools is oriented to the automatic training of
classifiers from data, without requiring any intervention by a human expert
in the specific application domain;

h) oriented to well-assessed and widely accepted methodologies: PRTools
privileges well-assessed and widely accepted design methodologies,
instead of more recent and cutting the edge ones. This choice allows for
algorithms that perform generally well (although not superlatively well) in
most of the application domains, in place of algorithms that perform well
only in particular circumstances, and poorly in many other cases;

i) oriented to the combination with other functions: PRTools easily allows
passing a classification algorithm as parameter of other higher-level
functions. In this way, e.g., a feature selection function is able to call any
classifier and to rank features based on the performance achieved by that
classifier, once trained using the subset of features under assessment;

j) batch-mode oriented: PRTools is not oriented to online classification of
data streams, but instead it assumes that all the data are available at the
beginning.

A.2 Basic elements of PRTools

A.2.1 The dataset object

The dataset object is one of the two fundamental elements in PRTools. A

97

dataset consists of a structure which contains both the patterns and the
corresponding class labels. Further, it contains other useful information regarding
the input domain, the class a-priori probabilities, etc.

PRTools also defines several member functions for the dataset class, which
are used to set and get field values, display selected information, and so on. It also
overloads some Matlab® operators and functions, thus making the syntax very
concise and powerful by exploiting operator concatenation, priority, etc.

A.2.2 The mapping object

Datasets are transformed by mappings, so a mapping is an object that may store
the information about transformations to be made on data (e.g., in case of a neural
network, the network architecture and its parameters), the routine to be used to
perform the mapping itself, and the routine for training. It is used to transform data
(e.g., normalization and scaling), to build classifiers, etc.

PRTools supports the following four types of mapping:
a) untrained mappings: they are empty mappings which store the specific

mapping routine that has to be used when they are trained on a specific
dataset. They can also store user-defined options (e.g., the value of k for a k-
nearest neighbor classifier);

b) trained mappings: they store all the information gathered during the training
process of a classifier, so as to classify (map) as many datasets as needed in
the future;

c) fixed mappings: they transform dataset objects, but in this case the type of
transformation is defined by the user (scaling, normalization, etc.);

d) combiners: they are mappings used to combine multiple mappings
(associated to an ensemble of classifiers) into a combined mapping.

A classifier is handled as follows: the function that has to be used to train the
classifier is stored in a mapping object, as well as the function used to map a data
set. When an object of type dataset is “multiplied by” a mapping object
associated with a particular classifier, the relative training function is invoked on
the provided dataset.

As an example let us look at the following lines of code:

1 U=ldc % builds an untrained mapping U with ldc
(Linear Bayes Classifier)

2 W=tr*U % perform training with dataset tr and
builds a trained mapping W

3 V=ldc(tr) % builds a trained mapping V directly
4 e=testc(ts,W) % computes the misclassification error of W

on a test dataset ts

In PRTools each classifier has a constructor, which, by calling the mapping

constructor, builds a mapping object after performing input check and other
minor operations. In the following we describe how the constructor for a generic

98

classifier x has to be implemented. It is good practice to name such constructor xc.

A.3 The construction of a generic trained classifier xc
Implementing a new classifier under PRTools requires the implementation of

three functions in an appropriate way. In the following we provide a template for
implementing a generic classifier in PRTools, which may be useful for other
researchers interested in extending PRTools.

After analyzing some classifiers in PRTools, we can point out that the new
classifier xc should be able to perform the following operations:

1. the construction of a mapping object: the classifier;
2. the training of the classifier;
3. the application of a dataset to the trained classifier (i.e., the classification);
4. the building of a dataset as the result of the classification consistently with

PRTools routines like testc, etc.
So the source code of a new classifier xc will consist of three main parts: the

classifier constructor, the training phase and the mapping phase (the classification).

A.3.1 The classifier constructor xc

This is the main routine of the classifier. The classifier xc should be able to
handle the following types of call:

1 U=xc([],params) % builds an untrained classifier U with

classifier xc and sets some training
parameters params

2 V=tr*U % trains the untrained classifier U with
dataset tr

3 W=xc(tr,params) % builds directly a trained classifier W
with xc, specifying some training
parameters, on dataset tr

4 D=ts*W % uses W to perform the classification of
a test dataset ts

A.3.2 The training phase xc_train
This phase performs the training of the classifier. The processing could be part of

the main file xc or could be put apart. It requires as input a training dataset tr
and, optionally, the parameters needed for training params, and provides a trained
mapping as output. The routine xc_train is called when a trained classifier W is
directly build (W=xc(tr,params)) or to train an untrained classifier U
previously built (V=tr*U).

A.3.3 The mapping phase xc_map
For each classifier in PRTools, a mapping routine xc_map is needed. When a

99

trained mapping is applied to a dataset (D=ts*W) the routine xc_map is called.
The dataset D contains the result of the classification. So the previous
instruction is equivalent both to D=map(ts,W) and to D=xc_map(ts,W).
Otherwise, if the mapping routine is applied to an untrained classifier U,
(W=tr*U), the training of the classifier is performed and the routine returns a
trained mapping. The previous instruction is equivalent to W=map(tr,U).

A.4 The implementation of frbc in PRTools
To implement frbc in PRTools we have to provide the following functions: the

constructor (frbc), the training function (frbc_train) and the mapping
function (frbc_map). Once provided these functions, PRTools will automatically
support, for example, the following statements:

1 W1=frbc(tr) % trains frbc W1 directly with
default options

2 W2=frbc(tr,opts) % trains frbc W2 directly using
options opts

3 U=frbc([],opts) % builds an untrained mapping U
with frbc

4 V=tr*U % trains the untrained mapping U
on dataset tr

5 [W,R]=faetself(tr,frbc,f,ts) % apply forward feature selection
using frbc (find the feature that
used alone gives the best result,
then selects the second feature
that with the first one gives the
best result, and so on.

6 plotc(V) % plot the decision boundary for
V

7 e=testc(ts,V) % computes the misclassification
error of V on test dataset ts

A.4.1 frbc (the constructor)

This is the main routine of the classifier. We will analyze the structure of the
source code through a flowchart (Fig. A.1), which summarizes the fundamental
parts of the routine.

This function builds a PRTools mapping object, which represents a classifier.
What is interesting here is that, within the mapping object, the data related to the
FRBC are stored in a Matlab FLT consistent FIS structure. This structure can be
retrieved whenever necessary using the function frbc_getfis, and used in
combination with other FLT functions (e.g., evalfis, mfedit, ruleview,
showrule, etc.).
frbc supports many options. They are provided through the input parameter

opts which is a structure containing the parameters for the training and the fuzzy
reasoning. The options fields are: i) the number of fuzzy sets per variable, ii) the

100

membership function type, iii) the certainty factor computing method. Moreover,
as regards the fuzzy reasoning method, the user can choose different operators
among the supported ones: i) the AND operator, ii) the association degrees
operator, iii) the aggregation function, iv) the stress method, etc. Default options
are handled by a specific routine, which also allows the customization of all the
above mentioned options. The same function provides some shortcuts (e.g.,
classical FRM) to useful combinations of options. Moreover, the user can change
the options fields of a predefined shortcut directly from the command line.

begin

call frbc_train to
train the classifier
(this will produce

the KB)

end

yes

call the mapping
constructor to build a
trained mapping that
contains both the KB

and the opts structures

has the input
opts been
provided?

is training
dataset

present?

generate the opts
structure by using

default options

call the mapping
constructor to build an

untrained mapping

no

no

yes

set frbc_map
as mapping

function

Figure A.1. – Flowchart describing the actions of the frbc constructor.

A.4.2 frbc_train (the training function)
This routine trains the classifier according to the Wang and Mendel approach2 for

generating fuzzy rules from data, presented in Section 2.3.1. This function, first,
generates an initial raw rule base, then generates the final rule base, by performing
the following steps: a) removes ambiguous rules, b) removes duplicated rules, c)
computes certainty factors, d) removes conflicting rules, i.e., rules with same
antecedent but different consequent class (only the rule with the highest certainty

2 Wang L.-X., Mendel J.M., “Generating fuzzy rules by learning from examples”, IEEE Transactions
on Systems, Man, and Cybernetics, vol. 22, n. 6, 1992, pp. 1414–1427.

101

factor is kept).

A.4.3 frbc_map (the mapping function)

This is the mapping routine (the flowchart shown in Fig. A.2), which contains the
processing required to apply the FRM, as described in Section 2.3.2. It corresponds
to the evalfis function under the Matlab FLT.

begin

end

read inference
operators, fuzzy

rules and FIS
model

compute
membership

function degrees

compute
matching degree

for all rules

compute
association degree
for each class for

all rules

apply stress
function

compute
classification

soundness degree
for each class

build
classification

dataset

is mapping
trained?

execute
training

build trained
mapping

no

yes

Figure A.2. – Flowchart describing the actions of the mapping function frbc_map.

A.4.4 frbc: some usage example
The tests carried out with frbc have reproduced the results concerning fuzzy

102

rule-based classifiers in the literature3.
In addition, we report some interesting examples on how to use frbc, combined

with existing PRTools functions.
We build and train frbc using an artificial dataset of two-class elements with a

banana shaped distribution. Then we plot the decision boundaries of two well-
known PRTools classifiers (the Linear Bayes Classifier ldc and the K-Nearest
Neighbor Classifier knnc) against frbc to compare them (see Fig. A.3). We can
easily see from Fig. A.3 the good performance achieved by the frbc classifier.

The following lines of code have been used to perform this test:

1 tr=gendatb(500) % generates a banana-shaped distribution
training dataset of 500 elements

2 W=frbc(tr,opts) % trains frbc W directly using options opts
on dataset tr

3 V1=ldc(tr) % trains the Linear Bayes Classifier V1
directly on tr

4 V2=knnc(tr) % trains the K-Nearest Neighbor Classifier
 V2 directly on tr

5 scatterd(tr) % plots the training dataset
6 plotc(W,V1,V2) % plot the decision boundaries for W, V1 and

V2

-10 -8 -6 -4 -2 0 2 4 6 8

-10

-5

0

5

Feature 1

Fe
at

ur
e

2

Banana Set

C1
C2
ldc
knnc
frbc

Figure A.3. – Decision boundaries for knnc, ldc and frbc (dashed red line) on a two-class

dataset.

3 Cordón O., del Jesus M.J., Herrera F., “A proposal on reasoning methods in fuzzy rule-based
classification systems”, Int. Journal of Approximate Reasoning, vol. 20, n. 1, 1999, pp. 21–45.

103

104

	1. CopertinaTesi bianca13x20
	2. frontespiziomod
	3.parte iniziale
	4. cap 1-2-3
	5. cap 4-5
	6. cap 6-7 e finale

