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Sommario  

Questa tesi presenta una serie di nuove applicazioni di tecniche di 
Computational Intelligence in problemi del settore energetico, con particolare 
riferimento alla valutazione dell'energia prodotta da impianti fotovoltaici e alla 
valutazione dei consumi energetici di edifici. Infatti, di recente, grazie anche alla 
crescente evoluzione tecnologica, il settore energetico ha attirato l'attenzione della 
comunità di ricerca scientifica nel proporre strumenti utili in problemi di efficienza 
energetica negli edifici e nella gestione della produzione di energia solare. 
Affronteremo quindi due tipologie di problemi. 

Il primo problema è legato alla gestione efficiente degli impianti solari 
fotovoltaici, per esempio, per controllare efficacemente le prestazioni e per la 
ricerca di guasti, o per la pianificazione della distribuzione di energia elettrica in 
rete. Questo problema è stato affrontato con due approcci diversi: un approccio di 
previsione e un approccio di classificazione fuzzy per stimare la produzione di 
energia, a partire dalla conoscenza di alcune variabili ambientali. Il sistema di 
previsione sviluppato è in grado di riprodurre la curva giornaliera di energia 
prodotta dai pannelli solari dell'impianto, con un orizzonte temporale di previsione 
di un giorno. Il sistema sfrutta reti neurali e modelli di analisi di serie temporali. Il 
sistema di classificazione fuzzy, invece, estrae una certa conoscenza linguistica 
relativa alla quantità di energia prodotta dall'impianto, sfruttando una base di 
regole fuzzy ottimale e impiegando algoritmi genetici. Il modello sviluppato è il 
risultato di una nuova metodologia di tipo gerarchico per la costruzione di sistemi 
fuzzy, che può essere applicata in molteplici settori. 

Il secondo problema è legato alla efficienza energetica degli edifici, allo scopo di 
ottenere benefici quali la riduzione del costo o la pianificazione del carico, ed è 
stato affrontato proponendo un sistema di previsione dei consumi energetici negli 
uffici. Il sistema sviluppato sfrutta una rete neurale per stimare il consumo di 
energia per illuminazione in un intervallo di tempo di alcune ore, a partire da 
considerazioni sulla luce naturale esterna disponibile. 
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Abstract 

This thesis presents a few novel applications of Computational Intelligence 
techniques in the field of energy-related problems. More in detail, we refer to the 
assessment of the energy produced by a solar photovoltaic installation and to the 
evaluation of building’s energy consumptions. In fact, recently, thanks also to the 
growing evolution of technologies, the energy sector has drawn the attention of the 
research community in proposing useful tools to deal with issues of energy 
efficiency in buildings and with solar energy production management. Thus, we 
will address two kinds of problem. 

The first problem is related to the efficient management of solar photovoltaic 
energy installations, e.g., for efficiently monitoring the performance as well as for 
finding faults, or for planning the energy distribution in the electrical grid. This 
problem was faced with two different approaches: a forecasting approach and a 
fuzzy classification approach for energy production estimation, starting from some 
knowledge about environmental variables. The forecasting system developed is 
able to reproduce the instantaneous curve of daily energy produced by the solar 
panels of the installation, with a forecasting horizon of one day. It combines neural 
networks and time series analysis models. The fuzzy classification system, rather, 
extracts some linguistic knowledge about the amount of energy produced by the 
installation, exploiting an optimal fuzzy rule base and genetic algorithms. The 
developed model is the result of a novel hierarchical methodology for building 
fuzzy systems, which may be applied in several areas. 

The second problem is related to energy efficiency in buildings, for cost reduction 
and load scheduling purposes, and was tackled by proposing a forecasting system 
of energy consumption in office buildings. The proposed system exploits a neural 
network to estimate the energy consumption due to lighting on a time interval of a 
few hours, starting from considerations on available natural daylight. 
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Introduction  

In this thesis Computational Intelligence (CI) techniques are employed in 
applications regarding energy systems. Many papers exist concerning applications 
of CI to perform forecasting, classification, and pattern recognition in the energy 
field (e.g., heating, ventilation and air-conditioning (HVAC) systems, power-
generation, load forecasting, building’s energy consumption, wind speed 
forecasting, solar irradiation estimation, etc.) 

Computational intelligence includes several techniques, e.g., artificial neural 
networks, genetic algorithms, expert systems, and fuzzy systems. Each kind of 
technique allows building systems suited to solve a certain class of problem. 
Moreover, various hybrid systems may be created, as combinations of two or more 
of the systems previously mentioned, to exploit the advantages of both the 
techniques simultaneously. In addition, a brief description of forecasting through 
time series analysis is presented. 

The thesis is organized as follows. Chapters 1 through 3 provide an overview of 
the computational intelligence techniques adopted in this thesis. In particular, 
Chapter 1 recalls main theory concepts about neural networks, describes the 
classical multi-layer perceptron neural network and the non-linear auto-regressive 
with exogenous input neural network model (NARX). In addition, some notions 
about forecasting and time series analysis are briefly recalled. Chapter 2 regards 
fuzzy rule-base classification systems. Particularly, the fuzzy rule-based classifier 
frbc is presented, along with the fuzzy reasoning method and the methodology for 
automatic generation of rules from data, that frbc adopts. Finally, Chapter 3 
provides an overview about genetic algorithms and a brief description of genetic-
fuzzy hybrid systems. Chapters 4 through 6 contain the novelty of the thesis, i.e., 
the developed methodologies and the experimental results achieved. Two main 
problems are addressed. First, the management of energy production in solar 
photovoltaic (PV) installations, by classification and forecasting, and, second, the 
forecasting of energy consumption in buildings. 

The interest for the first problem arises from the necessity of forecasting and/or 
classification tools for the analysis of energy production in solar PV installations. 
In fact, solar energy is becoming a valid alternative to traditional energy and, as a 
consequence, PV installations have spread in recent years. In addition, the 
monitoring of the performance of solar panels has become a key issue for the 
improvement of the efficiency of the PV installation, as well as for finding faults or 
for efficiently planning the energy distribution. Among other things, PV-based 
power generators are discontinuous energy sources, owing to the influence of 
weather conditions. For all these reasons, a set of management tools is needed to 
correctly exploit the PV installation productivity. 

The problem is tackled from two different points of view. On the one hand, we 
propose a general methodology to forecast solar energy production with a 
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forecasting horizon of one day. The forecasting system, presented in Chapter 4, 
consists of a NARX time series analysis model implemented using a feed-forward 
neural network with tapped delay lines. The system, starting from some knowledge 
about solar irradiation, is able to faithly reproduce the instantaneous curve of daily 
produced energy, as well as to estimate the total daily produced energy. From 
another point of view, a further issue in PV energy production management is the 
lack of a fuzzy approach to data classification to make the final user able to make 
decisions easily regarding energy production management. In this way, even the 
non-expert user of PV systems might be able to understand the results and make 
smarter decisions, as we deal with class labels. Regarding this issue, we developed 
in Chapter 5 a fuzzy rule-based classification system aimed to classify the energy 
produced by a PV panel based on two environmental variables, i.e., the irradiation 
and the temperature of the panel. At the same time, we propose a novel hierarchical 
method to construct fuzzy classifiers, by performing an input domain space 
analysis with the aim of generating an optimal fuzzy rule base avoiding the 
generation of too many, unnecessary rules. The developed model results from the 
merging of a number of fuzzy systems built on input domain regions increasingly 
smaller. Each fuzzy system is developed exploiting the fuzzy rule-based classifier 
frbc. The model is actually a genetic-fuzzy system, as the model parameters are 
optimized by a real-coded genetic algorithm. 

The motivation for dealing with the second problem, i.e., the forecasting of 
energy consumption in buildings, stems from considerations about the large 
amount of energy consumed in buildings, also in reference to the political 
campaigns concerning energy efficiency and energy savings promoted by several 
countries. The chance of knowing building’s energy consumption in real time or 
even in advance could bring several benefits, such as cost reduction, energy 
management and control, and load scheduling in the electrical grid. Chapter 6 is 
devoted to address this problem. In particular, we refer to the electric lighting 
energy consumption in offices. The reason is that it is well known that electric 
lighting energy consumption is a big component of office buildings energy 
consumption. The proposed method uses an artificial neural network to forecast the 
average energy consumption on a time interval of a few hours, exploiting mainly 
the information about natural daylight, in terms of solar irradiation. The novelty of 
the proposed method stands mainly in the design of the forecasting system, which 
does not need any kind of information about the building to estimate its 
consumption. 

Finally, Chapter 7 provides the thesis conclusions and future work, and Appendix 
A reports a guideline on how to implement a generic classifier (such as frbc) in 
the PRTools framework. 

The research presented in this thesis was developed entirely using the toolboxes 
existing in the Matlab® environment. Additionally, the PRTools toolbox was used 
for pattern recognition concerns. 
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1 
Artificial neural networks 

1.1  Introduction 

Artificial Neural Networks (ANNs) are data-driven intelligent systems having the 
capability to learn, remember and generalize. They were created to reproduce the 
learning process of the human brain by learning the relationship between input 
parameters and output variables based on previously recorded data [13, 98]. 

The human brain is a complex calculator, non-linear, massively parallel with 
abilities like learning, generalization and adaptability. Moreover it is fault tolerant. 
It is constituted by an extremely large number of simple processing elements 
(biological neurons) with many interconnections, thus being able to perform 
complex computations. 

Thus, artificial neural networks have been developed following the structure and 
the functioning of biological neurons in the human nervous system.  

Neural networks are widely applied in areas such as prediction, classification, 
recognition and control. Applications of artificial neural networks are in many 
fields: pattern classification, clustering, function approximation, prediction, 
optimization, and control. 

In this chapter, a brief introduction to artificial neural networks is presented in 
Sections 1.2 and 1.3. Then, in Section 1.4 we address the multilayer perceptron 
neural network and the backpropagation training algorithm. Next, in Section 1.5, 
we present a description of main concepts about time series forecasting and finally 
we present a neural network model suited for forecasting purposes. 

1.2  The biological neuron 

A neuron is a special biological cell that processes information. It is composed of 
i) a cell body called soma, ii) many branched extensions called dendrites, through 
which the neuron receives electricity signals from other neurons, and iii) a 
filamentous extension, called axon, through which the electrical signals are 
transmitted to other neurons. The point of connection between two neurons (the 
terminal of the axon of one neuron and the dendrite of another one) is called 
synapse. A simplified model of the biological neuron is depicted in Fig. 1.1. 

As we said, a neuron receives signals (impulses) from other neurons through its 



4 

dendrites and transmits signals generated by its cell body along the axon. We may 
refer to the dendrites as the inputs of the neuron, while to the axon as the output of 
the neuron. 

 
Figure 1.1. – A simplified model of the biological neuron. 

A neuron is activated by electric impulses coming from other neurons when an 
electric potential difference between the inside and the outside of the cell occurs. 
Then, if the sum of received inputs exceeds a certain threshold, the neuron fires an 
electrical impulse along its axon. This electrical impulse causes the release of 
certain chemicals, called neurotransmitters, from the terminals of the axon, which 
in turn may influence other neurons. The neurotransmitters diffuse across the 
synaptic gap, to enhance or inhibit (depending on the type of the synapse) the 
tendency of the receptor neuron to fire electrical impulses. 

Further, the brain is able to adjust the connections between the neurons based on 
its experience, that is, it is able to learn.  

In the brain, the various areas cooperate, influencing each other and contributing 
to the achievement of a specific task, without the need for a centralized control. In 
addition, the brain is fault tolerant, that is, if a neuron or one of its connections is 
damaged, the brain continues to function, although with slightly degraded 
performance.  

1.3  An overview of neural networks 
As already stated, an ANN is a collection of simple processing units individually 

interconnected. In its basic computational form, a neuron appropriately processes a 
set of input signals coming from other neurons or sources [118]. 

ANNs resemble the human brain in two ways: first the knowledge is acquired by 
the network through a learning process, i.e., the training, then it is stored by 
adjusting the synaptic weights [58]. 

To artificially reproduce the human brain we need to build a network of very 
simple elements having the same characteristics of biological neurons: 

a) a parallel and distributed structure; 
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b) the capability of learning from previous experience and thus to 
generalize, i.e., to produce outputs corresponding to inputs not 
encountered during training; 

c) a graceful degradation (fault tolerance) capability. 
ANNs operate like a “black box”, in the sense that they do not require any 

information about the system to represent a non-linear relationship between input 
and output variables, any time a new input set is under examination. 

Several algorithms exist to set the weights in order to make the outputs match the 
desired result. Supervised learning algorithms adjust network weights using input-
output data. The most frequently used supervised algorithm is the well-known 
backpropagation algorithm [131]. Unsupervised learning algorithms change 
weight values according to input values only, so this mechanism is also called self-
organization. 

1.3.1 The perceptron 
The simplest form of neural network is the perceptron formed by a single 

artificial neuron with adjustable synaptic weights and bias. The weights represent 
connection strengths, and their values are established during the training process. 
The perceptron, developed by Rosenblatt in 1958 [128], receives input signals from 
other neurons through its incoming connections, it calculates the weighted sum of 
the inputs (i.e., the sum of the products of the weights and the inputs) and the result 
is passed through an activation function (e.g., the sigmoid function with bias b). If 
this value is above b the neuron fires and takes the activated value, otherwise it 
takes the deactivated value. The scheme of the perceptron is depicted in Fig. 1.2. 
More in detail, the relation between inputs and output is expressed by the following 
equation: 

y = fb( x jwj + b
j=1

N

∑ ) , (1.1) 

where fb is the activation function having bias b, xj, (j = 1, …, N) is the j-th input to 
the neuron, and wj is the weight associated with the j-th input. 

∑
x1

x2

w1
w2

y

b

xN
wN

f

 
Figure 1.2. – The scheme of the perceptron. 
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Due to its simplicity, the perceptron can only solve linearly separable 
classification problems. However, by using more than one perceptron together, we 
may correspondingly perform non-linearly separable classification problems. 

The most used ANN architecture and training algorithm are, respectively, the 
multi-layer feed-forward neural network, which includes one or more hidden 
layers, and the Levenberg-Marquardt backpropagation (abbreviation for 
“backward propagation of errors”) training algorithm, which shows good 
generalization capability and simplicity [143]. 

In this thesis two kinds of neural networks, namely the Multi-Layer Perceptron 
(MLP) neural network and the Non-linear Auto-Regressive with eXogenous input 
(NARX) neural network, have been used for energy analysis, classification and 
forecasting, so they will be described in depth in the following sections. Besides, 
the literature about the neural network’s main concepts is very extensive [16, 46, 
121, 127]. 

1.4  The multilayer perceptron neural network 
A multilayer perceptron neural network is a feed-forward network model which 

may represent a non-linear mapping between an input vector and an output vector. 
It is obtained connecting an arbitrary number of perceptrons, and thus, it consists of 
neurons arranged in layers, with each layer fully connected to the next one.	
  The 
input signal propagates through the network in the forward direction, from the 
input layer to the output layer. Each connection has a weight associated with it.	
  

In an MLP there are three kinds of layers: i) the input layer which receives the 
input signals, ii) one or more hidden layers where the processing takes place, and 
iii) the output layer which provides the output. Neurons in each layer are 
characterized by a specific activation function. The input layer merely passes the 
input vector to the network without any computation. Neurons in the hidden layers, 
referred to as hidden neurons, usually have a non-linear activation function. The 
number of hidden neurons is chosen experimentally to minimize the average error 
across all training patterns. 

Figure 1.3 depicts an MLP network with two inputs, two outputs, and one hidden 
layer having four hidden neurons. 

Multiple layers of neurons with non-linear transfer functions allow the network to 
learn non-linear relationships between input and output vectors. However, the 
universal approximation theorem has proved that an MLP with a single hidden 
layer having the sigmoid as activation function, can almost approximate any 
function that maps an input interval of real numbers to an output interval of real 
numbers [32, 58]  

For the output layer, linear activation functions are often used. However the 
transfer function depends on the kind of the problem the MLP has to solve: a linear 
transfer function is used, e.g., for function fitting problems, while a sigmoid 
transfer function is more suited for pattern recognition problems to constrain the 
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output of the network to assume values in a predefined range, so as to identify 
classes. 

y1

Hidden layer Output layerInput layer

x1

x2 y2

 
Figure 1.3. – The scheme of a MLP neural network having two inputs, two outputs and one hidden 

layer with four neurons. 

The most commonly used activation functions are summarized in Table 1.1. In 
this thesis we adopted an MLP neural network to forecast the energy consumption 
in a building, as better explained in Chapter 6. 

Table 1.1. – Some common activation functions. 

Activation function Equation 

Sigmoid 
1( )

1 zf z
e−

=
+

 

Hyperbolic tangent ( ) tanh( )f z z=  

Linear ( )f z az b= +  

 

1.4.1 The backpropagation training algorithm 
The most popular training technique of an MLP network is the well-known 

backpropagation training algorithm [131], a supervised learning technique that 
looks for the global minimum of the error function in the weight space using the 
method of gradient descent. 

The idea is to present the network a set of matched input and desired output 
patterns, called training set. The output given from the network for each training 
pattern is compared with the desired output, by evaluating the error. This error is 
used to adjust the weights in the network so as to reduce the overall error of the 
network. 

After providing the network with a cycle of training patterns (epoch), the process 
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is repeated many times until the output of the network produces a satisfactory 
error. Then, the weights are held and from now on the trained network is able to 
generalize and correctly answer to new, unseen input data. 

The combination of weights which minimizes the error function is considered to 
be a solution of the learning problem.  

The backpropagation algorithm can be executed in two versions: online or batch, 
dependently on the way the network weights are adjusted. In the former, the 
weights are adapted after each pattern has been presented to the network, while in 
the latter, they are adapted at the end of each epoch. 

The backpropagation algorithm is the most computationally straightforward 
algorithm for training the multilayer perceptron [49]. Some problems may occur 
during the training, thus they will be briefly described below. 

The network may be trapped in a local minimum of the error function. In fact, the 
error surface can contain more than one minimum, i.e., a global minimum and a 
few local minima. Two learning parameters (learning rate and momentum) should 
be adjusted in order to avoid the problem. The parameters act on the step size used 
during the iterative gradient descent process. 

Another kind of problem that may occur during the training of a neural network is 
overfitting. It occurs when the error on the training set is very small, while the error 
on some new patterns not presented during training is extremely large. The reason 
for this is that the network has learned perfectly the training examples, but has not 
learned how to generalize, thus the error on new data easily grows. 

The solution to this problem is the early stopping method: this method trains the 
network with only a part of the available data (training set), while the remaining 
data are split into two sets, namely, validation set and test set. During the training 
process, patterns from the training set are used to update the weights in the usual 
way, while patterns from the validation set are presented to the network to check its 
generalization capability when the training is still in progress. As soon as the error 
on the validation set starts to grow, and continues to grow for a given number of 
epochs, it means that overfitting has started, so the training is stopped and the 
weights corresponding to the minimum validation error, before the occurrence of 
overfitting, are held. 

Finally the generalization capability of the trained network is tested on the test 
set. 

1.5  Neural networks for time series forecasting 
Prediction or forecasting is a special type of dynamic filtering in which past 

values of one or more time series are used to predict future values of the unknown 
time series. Formally, a time series is a set of values that describes the evolution of 
a phenomenon over time, stemming from a process for which a mathematical 
description is unknown. Thus, usually the future behavior of a time series cannot 
be exactly predicted, indeed, it can be estimated [41]. 
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Several mathematical models are present in the literature to solve prediction 
problems, such as regression analysis [29, 56, 81], time series analysis [57], and 
neural networks [9, 96, 138]. 

In time series modeling, the Non-linear Auto-Regressive model with eXogenous 
inputs (NARX) is an important class of discrete-time non-linear systems, where the 
current value of an unknown (endogenous) time series is related to the past values 
of the same series, and to the current and past values of the exogenous 
(independent) time series. More in detail, this model allows to forecast the future 
values of the output time series y(t), knowing the past values of the same 
endogenous series y(t) and the past values of the exogenous series x(t). The 
equation model is the following: 

( ) ( ( 1),..., ( ), ( 1),..., ( ))x yy t f x t x t d y t y t d= − − − − , (1.2) 

where, x(t-i) and y(t-i) denote the exogenous input and the output of the model at a 
previous discrete time step i, respectively, and dx and dy denote the maximum 
delays considered for the two time series. Though these values can be different for 
the two time series involved, usually dx = dy = d is the preferred choice. 

The NARX model can be implemented in open loop mode or closed loop mode. 
In the open loop mode, the system computes the output without using the feedback. 
Generally, to obtain a more adaptive control, it is necessary to feed the output of 
the system back as input. This type of system is called a closed loop system. 

Figure 1.4 shows the model block diagram in closed loop mode. This means that 
the output of the system is fed back as input. 

 
Figure 1.4. – NARX model block diagram in closed loop mode. 

The NARX model is one of the most general time series analysis models [87, 88], 
as it is the straightforward generalization of the linear Auto-Regressive (AR) model 
to the non-linear case. 

In Equation (1.2), the forecast horizon, i.e., the number of data points to be 
forecasted, is equal to one. The prediction can also involve several steps ahead. If 
the time horizon is greater than one, two different forecasting schemes exist: i) an 
iterative scheme, which aims to predict a variable at a given time step and the 
obtained prediction is used as input for the forecasting of the next time step; ii) a 
direct scheme, which aims to predict the next n time steps from the same input data 
[145].  

The time series prediction process usually involves 5 steps [41]: 
1. preprocessing of the data: perform smoothing or normalization, remove 

the outliers;  
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2. identification of the model: select the architecture, set an appropriate 
number of layers and hidden neurons for each layer, set learning 
parameters values; 

3. training of the network (usually in open loop mode); 
4. validation of the trained network: compute the error, check the prediction 

ability of the network; 
5. use of the network for forecasting (usually in closed loop mode). 

Regarding previous step 4, several metrics exist to evaluate the error and the 
goodness of the network.  

The most frequently used are: the Mean Absolute Percentage Error (MAPE), the 
Mean Square Error (MSE), the Root Mean Square Error (RMSE). To assess the 
goodness of the forecasting model, also the coefficient of determination R2 can be 
used. It indicates how well a regression line fits a set of data. It provides a measure 
of how well future outcomes are likely to be predicted by the model. R2 near 1 
indicates a good fitting of the model to the data, R2 closer to 0 indicates bad fitting. 

The following equation expresses the coefficient of determination: 

2

2 1

2

1

ˆ( )
1

( )

n

i i
i
n

i
i

x x
R

x x

=

=

−
= −

−

∑

∑
, (1.3) 

where, n is the number of data, xi and ˆix  denote the actual and predicted values of 
data, and x  is the mean of the actual data. 

The numerator is called residual sum of squares and it is a measure of the 
variability of the forecasting error. The denominator is called total sum of squares 
and measures how much variation there is in the data (with respect to their mean 
value). 

1.5.1 The NARX neural network 
ANN models may be used as alternative methods to autoregression models in 

engineering analyses and predictions [77, 92]. Thanks to their ability to model 
complex non-linear functions or unknown functions by learning from examples, 
neural networks are particularly suited to implement NARX models.  

A NARX neural network is the network used to implement a NARX model. It is 
a special kind of Time Delay (TD) neural network, i.e., a feed-forward network 
with a tapped delay line associated with inputs and output, particularly suited to 
time-series prediction.  

The non-linear function f of Equation (1.2) is generally unknown and can be 
approximated, for example, by a neural network. The resulting architecture is then 
called a NARX neural network and it is shown below in Fig. 1.5.  

Considering Fig. 1.5, the output of the neural network is the predicted next value 
in the output time series, computed as a function of the exogenous time series and 



11 

the output time series, which is fed back as endogenous input to the network. Two 
delays are used on both the time series. The hidden layer presents ten neurons. The 
associated model equation is ( ) ( ( 1), ( 2), ( 1), ( 2)).y t f x t x t y t y t= − − − −  

 
Figure 1.5. – The scheme of a simple NARX neural network (the figure was produced in the Matlab® 

environment). 

In this thesis we adopted a NARX neural network used with the iterative scheme 
to forecast the energy production in a photovoltaic installation, as better described 
in Chapter 4. 
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2 
Fuzzy systems 

2.1  Introduction 
Fuzzy systems (FSs) are methodologies based on fuzzy set theory to represent 

and process linguistic information and have been introduced by Zadeh [164].  
The mathematical theory of fuzzy logic is used to simulate the process of human 

reasoning, i.e., approximate reasoning. Fuzzy logic is an extension of classical 
logic (in which any statement is either true or false) where several degrees of truth 
are allowed [22]. A fuzzy set is a generalization of a classical set in which the 
membership function is a continuous function with values in the interval [0, 1] in 
place of two discrete values {0} and {1} of a classical set. 

A set of fuzzy rules is used to specify an input-output mapping between the input 
variables (i.e., linguistic variables) and the output class. 

Each rule is represented as a conditional statement of the kind “if premise then 
consequence”, where the premise and the consequence are expressed in terms of 
fuzzy sets and linguistic variables. Rules are usually fixed basing on some expert’s 
previous knowledge, or drawn directly from data. In fact, extracting fuzzy rules 
from data allows modeling the relationships existing in the data by means of if-then 
rules that are easy to understand, verify and extend [24]. 

Let us now spend a few words about the main benefit of fuzzy systems: 
interpretability. Sometimes it is interesting not only to have an accurate classifier at 
our disposal, but also to have an easily interpretable classifier capable to let 
understand its operating (“white box” model). For this reason fuzzy systems are 
widely adopted in real-modeling problems where vagueness and uncertainty can be 
represented by using linguistic variables, instead of classical variables, thus 
obtaining more interpretable results. 

However, not all the fuzzy classifiers are necessarily interpretable. According to 
the recent literature [7, 109], there are many concerns to be addressed and 
constraints to be included during the design stage to guarantee interpretability. 
Typically, interpretability of fuzzy rules depends on three issues: i) the fuzzy 
partition should be both complete and distinguishable (i.e., understandable 
linguistic terms should be easily assigned to the fuzzy sets of the partition); ii) the 
fuzzy rules in the rule base should be consistent, i.e., there should not be any 
conflicting rules; iii) the number of variables in the rule premise should be as small 
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as possible [94]. 
Fuzzy systems have been applied to a wide variety of fields ranging from control, 

signal processing, communications, classification and soft computing. 
The chapter has the following outline. Section 2.2 recalls the main concepts of 

fuzzy classifiers, while Section 2.3 presents the Fuzzy Rule-Based Classifier 
(FRBC) employed in this work, i.e., the generation of the rule base from data and 
the fuzzy inference method adopted. 

2.2  Overview of Fuzzy Rule-Based Classifiers 
Fuzzy rule-based classifiers (FRBCs) consist of two main components: the 

Knowledge Base (KB) and the Fuzzy Reasoning Method (FRM). The KB is made 
up by a Rule Base (RB) and a Data Base (DB). The former contains a set of fuzzy 
if-then rules, while the latter contains the semantic parameters of the fuzzy sets that 
model the linguistic variables used in the fuzzy rules. Each rule specifies a 
subspace of the pattern space using the fuzzy set in the antecedent part in the rule. 
The FRM maps any input pattern X to its predicted class C using the information 
provided in the KB. An FRBC scheme is represented in Fig. 2.1. 

 
Figure 2.1. – A fuzzy rule-based classifier. 

The design of a FRBC consists basically in finding a compact set of fuzzy if-then 
classification rules derived from human experts or from domain knowledge, able to 
model the input-output behavior of the system. The next step is to combine these 
rules in order to associate a given input to a single conclusion which is the output. 

In the following we show three typical formulations of fuzzy if-then rules for 
classification. 

Let us consider an M-class classification problem related to M classes 1{ }Mj jC =  in 
an F-dimensional input space, and a set of (F+1) fuzzy partitions 1( ,..., )

f

f f
f QP A A= , 

f=1,…(F+1), on F input variables X1,…,Xf and one output variable X(F+1); each 
partition consists of Qf membership functions. Moreover, let 1{ , }t t N

to =x  be a set of N 
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input-output pairs to be classified, where 1( ,..., )t t
Fx x  is the feature vector associated 

with pattern tx , and ot the associated class index. 
Under the previous assumptions, an FRBC rule base made of a set of L rules 

1{ }Lk kR =  can be expressed in different ways. In the next we report the three most 
common kinds of rules used for pattern classification problems [30]: 

i) fuzzy rules with a single consequent class: 

,1 , ,( 1)

1
1 ( 1):    ...    ,

k k F k F

F
k F FR X is A and X is A X isCδ δ δ ++if then  (2.1) 

where k is the rule index, ,k fδ  is the index of the fuzzy set to be used for 

variable f in rule k, f = (1,…, F), and 
,( 1)k F

Cδ +
 means that the output class 

associated with rule k is the one having index ,( 1)k Fδ + ; 
ii) fuzzy rules with a single consequent class and a single certainty factor 

(SCF) kγ , i.e., the weight associated with the rule, with a value in the 
interval [0, 1]: 

,1 , ,( 1)

1
1 ( 1):    ...    ;

k k F k F

F
k F F kR X is A and X is A X isC withδ δ δ γ

++if then  (2.2) 

iii) fuzzy rules with multiple consequent classes and multiple certainty 
factors (MCF) j

kγ  (j = 1,…, M):  

,1 ,

1 1
1 ( 1) 1:     ...       ...  ... .

k k F

F M
k F F M k kR X is A and and X is A X is C C withδ δ γ γ+if then  (2.3) 

The degree of satisfaction 
,

,
, k f
k t
f δµ  of the generic condition “

,k f

f
fX is Aδ ”, 

corresponding to pattern tx , is computed in the same way for the three kinds of 
rules, as the membership function value associated with fuzzy set 

,k f

fAδ , in the f-th 

component t
fx :

, ,

,
, ( )
k f k f

k t f t
f fA xδ δµ = . 

2.3  The implementation of a FRBC: frbc 
In this thesis, we will consider only rules with a single consequent class and a 

single certainty factor (see Equation (2.2)), which represents the certainty degree of 
the classification in the specified class for an input pattern belonging to the fuzzy 
subspace identified by the rule antecedent. These rules provide the best tradeoff 
between flexibility and complexity. Furthermore they naturally fit the Matlab® 
Fuzzy Logic Toolbox (FLT) rule base structure. 

The FRBC used in the present thesis, presented in [28] was developed under the 
Pattern Recognition Toolbox (PRTools) [42], the de facto standard toolbox for 
classification in Matlab®. frbc follows the PRTools base philosophy, e.g., use of 
fast and heuristic-based training algorithms, function reuse, powerful and concise 
syntax, automatic training from data, total compatibility with the Matlab® 
environment. A brief description of PRTools framework and the instructions on 
how to implement a new classifier in PRTools are presented in Appendix A, and 
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supporting material can be found in [42, 151]. 
In the following sections we explain the method employed to automatically learn 

the KB form data and the general model of fuzzy reasoning used. 

2.3.1 The rule base construction 
The main issue in the development of fuzzy classifiers is the proper training, that 

is, the creation of an efficient rule base. The rule base can be derived from the 
expert previous knowledge or more easily can be derived directly from numerical 
input-output pairs. In the literature, many approaches have been proposed for 
generating fuzzy rules from numerical data, such as heuristic approaches [2, 70, 
93], neuro-fuzzy techniques [103, 110, 111, 112, 150], clustering methods [3, 130], 
and genetic algorithms [19, 51, 68, 73]. 

In order to meet the PRTools base philosophy (see Appendix A), we are 
interested in existing batch-mode oriented approaches to automatically generate 
fuzzy rules from data, that are well-assessed and widely accepted, that need few 
free parameters to be specified, and that are associated with fast heuristic training 
methods. In our opinion, among the approaches existing in the literature, the 
technique that best meets these requirements is the Wang and Mendel method 
extended to classification problems, an adaptation of the well-known Wang and 
Mendel method for regression problems [154]. This method assumes that the fuzzy 
partitions of the input and output variables are provided by the user. A typical and 
easy way to achieve this is to resort to uniform fuzzy partitions consisting, for input 
variables, of a limited number of fuzzy sets, while, for output variables, of as many 
fuzzy sets as there are classes. So, the Wang and Mendel method is the training 
technique available in frbc [28]. This method seems to be simpler and with less 
construction time than a comparable neural network, maintaining the comparability 
of the results [106]. In addition, it allows to combine in the same framework both 
numerical and linguistic information [154]. 

In the following, the formal steps of the Wang and Mendel algorithm extended to 
classification problems are briefly introduced: 

STEP A. generate a uniform fuzzy partition of the input domain, made 
of Qf, f= 1,…, F, fuzzy sets for each input variable f (usually  
Qf = Q = 3, 5, 7 or 9); 

STEP B. generate a uniform fuzzy partition of the output variable, 
made of M fuzzy sets (one set for each class); 

STEP C. generate an initial raw rule base (one rule for each training 
pattern); 

STEP D. remove duplicated rules; 
STEP E. compute certainty factors; 
STEP F. remove conflicting rules (i.e., rules having the same if part 

but different then parts) by keeping, for each set of 
conflicting rules, only the rule with the highest CF. 
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More in detail, this algorithm generates the fuzzy rule base assuming a uniform 
fuzzy partition for the input variables. Thus, the domain of each input variable is 
divided into 2 1Q N= +  regions, typically {1,2,3,4}N∈  (STEP A). The length 
and the number of the regions may be different for the considered variables. A 
fuzzy membership function is then defined for each region. Typically this function 
has its maximum value in the middle point of the region and assumes its minimum 
value in the central points of the two neighboring regions, although different 
definitions are possible. Figure 2.2 shows an example of a fuzzy partition built 
according to the Wang and Mendel approach, on a generic variable y whose 
domain interval [y-, y+] has been divided into Q=5 regions (N=2). 

Doing so, the thresholds identify a grid on the input variable space. So, for 
instance, if we have two input variables and we define two evenly spaced 

thresholds for each variable, we obtain a uniform 9-area grid. 

y

µ(y)

y$ y+

VL L M H VH

 
Figure 2.2. – An example of a fuzzy partition for the input variables, built according to the Wang and 

Mendel approach. 

Regarding STEP B, the fuzzy sets used to represent the output partition are 
usually fuzzy singletons, as we deal with a classification problem. Since each data 
pair generates a fuzzy rule in the rule base (STEP C), there will possibly be some 
duplicate rules and some conflicting rules, i.e., rules having the same if parts but 
different then parts. The duplicated rules are simply deleted (STEP D), while to 
solve a conflict, a CF is assigned to each conflicting rule of a set. The CF is defined 
so as to take into account the importance of each rule in the entire rule base (STEP 
E). The winning rule, within a conflicting set, is the one that has the maximum CF. 
The other rules of the set are discarded (STEP F). 

From the field of data mining [5], the CF is tipically computed as the confidence 
of the fuzzy association rule 

kkA Cδ⇒ , corresponding to the fuzzy rule Rk: if kA  
then 

k
Cδ , where Ak represents the antecedent part of the fuzzy rule, and 

k
Cδ  the 

class appearing in the consequent. The CF is calculated as follows: 
, ,

: 1
,t

k

Nk t k t
k t classC tδ

γ
∈ =

= Ω Ω∑ ∑x
 (2.4) 

where ,k tΩ  is the strength of activation of the antecedent of rule Rk for the t-th 
pattern, and N is the number of training patterns. 

However, in past research, many heuristic measures have been proposed to 
specify the weight of a fuzzy classification rule [72, 93, 166]. Nozaki et al. [115] 
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proposed a method of learning rule weight using Reward & Punishment, in which, 
considering the classification of a pattern using the single winner FRM, the weight 
of the winner rule is increased or decreased depending on whether the pattern has 
been correctly classified or not. In other relevant methods [66, 72], the computation 
consists of two phases. First, the certainty factor is calculated as the confidence of 
the fuzzy rule (as in Equation (2.4)), then, the certainty factor is refined with a 
measure that depends on the specific method, with the aim to improve the 
classification performance. 

We recall that any shape and number for membership functions can be selected. 
Clearly, the higher the number of membership functions, the bigger the accuracy 
obtained. On the other hand, a large number of membership functions leads to a 
large rule base dimension and, consequently, to a higher complexity. 

2.3.2 The fuzzy reasoning method  
The FRM available in frbc [28] for MCF rules is a general model of fuzzy 

reasoning for combining information provided by different rules. It is an extension 
presented in [30] of the fuzzy classifier defined by [82]. 

In the following, we recall the steps of the FRM applied to each input pattern tx : 

STEP 1. determine, for each rule, the strength of activation of the 
antecedent, say matching degree; 

STEP 2. compute, for each rule, the association degree of the pattern 
with the class specified by the rule; 

STEP 3. compute, for each rule, the stressed association degree by 
emphasizing the association degree; 

STEP 4. determine the soundness degree of the classification of the 
pattern tx ; 

STEP 5. assign pattern tx  to the class that has the maximum soundness 
degree. 

For each step of the inference process, several operators can be selected, thus 
giving origin to different inference methods. 

In particular, as regards STEP 1, the matching degree Ω for pattern tx  and rule Rk 
is calculated as the AND operator (any T-norm) between the membership function 
values: 

,

, ,
1 , , 1,..., , 1,..., .

k f

k t F k t
f f k L t Nδµ=Ω = = =I  (2.5) 

The AND operators available in frbc are the minimum and the product.  
In STEP 2, the association degree is computed by applying a combination 

operator h to the matching degree ,k tΩ  and the certainty factor γ k  as follows 
(possible choices for h are product and minimum): 

, ,( , ), 1,..., , 1,..., .k t k t
kb h k L t Nγ= Ω = =  (2.6) 
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In STEP 3 the association degree is stressed by applying a stress function g so as, 
e.g., to increase higher values and decrease lower ones: 

, ,( ),  1,..., , 1,..., .k t k tB g b k L t N= = =  (2.7) 

We have considered two stress functions, namely No_Stress function g1 (identity 
function) and Square_SquareRoot function g2, as defined hereafter: 

1( ) [0,1]g z z z= ∀ ∈  (2.8) 
2

2

  0.5
( )

  0.5 .

z if z
g z

z if z

⎧ <⎪= ⎨
≥⎪⎩

 (2.9) 

In STEP 4, the soundness degree ˆtjo  associated with each output class j is 
computed by applying an aggregation function Γ  to the t

jS  positive association 
degrees ,s t

ja : 
,ˆ ( ),  1,..., , 1,...,t s t t

j j jo a s S j M= Γ = =  (2.10) 

where: 
,1, , ,( ,..., ) ( : 0, 1,..., ).
t
jS tt k t k t

j j j ja a B B k L= > =  (2.11) 

We have considered seven different aggregation functions (maximum, 
normalized addition, arithmetic mean, quasi-arithmetic mean, Sowa and-like, Sowa 
or-like, Badd operator). Table 2.1 shows the mathematical equations of the 
aggregation functions [30]. For each function we indicate the value of the free 
parameter (if existent) used in the experiments.  

In particular, the use of the maximum operator leads to the implementation of the 
classical FRM, which classifies a new example with the consequent of the fuzzy 
rule with the greatest degree of association. Although it is used by the majority of 
FRBCs, it loses the information provided by other rules.  

Finally, STEP 5 computes the predicted class index ˆto , associated with pattern 
tx , as: 

1,...,
ˆ ˆargmax ( ).t t

j
j M

o o
=

=  (2.12) 

In the present thesis, frbc has been employed to forecast the energy production 
from a solar photovoltaic installation in order to help the manager of the 
installation in the control and the dispatch of the energy in the electrical grid, as 
better described in Chapter 5. 
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Table 2.1. – Mathematical equations for the aggregation functions. 
Aggregation 
function Mathematical equation Value of free 

parameter 

Maximum 11...
max{ ... }t

j
MAX sj M

a a
=

Γ =  - 

Normalized 
addition 1...1

max
t t
j js s

NORMADD i ij Mi i
a a

==

Γ =∑ ∑  - 

Arithmetic mean 
1

t
js

t
ARIMEAN i j

i
a s

=

Γ =∑  - 

Quasi-arithmetic 
mean 

1

1 ( ) ,
t
j

p
s

p
QARIMEAN it

ij

a p R
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3 
Genetic algorithms and hybrid systems 

3.1  Introduction 
Since their first introduction by Holland in 1975 [61], genetic algorithms (GAs) 

have attracted a lot of interest in the research community. GAs are search 
algorithms capable of solving a wide range of problems that traditional methods 
have difficulty to solve (large scale combinatorial optimization problems or 
complex search space with multiple optima), by using the principles inspired by 
natural genetics [37, 50, 100]. 

The basic idea is to describe the optimization problem and its solution with an 
individual having a set of characteristics (i.e., parameters of the problems) and then 
to make evolve a population of individuals toward the optimal solution for the 
problem. Usually we refer to individuals with the term chromosome, and to each 
characteristic with the term gene. Each chromosome is typically coded as a binary 
string. However, real-coded GAs have shown better performance than binary-
coded GAs in many optimization problems [75]. 

GAs simulate the evolutionary cyclic process of a population of individuals, with 
each cycle representing a generation. Within each generation, genetic operators are 
applied to obtain a new population made of better individuals. The quality of each 
individual is measured by means of a fitness function, which indicates the 
adaptability of the individual to the environment, i.e., the probability to survive. In 
a GA this relates to the probability to be part of the next generation population. 

The main advantage of GAs is that they do not need a mathematical description 
of the problem. Thanks to their nature, GAs are successfully employed in 
optimization problems in many areas (e.g., economics, mathematics, computational 
science, engineering) [50, 61]. GAs may be used alone or as part of hybrid systems 
(e.g., genetic-fuzzy systems, neuro-genetic systems).  

In this chapter, an overview of genetic algorithms along with their functioning is 
presented in Section 3.2, while a brief description of hybrid systems, with 
particular reference to genetic-fuzzy hybrid systems, is presented in Section 3.3. 

3.2  Genetic algorithms: main concepts 
A genetic algorithm requires: i) a genetic representation of the solution domain, 
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ii) a fitness function to evaluate the goodness of each solution, iii) methods and 
associated probabilities values for recombining chromosomes (crossover) and 
reconsider possibly useful lost genetic material (mutation), and iv) a selection 
mechanism to choose the best chromosomes. 

A GA works with populations of chromosomes, that evolve according to the 
natural evolution, towards a better population, thus toward better solutions. In fact, 
they operate simultaneously on a set of solutions rather than on one solution. 

Evolution is a method of searching among a big number of solutions, by applying 
genetic operators similar to the corresponding in nature. Among genetic operators 
the most used are crossover, mutation and selection.  

The evolution usually starts from a population of randomly generated individuals. 
Each new population is built with the best individuals of previous generations 
(selected according to their fitness), with the aim of propagate to next generations 
the best genetic heritage. 

More in detail, the evolution from one generation to the other involves three 
steps. First, individuals of the current population are evaluated. Second, those with 
higher fitness are selected from the current population to form a new population in 
the next generation. Third, genetic operators (crossover and mutation) are applied 
to selected parents to generate offspring. Then the population is evaluated again. 
The algorithm terminates when a convergence criterion is met, i.e., a maximum 
number of generations has been produced, or a satisfactory fitness level has been 
reached for the population. 

Figure 3.1 summarizes the functioning of a simple GA [140]. 
 

GA { 
generate random population; 
evaluate population; 
while termination criterion not reached { 
 select solutions for next population; 
 perform crossover and mutation; 
 evaluate population; 
} 

} 

Figure 3.1. – The functioning of a simple GA in pseudocode. 

3.2.1 GA operators 
After the genetic representation and the fitness function are defined, a GA 

initializes a population of solutions and then improves it through an iterative 
application of the genetic operators. Genetic operators are used to make evolve the 
current population towards a heterogeneous set of individuals in order to obtain a 
global convergence and a complete exploration of the search space. 

In the following, we briefly explain the GA operators: selection, crossover and 
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mutation. 
Selection is the process of choosing the breeding chromosomes (mating pool) in 

the current population for reproduction of individuals to be inserted in the next 
population. Since it is expected that better parents generate better offspring, parent 
solution chromosomes with higher fitness have a higher probability to be selected, 
similarly to what happens in natural selection. Several selection operators exist, 
and usually the selection probability is proportional to the fitness of the 
chromosome.  

Crossover is used to combine the genes of two individuals (parents) to produce a 
new individual (offspring) that inherits characteristics from both parents. There are 
several ways to combine parent chromosomes. Crossover usually takes place 
according to a crossover probability (ranging from 0 to 1) that should ensure both 
exploitation (ability of convergence) and exploration (good ability to explore the 
search space). The simplest crossover is called one-point crossover: the parent 
chromosomes are split into two parts at a random position and then the left part of 
one is combined with the right part of the other and vice versa. Other kinds of 
crossover are multi-point crossover or uniform crossover.  

Mutation is merely a random modification of one or more genes in a 
chromosome, to reintroduce the genetic material lost or to avoid the convergence to 
local optima. The aim of this operation is to deeply modify the chromosome, so as 
to explore areas of the solution space that have not yet been observed. However, to 
ensure the convergence of the genetic algorithm, the mutation probability is very 
low, i.e. in the range [0.001, 0.01]. In the literature several kinds of mutation exist 
(e.g., uniform mutation, non-uniform mutation, etc.).  

3.3  Hybrid systems: genetic-fuzzy systems 
GAs are often used to produce intelligent hybrid systems. Among existing hybrid 

systems, we recall only genetic-fuzzy system (GFS), as this kind of hybrid system 
is the one employed in this thesis. 

A GFS is a fuzzy system whose parameters are optimized by a learning process 
based on a GA. Genetic learning processes can be involved in a fuzzy system at 
different levels of complexity. In the literature, many paper deal with GFSs.  

In the simplest case, the GA is used to optimize some free parameters of the 
hybrid model [33] as done in Chapter 5 of this thesis. 

In more complex cases, the GA is used to tune: i) the fuzzy partition parameters 
(membership functions) of the fuzzy system, as done in [134], where a GA models 
the linguistic labels of the fuzzy sets, ii) the fuzzy rule set of the fuzzy system, as 
done in [90, 137], or iii) both the fuzzy partition parameters and the fuzzy rules, as 
done in [165], where a GA is used to optimize shape and parameters of the fuzzy 
membership functions, and number and size of the fuzzy rules. 

In other approaches, a GA is used to optimize the set of rules and the fuzzy 
reasoning method of the FRBC, thus producing single-objective and multi-
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objective GFS [60, 64, 65], or it is applied to perform feature selection [152]. 
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4 
One day-ahead forecasting of PV energy 
production by means of neural networks 

and time series analysis 

4.1  Introduction 
Renewable energy refers to energy generated by natural sources, which are 

naturally replenished, such as sunlight (solar energy), wind (eolic energy), and 
tides (tidal energy).  

As conventional fossil fuel energy sources (e.g., coal, oil, gas, etc.) are 
diminishing and global warming is increasing [80], renewable energy, and in 
particular, solar energy, is receiving heightened attention as a potentially 
widespread approach to sustainable energy production [142], thus becoming a valid 
alternative to traditional energy since it is considered economical and non-polluting 
[160] besides practically inexhaustible [126, 142, 147, 157]. Furthermore, 
according to European Union (EU), renewable energies will be able to contribute 
between 33% and 40% to the total electricity production in Europe by 2020. 
Particularly, photovoltaic (PV) energy could provide 12% of European electricity 
demand by 2020 [43]. 

For these reasons PV installations have spread in recent years [116]. The solar PV 
total world capacity has increased dramatically: from 9.4 GW in 2007 to 23.2 GW 
in 2009, and to 70 GW in 2011 [126].  

A photovoltaic installation consists of a series of solar panels that using sunlight 
energy generates directly usable electricity thanks to the PV effect. A PV panel 
(see Fig. 4.1) is composed in its turn of individual PV cells. Since a single PV 
panel can produce only a limited amount of power, normally several panels are 
connected together to form a generation system called PV array, to which an 
inverter is connected that measures the production power of that array, and 
converts the DC power in AC power, as requested by the electrical network. Due to 
their modularity, PV installations can be configured in almost any way to supply 
most loads. Generally, a PV installation includes one or more PV arrays, an 
inverter for each array, batteries, and wiring to connect all the PV installation [15, 
125]. 

With the diffusion of PV systems the monitoring of the performance of solar 
panels has become a key issue, so as to detect efficiency losses or effectively plan 
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the energy distribution, for instance in smart grid installations. 
This can be done by estimating the forecasted energy and comparing it with the 

real produced energy. 

PV Panel

PV Cell

PV Array

-
+

Inverter

 
Figure 4.1. – Photovoltaic elements: PV cell, PV panel, and PV array. 

However the main drawback of solar energy is its availability due to the 
unpredictability nature of solar irradiation. 

Although a lot of people work in this research area, they are mainly concerned 
with forecasting solar radiation [12, 95, 96, 100, 107], whereas only a few are 
concerned with the forecasting of solar energy production directly. 

The literature related to the renewable energy field presents many approaches to 
forecasting load, wind speed or solar irradiation. The most widely used techniques 
include regression methods [29, 56, 81], neural networks [9, 96, 138], and time 
series analysis [57]. However most of the existing methodologies present some 
drawbacks such as high average accuracy error, dependence on the particular 
design of the PV installation, and inability to provide real-time prediction [13, 119, 
123]. 

The methodology proposed in this chapter represents a flexible and easy-to-use 
methodological approach to the forecasting of energy production in solar PV 
installations, using time series analysis and neural networks. The aim is to develop 
and validate a one day-ahead forecasting model by adopting an artificial neural 
network with tapped delay lines to implement the NARX time series model for the 
prediction of the energy production of the following day. The potential benefits of 
having energy production predictability are obvious: knowing the energy 
production ahead of time is useful in automatic power dispatch and load 
scheduling, and energy control [139]. 

The goal of the proposed approach is twofold. On the one hand, energy 
production forecasting is important for improving the efficiency of the PV 
installation, as well as for finding faults. On the other hand, energy production 
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forecasting is vital for efficiently planning the energy distribution [31]. In 
particular, the chance to forecast the energy production up to 24 hours can become 
of the utmost importance in decision-making processes, with particular reference to 
grid-connected photovoltaic plants. Moreover, this approach could be particularly 
useful in smart grid systems, which are able to make better operational decisions 
using ahead predictions [122]. 

Variability of weather, in particular of solar irradiation, is maybe the main 
difficulty faced by PV installation operators [86] so that good forecasting tools are 
required for the appropriate integration of renewable energy into the power system 
[81]. Among various prediction models, such as analytic, stochastic, and empirical, 
neural networks are fairly able to correctly model the nonlinear nature of dynamic 
processes. Actually, an artificial neural network is able to reproduce an empirical, 
possibly nonlinear, relationship between some inputs and one or more outputs [14]. 
Forecasting is one of the most interesting nonlinear applications of neural 
networks. Indeed, the measurements of environmental parameters are generally 
provided in the form of time series which are suitable to use neural networks for 
prediction purposes [17]. Moreover, neural networks are fault tolerant, i.e., are able 
to handle noisy or incomplete data [77]. 

4.1.1 Outline of the chapter 
The chapter has the following structure. Section 4.2 describes the experimental 

data collected from two PV installations located in Italy, Section 4.3 presents the 
proposed methodology to correctly set up the NARX-neural network model for 
forecasting the solar energy production. Section 4.4 presents and discusses the 
achieved results. Finally, concluding remarks are provided in Section 4.5. 

4.2  Description of the solar PV dataset  
The available data were collected from two PV ground installations of solar 

panels 500 meters far away from each other, located in Apulia, Italy. We employed 
data only from one installation for the development of the model, as, under 
conditions of proper working, we can assume that the two installations are 
correlated. We then successfully tested the developed model also on the second 
installation.  

According to the literature, the two most significant environmental parameters 
are temperature and irradiation on the solar panels [9, 80, 81]. The first one refers 
to the surface of the panel exposed to the sunlight, while the second one is the 
quantity of sun radiation incident on the panel with respect to the whole surface of 
the panel and to all the electromagnetic spectrum frequencies. 

Actually, we employed only the irradiation input, similarly to what happens in 
PV plant sizing, since the total solar radiation is considered as the most important 
parameter in the performance prediction of renewable energy systems [99]. The 
first input, instead, was used only for offline checks. Figure 4.2 shows the 
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irradiation trend for six consecutive days of Winter. Days 1, 2, 5, and 6 correspond 
to clear or partly cloudy days, while days 3 and 4 correspond to completely 
overcast days. The output parameter is the produced energy from each PV 
installation. Data, including also the sampling timestamp (date and time), were 
collected every 15 minutes during 1 year, from October 2009 to September 2010. 
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Figure 4.2. – Solar irradiation trend for six days of Winter.  

4.3  The proposed NARX-neural network model for solar PV energy 
forecasting 

The proposed methodology presented in [26, 27] aims to provide an easy-to-use 
tool for correctly configuring the best predictor for energy production in a PV 
installation based only on the collected historical data, with no concern about 
possible relationships between plant attributes (like positions, construction, etc.) 
and predictor parameters. More in detail, we aim to forecast the energy production 
up to 24 hours, given the environmental parameters of an appropriate number of 
previous days that compose the training window. 

We decided to implement the NARX model (see Chapter 1) using a feed-forward 
neural network with tapped delay lines, having one hidden layer. The hidden 
neurons are characterized by a hyperbolic tangent sigmoid function while the 
output neuron has a linear transfer function. 

The tasks to be performed are basically the following: i) choice of the training 
window width; ii) choice of the sampling frequency; iii) choice of the number of 
delays; iv) choice of the number of hidden neurons. In the following we will use 
the term structural parameters to refer to the number of hidden neurons and the 
number of delay elements, and the term configuration parameters to mention the 
training window width and the sampling frequency. 

Based on heuristic considerations, we propose: i) to consider the training window 
width as a multiple of the day, ii) to use balanced training sets obtained by 
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randomly extracting the same number of training samples from each day of a 
window, and iii) to assess the performance of the NARX model based on the mean 
performance obtained on all the predicted days within periods of one month. This 
last choice aims to avoid the strong dependence of the performance results, 
achieved by a given neural network, on the particular day to be predicted (which 
might be atypical). 

In the following we will describe the operation steps for the development of the 
neural model.  

4.3.1 Choice of the structural and configuration parameters 
Based on the previous considerations, we make use of training windows having 

width w from a minimum of 7 days to a maximum of 30 days before the predicted 
day. Furthermore, for the sake of simplicity, we kept the 15 minute sampling 
frequency. 

As previously stated, we decided to take into account the mean performance 
obtained on all the predicted days within periods of one month. We considered one 
month for each season. More in detail, we performed the experiments on the days 
of the first complete month of each season (e.g., being the beginning of winter on 
December 21st, January is chosen as the first complete month of winter), having a 
total of four months. 

We heuristically decided to try a number of hidden neurons (h) ranging from 8 to 
20 with step 1, and a number of delays (d) ranging from 3 to 10 with step 1. 

Each kind of experiment has been repeated 30 times, once fixed the neural 
network configuration and structure, to mitigate the effects, in terms of 
convergence, of the random initialization typical of neural networks. 

For each month considered, we found a set of windows that appear most often, 
i.e., at least in a given percentage (80% in our case) of the trials of each 
experiment, as the best windows among the 24 possible windows. This set is w = 9, 
12, 15, 18, 21. 

The best results were obtained with a neural network with 10 hidden neurons, and 
3 delay elements on both the exogenous (irradiation) and endogenous (produced 
energy) variables. These values represent the best compromise between efficiency 
and simplicity. In particular, to set the number of delays to 3 means to use the 
information pertinent to the three quarters of hour immediately before each 
predicted sample. 

We used the Mean Square Error (MSE) defined in Equation (4.1), where ti and oi 
are, respectively, the target and predicted instantaneous energy values of sample i, 
and S is the number of samples of the considered day: 

2

1

1 ( ) .
S

i i
i

MSE t o
S =

= −∑  (4.1) 

Figure 4.3(a) shows the results related to window widths equal to 9, 12, 15, 18 
and 21 days, respectively, for the four months. For each window width the figure 
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shows the MSE made during the daytime (hours of daylight, approximately from 6 
a.m. to 8 p.m.) of each predicted day, averaged over all the days of the considered 
month. 

To compare the performances of the different neural models related to the five 
considered windows, we have evaluated the mean value and the standard deviation 
of the previously computed average MSEs for each window width over the four 
months. Figure 4.3(b) shows the mean value and the standard deviation of the five 
neural models (corresponding to the five windows) over the four months (January, 
April, July and October). As we can easily observe in Fig. 4.3(b), the worst 
window is that with 9 days width, so we decided to discard it.  

Regarding the number of delays, as stated before, we chose to use 3 delays. 
Actually, we have experimentally found that, by increasing the number of delays, 
we can slightly improve the performance of the network. Anyhow, this depends on 
the window width value chosen and on the month considered, therefore it makes no 
sense to increase the complexity of the network. In a sense, we may say that the 
window width w lets the network be “aware” of the specific season or more in 
general the temporal context, while the number of delays d lets the network detect 
the particular real-time climatic variation. Figure 4.4 illustrates the iterative 
forecasting scheme employed. 
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Figure 4.3. – Forecasting performances obtained using irradiance only over the daytime samples for 
whole months (January, April, July and October). (a) Average MSE. (b) Mean and standard deviation 

of the average MSEs for each window width. 

Moreover, we have experimentally found that there does not exist an optimum 
value of w effective for all the seasons. Nevertheless, we have realized that in most 
cases, (about) 10 days is the minimal window width able to provide the network 
with the correct temporal context (season). In fact, the typical way to provide data 
for solar energy climatology has monthly, annual and 10-days granularity [74]. 

The previous result has been confirmed by repeating the experiments on the 
remaining months of each season. 
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Training window (w days) Test day 

d delays test sample

 
Figure 4.4. – Forecasting scheme adopted. 

4.3.2 Model refinement 
The goal of this phase is to propose a way to improve the model performance by 

trying to resolve possible irregularities present in the data collected from the 
specific PV installation. 

During the experiments we noticed the presence of error spikes corresponding to 
days having a mean MSE sensibly higher than the other days of the same month. 
The position of these spikes (and the related days) is not fixed as the window width 
varies. More precisely, if a given day shows a high error for a specific window 
maybe the following day shows a similar high error for a different window. 

So, to resolve this irregularity of the model, we decided to add one more input 
parameter to improve the performance, and, at the same time, to favor the 
regularization of the occurrence of the previous error spikes. 

As we have a timestamp associated with each sample, we decided to add the hour 
input, maintaining fixed the structural parameters of the network. In fact, given a 
temporal context (e.g., a season or a month), the daily irradiation values at the 
same time of the day tend to be very similar, especially considering the values far 
from the maximum (approximately corresponding to midday). 

Stated in other terms, by adding the hour input, we want to let the network be 
more aware of the concept of succession of samples during the day, with the hour 
representing the specific time at which the samples have been collected, so as to 
exploit some kind of regularity in the sun irradiation cycle. 

So we performed the previous experiments with one more input, i.e., the hour 
input. 

The resulting network model is depicted in Fig. 4.5. The model has 2 inputs, 10 
hidden neurons with hyperbolic tangent sigmoid transfer function and 1 output 
with linear transfer function; the output is fed back as input; 3 delays are used on 
all the inputs. W and b represent, respectively, the weight matrix and the bias. 

We found that the network that employs irradiation and hour inputs performs 
better compared to the one that uses only the irradiation input (see Fig. 4.6). We 
have measured a performance improvement of about one order of magnitude for all 
window widths. 

Figure 4.6(a) shows the daytime MSEs of each predicted day, averaged over all 
the days of the considered month and related to window widths equal to 12, 15, 18 
and 21 days, respectively, while Fig. 4.6(b) shows the mean value and the standard 
deviation of the average MSEs for the four months (January, April, July and 
October). From Fig. 4.6(b) we can notice that the best window width is w=15 as it 
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corresponds to the lowest mean value and standard deviation, although the three 
window widths 12, 15 and 18 are comparable with each other. On the other hand, 
these three windows are sensibly better than w=21. For this reason we decided to 
eliminate w=21 from further analysis. 

We performed a following assessment phase to attempt to select the best window 
width w, among the previous three found (12, 15, 18), for the particular temporal 
context (season). We carried out our experiments on the remaining months of each 
season. 

 

 
Figure 4.5. – NARX neural network model employed in the experiments (the figure was produced in 

the Matlab® environment). 
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Figure 4.6. – Forecasting performances obtained using irradiance and hour inputs over the daytime 
samples for the months of January, April, July and October. (a) Average MSE. (b) Mean and 

standard deviation of the average MSEs for each window width. 

Figure 4.7(a) shows the goodness of the adopted methodology on the remaining 
months. The achieved performance is in line with the previous results. As we can 
see, the optimal window width results to be 15 days. Figure 4.7(b) shows the mean 
value and the standard deviation of the average MSEs for the three windows over 
the remaining eight months (February, March, May, June, August, September, 
November, and December). 

From Fig. 4.7(b) we can notice that the best window width is w=15 as it 
corresponds to the lowest mean value although the standard deviation is slightly 
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higher than that of 12 days. On the other hand, the differences among the three 
window widths are in fact negligible. For practical reasons, in the experiments 
described in the next section we decided to adopt w=15. 

Table 4.1 summarizes the parameter values of the chosen final configuration. 
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Figure 4.7. – Forecasting performances obtained using irradiance and hour inputs over the daytime 
samples for the months of February, March, May, June, August, September, November, and 

December. (a) Average MSEs. (b) Mean and standard deviation of the average MSEs for each 
window width. 

Table 4.1. – Parameters for the final NARX neural network model. 
Parameter Value 
Structural parameters 
Number of hidden layers 1 
Number of hidden neurons (h) 10 
Number of delay elements (d) 3 

Transfer functions 
Hyperbolic tangent sigmoid (hidden 
layer), linear (output layer) 

Training algorithm Levenberg-Marquardt 
Maximum number of learning epochs 30 
Early stopping criterion 6 validation failures 
Exogenous input variables irradiation, hour 
Endogenous input variable produced energy 
Configuration parameters 
Training window width (w) 15 days 
Sampling frequency (s) 15 minutes 

4.4  Experimental results 
The analysis described in the previous section shows that the neural network with 

10 neurons in the hidden layer and 3 delay elements is the best structure for the 
proposed problem. Moreover, the best performance was obtained employing the 
hour input along with the irradiation input. 
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Finally, we have also verified that the best results were achieved using training 
window widths of 12, 15 or 18 days. As already stated, we adopted w=15. 

In the following two sub-sections we analyze, respectively, the prediction of the 
instantaneous energy on the continuous daily horizon and the prediction of the total 
(accumulated) energy produced over the whole day. 

4.4.1 Prediction of the instantaneous energy 
Since the goal of the following experiments is the comparison between the target 

produced energy and the predicted energy on the continuous daily horizon 
consisting of samples taken every 15 minutes, we considered the unsigned absolute 
instantaneous error for all samples of a day. 

For the aim of these experiments we need to take into account the presence of 
“missing” days in the used dataset. A “missing” day is a day in which the system 
was down or under maintenance. Of course, meteorological changes possibly 
occurred during missing days cannot be correctly modeled by the forecasting 
system with the consequence that the prediction of one or more days following a 
missing one may produce high errors. In the following, we will distinguish two 
different categories of badly performing days, called, respectively, atypical days 
and unpredictable days. The difference between the two types of bad days is, 
respectively, the absence or presence of at least one missing day in the training 
window. 

Figures 4.8-4.10 show the comparison, sample by sample, between the real 
energy (target) and the predicted energy of some randomly chosen days of the year. 
More in detail, Fig. 4.8 regards four days chosen at random among well performing 
days, Fig. 4.9 regards two days chosen at random among atypical days, while Fig. 
4.10 concerns two randomly extracted unpredictable days. Each of these figures 
shows also the unsigned absolute instantaneous error, made on each sample of the 
day. We can notice that the performance error in Figs. 4.8(c), 4.8(d), 4.8(g), 4.8(h) 
is quite small with respect to the nominal energy production values shown in Figs. 
4.8(a), 4.8(b), 4.8(e), 4.8(f). 

In Fig. 4.9 we can see two examples of badly performing days (atypical days), 
having the predicted energy curve with a quite irregular trend. With the aim of 
interpreting these results, we checked the data at our disposal and we found out that 
the bad performance of the atypical days under consideration might be due to a 
rapid change in the panel temperature values. In fact, if rapid changes in solar 
radiation or temperature occur during the predicted day, the produced power can 
sensibly change and the prediction error might increase [18, 135]. 

Figure 4.10 shows two examples of badly performing days (unpredictable days), 
which present a noticeably evident difference between real and predicted energies. 

By analyzing the results achieved in this sub-section, we can conclude that, 
regarding the atypical days, the forecasting performance could be sensibly 
improved only if we had a trustworthy prediction of changes in the panel 
temperature values at our disposal. On the other hand, as far as unpredictable days 
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are concerned, improved forecasting performance could be easily achieved by 
using a complete dataset without missing days. 
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July 23rd 
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Figure. 4.8. – Results on four well performing days chosen at random. (a) (b) (e) (f) Comparison 
between the real energy and the predicted energy. (c) (d) (g) (h) Associated daytime absolute 

instantaneous error. 

 
 
 

 
 

 



36 

March 15th 

6:00 8:00 10:00 12:00 14:00 16:00 18:00
0

50

100

150

200

250

Time

P
V

 e
ne

rg
y 

(k
W

h)

 

 
Target
Predicted

 
(a) 

6:00 8:00 10:00 12:00 14:00 16:00 18:00
0

50

100

150

200

Time

A
bs

ol
ut

e 
er

ro
r (

kW
h)

 

 
Daytime absolute error

 
(c) 

August 31st 
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(d) 

Figure 4.9. – Results on two atypical days chosen at random. (a) (b) Comparison between the real 
energy and the predicted energy. (c) (d) Associated daytime absolute instantaneous error. 
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October 26th 
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(d) 

Figure 4.10. – Results on two unpredictable days chosen at random. (a) (b) Comparison between the 
real energy and the predicted energy. (c) (d) Associated daytime absolute instantaneous error. 

4.4.2 Prediction of the accumulated energy 
Usually in the renewable energy field, and in particular in PV plants, the total 

(accumulated) produced energy is considered instead of the instantaneous produced 
energy. So we take into account also the daily accumulated produced energy. 
Among other things, this typically allows to achieve an error reduction at the end 
of the day due to a compensation effect. 

Table 4.2 compares the daily accumulated energy values predicted by the 
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network with the real ones for the eight test days referred to above. In addition, we 
have considered the Absolute Percentage Error (APE) for each test day according 
to the equation: APE =100 ⋅(t − o) / t , where t and o are, respectively, the real and 
predicted daily accumulated energy. 

Table 4.2. – Comparison between real and predicted accumulated energy. 

Predicted day 
Accumulated energy (kWh) 

APE (%) 
Real Predicted 

February 27th 5110 4915.59 3.80 
March 19th 5999 6062.04 1.05 
June 1st 6556 6277.71 4.24 
July 23rd 5779 5652.25 2.19 
March 15th 6455 6414.31 0.63 
August 31st 4784 5006.53 4.65 
August 20th 5821 7788.51 33.8 
October 26th 3254 4617.11 41.9 

 
As we can see from Table 4.2, using the accumulated energy we obtain an 

acceptable error for all the considered days, independently of the dynamic behavior 
of the curve representing the instantaneous predicted energy, with a maximum 
value of 4.65% for August 31st. 

We can observe that an apparently quite bad day, e.g., the 15th of March (Figs. 
4.9(a) and 4.9(c)), has actually achieved the best performance among all the eight 
days (absolute percentage error less than 1%) thanks to the compensation effect. 

To evaluate the accuracy of the proposed model, we computed the accumulated 
energy for each day of the four seasons and we compared it with the target 
accumulated energy. 

Figures 4.11-4.14 shows the comparison between the real and predicted daily 
accumulated energy, with reference to all days of the four seasons. Please note that 
the figures may refer to a different number of days due to the lack of data pertinent 
to days in which the system was down or under maintenance. 

From Figs 4.11-4.14, we can see that the predicted energy generally fits quite 
well the target energy although error spikes may appear. Once again, the bad 
performance of the badly performing days might be due to rapid changes in solar 
radiation or temperature during the predicted day [74, 135], or to the presence of 
missing days in the training window. 

Furthermore, we computed the error made on each season as the average of the 
errors made on the daily accumulated energy values pertinent to the days of that 
season. 

We used the Mean Absolute Percentage Error (MAPE) defined in Equation (4.2), 
where ti and oi are, respectively, the target and predicted accumulated energy 
values of day i, and N is the number of forecasted days of the season: 

1

100 .
N

i i

i i

t o
MAPE

N t=

−
= ⋅∑  (4.2) 
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Figure 4.11. – Target and predicted daily accumulated produced energy for Spring. 
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Figure 4.12. – Target and predicted daily accumulated produced energy for Summer. 

Table 4.3 compares our method with the classical persistence method, which 
provides as forecasting value the last known value of the time series. The table 
shows the seasonal MAPEs made by the persistence method and by the neural 
model in the prediction of the daily accumulated energy values over all days of 
each season. It can be seen that the persistence method achieves results 
significantly worse than our neural network-based NARX model for all the four 
seasons. 

The results achieved by the neural model compare favorably (even though 
obtained on different datasets and with a different technique) with those obtained 
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in [162], where the average prediction error per day from April to September is 
about 26% of the measured power. 
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Figure 4.13. – Target and predicted daily accumulated produced energy for Autumn. 
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Figure 4.14. – Target and predicted daily accumulated produced energy for Winter. 

Finally, with the aim of investigating the seasonal MAPE in Table 4.3, in Fig. 
4.15 we show the error histograms related to the APE made on the daily 
accumulated energy for the four seasons.  

Each seasonal histogram shows the frequency with which an error value is made 
in the considered season, i.e., how many days of that season collected that error 
value.  
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Figure 4.15(a) shows that in 52 Spring days, which represent more than 60% of 
all the considered Spring days (see Fig. 4.11), the error made is lower than 10%, 
while only a few days have errors significantly higher. Similarly, from Figs. 
4.15(b), 4.15(c), 4.15(d), we can see that, respectively, 27, 36 and 29 days (i.e., 
39%, 51% and 50% of the considered days for that season, respectively (see Figs. 
4.12, 4.13, 4.14)) produce an error lower than 10%. Regarding higher errors the 
same considerations as those made for Spring hold. 

Table 4.3. – Comparison between the persistence method and the NARX neural network. 

Predicted season 
MAPE (%) 

Persistence method 
MAPE (%) 

NARX neural network 
Spring 31.16 12.2 
Summer 38.13 21.1 
Autumn 84.59 26 
Winter 77.84 23.9 
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Figure 4.15. – Error histograms for (a) Spring, (b) Summer, (c) Autumn, and (d) Winter. 

In order to correctly interpret the results shown above we have tried to identify 
which are the days that produce the worst errors, e.g., errors higher than 30% for 
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Spring, or higher than 40% for Autumn. We have found out that almost all these 
days follow immediately (after one or two days) a “missing” day, that is a day in 
which the system was down or under maintenance. As already stated, missing days 
are not included in the used dataset, so that their information cannot be used by the 
forecasting system. As a consequence, the prediction of one or more days 
following a missing one may produce high errors, especially when there have been 
meteorological changes that result not to be correctly modeled. 

In Fig. 4.16 we show the error histogram related to the APE made on the daily 
accumulated energy for the best days of Spring (those corresponding to an error 
lower than 10%). Similar histograms (not shown) can be obtained for Summer, 
Autumn and Winter. 
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Figure 4.16. – Error histogram for the best days of Spring (daily error lower than 10%). 

Finally, we tested the developed forecasting system on the second PV installation 
obtaining practically the same results as those shown above (the differences are so 
negligible to make the presentation of such results unnecessary). 

Based on the previous considerations, we can observe that the compensation 
effect resulting from the use of the daily accumulated energy makes the developed 
forecasting system suitable to be effectively and profitably used for one day-ahead 
forecasting of energy production. 

4.4.3 Discussion 
In the previous sections we have shown that a powerful nonlinear forecasting 

technology (neural networks), employed within a NARX model, is able to predict 
the energy production in a PV installation, provided that (see Table 4.1): 

• the right exogenous inputs are used (irradiance and hour of the day); 
• the right NARX model is used (i.e., the correct number of tapped delays d); 
• the right neural network structure is used (particularly, the number of 

hidden neurons h); 
• the right training window size (w) is adopted; 
• the right sampling frequency (s) is used. 

In our experience the other neural network parameters (namely, training 
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algorithm, maximum number of learning epochs, early stopping criterion, etc.) 
have a lower impact on the forecasting performance. 

The proposed methodology does not depend on the characteristics of the specific 
PV installation, such as geographical location, panel’s inclination, etc. Its degrees 
of freedom make it suitable to be applied to any other PV installation. 

4.5  Concluding remarks 
In this chapter we have presented a general methodology to solve a problem of 

one day-ahead forecasting of solar energy production. We implemented the time 
series analysis model NARX by means of a feed-forward neural network with 
tapped delay lines. In the training process we use the solar irradiation data and the 
hour as exogenous inputs, and the PV energy production data as endogenous input. 

Experimental results have showed that the proposed neural network can faithfully 
reproduce the curve of daily produced energy so as to predict the daily 
accumulated energy with seasonal mean absolute percentage errors ranging from a 
minimum of 12.2% (Spring) to a maximum of 26% (Autumn). These results were 
achieved despite the presence of missing days (about 21% of the days of one year) 
in the used training windows. The proposed methodology has been validated by 
showing that it significantly outperforms the persistence method, a frequently used 
benchmark in this kind of applications. 

Future work will focus on integrating the proposed system with a weather 
forecasting system, so as to estimate directly the environmental variables. This 
could be useful when the input data are not available and anyway could increase 
the prediction performance. 

Moreover, due to the good results obtained, we may extend the forecasting 
horizon to a multiple of the day, so as to strengthen the long-term forecasting 
analysis. Similarly, we may change the actual forecast time-step of 15 minutes to 
hourly time-steps. 

The forecasting system resulting from the proposed methodology could be 
profitably used to control the energy distributing grid. Indeed, since PV-based 
power generators are discontinuous, being influenced by weather conditions, this 
discontinuity has to be mitigated using alternative power sources, like gas turbines 
and thermal power plants, which have short start-up time (of the order of a few 
hours). This means that knowing the energy produced by a grid-connected PV 
installation 24 hours ahead of time is enough to prepare the start-up of such 
alternative power sources. The importance of the present study stems exactly from 
this consideration. In addition, it is widely recognized that an accurate forecasting 
tool for energy production is a key component of a smart grid, especially when 
coupled with an energy consumption predictor. 
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5 
A hierarchical approach to multi-class fuzzy 

classifiers for PV energy production 

5.1  Introduction 
In the last two decades fuzzy rule-based systems have been extensively applied to 

pattern classification thanks to their capability to achieve good trade-offs between 
accuracy and interpretability [45, 76, 90, 129, 134]. In particular, interpretability of 
a fuzzy rule-based system is typically measured in terms of complexity of the rule 
base, and depends on such factors as comprehensibility of fuzzy partitions of the 
domains of the involved linguistic variables, number of input variables, number of 
conditions in the antecedent of each rule, and number of fuzzy rules. In its simplest 
form, a fuzzy rule-based classifier is a system consisting of fuzzy if-then rules 
having a class label as consequent. 

When designing a fuzzy classifier two main issues must be considered: fuzzy 
classifier identification and fuzzy parameter optimization. Major issues in fuzzy 
classifier identification are i) how to choose the membership functions of linguistic 
variables, ii) how to generate the fuzzy rules, and iii) how to determine the output 
class.  

A large number of methods for extracting fuzzy rules directly from numerical 
data have been proposed, thus making prior knowledge about the data unnecessary. 
These methods include heuristic procedures [2, 63, 70, 114, 156], neuro-fuzzy 
techniques [79, 102, 103, 111, 146, 150], clustering methods [3, 130], genetic 
algorithms [8, 19, 51, 52, 65, 68, 71, 133, 137, 165], fuzzy decision trees [21, 155, 
163], and data mining techniques [38, 39, 62, 71]. 

The antecedent part of fuzzy rules may contain single-dimensional fuzzy sets 
obtained by partitioning each input dimension. Antecedent fuzzy sets may, e.g., 
have pre-specified linguistic values with fixed membership functions obtained by 
homogeneously partitioning each axis of the pattern space [67] or may be 
purposely defined by domain experts. Alternatively, multi-dimensional antecedent 
fuzzy sets may be generated by applying a clustering algorithm to sample input-
output data [2, 3]. Sometimes, these multi-dimensional antecedent fuzzy sets are 
projected onto each axis of the input space to improve the interpretability of the 
clusters produced [129, 136]. In all cases, the output class associated with each 
fuzzy subset (either grid cell, identified by the partitions on the input dimensions, 
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or cluster) of the pattern space is derived from the training samples belonging to 
that subset. 

Of course, the performance of a fuzzy rule-based classifier (FRBC) depends on 
the grain size of the fuzzy partition of the pattern space: a too coarse fuzzy partition 
may cause many misclassifications while a too fine fuzzy partition may miss to 
generate fuzzy if-then rules due to lack of training samples in the corresponding 
areas of the input space. A possible solution is to simultaneously use different 
partitions with different resolutions at the expense of a high number of fuzzy rules, 
especially in high-dimensional spaces [70]. A different solution is selective 
partitioning, in which the input regions where classes overlap are further 
partitioned with a higher resolution level [103].  

Other alternatives are possible. E.g., Ait Kbir et al. [6] propose the construction 
of a compact fuzzy classification system by using a method of hierarchical fuzzy 
partition based on 2N-tree recursive decomposition of the feature space. In [54], a 
hierarchical fuzzy partition is generated independently over each dimension in an 
ascending way by aggregating fuzzy sets. In [85], the authors adopt a fuzzy entropy 
measure to partition the pattern space into non-overlapping decision regions and to 
select relevant features for classification purposes. In [47], a hierarchical fuzzy 
rule-based classification system is proposed for imbalanced datasets. Basically a 
finer granularity of the fuzzy partitions is applied in the boundary areas between 
the classes. 

As far as fuzzy parameter optimization is concerned, several optimization 
techniques have been applied to set the fuzzy system parameters based on the 
training samples. These include the type and shape of fuzzy membership functions, 
and the number and structure of fuzzy rules. E.g., genetic algorithms [67], and 
evolutionary multi-objective approaches [68, 69, 71] are adopted to cope with the 
combinatorial explosion of the number of rules. In [165], the authors adopt a 
simultaneous genetic algorithm-based optimization of fuzzy partitions, shape and 
parameters of fuzzy membership functions, number and size of fuzzy rules. In 
[134], interval-valued fuzzy sets with a post-processing genetic tuning step of their 
parameters are used to model the linguistic labels. Li et al. [90] propose a hybrid 
co-evolutionary genetic algorithm for learning approximate fuzzy rules, by using a 
q-nearest neighbor replacement method to coevolve a population of rules, and a 
local search method. A classifier is built by extracting rules with minimal 
redundancy from the final population. Setnes et al. [137] apply fuzzy clustering to 
produce an initial TSK fuzzy rule set, then they use a real-coded GA to 
simultaneously optimize the rule antecedents and the consequents. Wu et al. [159] 
adopt a functional-link-based neural fuzzy network where the consequence of each 
rule is a nonlinear combination of the input variables. Tung et al. [148] propose the 
self-organizing Yager-based hybrid neural fuzzy inference system: initial clusters 
are found in the input-output space by means of the Gaussian Discrete Incremental 
Clustering technique, and fuzzy rules are generated through the Wang and Mendel 
method. Wang et al. [153] apply the Mapping-Constrained Agglomerative 
clustering method to identify the cluster configuration of a given dataset for the 
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construction of an initial classifier structure. The linear and nonlinear parameters of 
the classifier are then optimized, respectively, by a recursive least squares 
algorithm and a modified Levenberg-Marquardt algorithm. Ishibuchi et al. [73] 
propose the combination of two fuzzy genetic learning approaches (i.e., Michigan 
and Pittsburgh) into a single hybrid algorithm for designing fuzzy rule-based 
classifiers. Abonyi et al. [4] use a decision tree-based initialization of the fuzzy 
rule-based classifier for feature selection and initial partitioning of the input 
domains. The initial fuzzy classifier is optimized by similarity-driven rule 
reduction and a multi-objective genetic algorithm based on redundancy and 
accuracy. Heuristic methods for rule weight specification are proposed in [72]. In 
[115], an adaptive method based on reward and punishment is applied to 
automatically adjust the weights of fuzzy rules. In [167], a hill-climbing search 
algorithm is adopted for learning rule weights. 

In this chapter we propose an easy-to-use approach for extracting fuzzy rules 
from available data by employing the Wang and Mendel algorithm for the 
generation of the rule base. The fuzzy system developed in [33] is obtained 
exploiting a hierarchical scheme, as a combination of fuzzy models built on input 
domain regions increasingly smaller, according to a multi-level grid-like partition. 
Only the necessary partitions are built, in order to avoid the explosion of the 
number of rules with the increase of the hierarchical level. The fuzzy system 
employs the fuzzy rule-based classifier frbc [28], presented in Section 2.3. The 
optimal values of some key parameters of the proposed method are found by means 
of a real-coded genetic algorithm.  

5.1.1 Context of application 
To illustrate the proposed approach we refer to a real-world dataset consisting of 

input/output pairs collected from a photovoltaic (PV) installation: the inputs are the 
temperature of the solar panel and the irradiation, the output is the produced 
energy.  

The reason for this is the following. PV installations (see Section 4.1) are 
typically used as energy sources for the electric grid. Major issues in electric grid 
management (in particular, smart grids) are efficiency and reliability, which 
require, among other things, fast and easy understanding by the grid operator of 
both the electricity demand and the electricity supply (energy production). With the 
aim of helping the grid operator to promptly make his/her decisions, we propose to 
model in linguistic terms the decision process and the elements on which that 
process operates, as previously done in [34, 35]. More precisely, we deal with this 
issue as a fuzzy classification problem. We divide the values of energy production 
into three classes (low, medium, high), each modeled by a fuzzy set. We also model 
the environmental variables (namely, temperature and irradiation) as linguistic 
variables. Then we build fuzzy rules directly from data so as to associate pairs of 
values of the two environmental variables with a specific value of produced 
energy. In this way, the manager of a PV plant can gain enough information from 
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the system so as to perform appropriate functional operations for the installation, 
even if the exact energy production value is not known [55]. 

The proposed approach is also applied to some well-known benchmark datasets 
and the results are compared with those obtained by other authors using different 
techniques. 

5.1.2 Outline of the chapter 
The chapter has the following structure. Section 5.2 describes the real-world 

experimental data used to illustrate the proposed method; Section 5.3 introduces 
the proposed hierarchical approach to fuzzy classifier construction; Sections 5.4 
and 5.5 present the application of the methodology to the real-world dataset and the 
obtained results. Finally, Section 5.6 is devoted to validate our classifier, by 
comparing it with other classifiers present in the literature on some benchmark 
classification problems, namely the Fisher’s Iris data, the Wine data, the Wisconsin 
breast cancer data and the Pima Indians diabetes data. Lastly, concluding remarks 
are provided in Section 5.7. 

5.2  Description of the real-world experimental dataset 
The real-world data used to highlight the characteristics of the proposed method 

for building fuzzy classifiers were collected during five months (from March to 
July 2009) from a PV installation, consisting of an array of solar panels, located in 
Italy. The nominal power of this PV installation measured by the associated 
inverter is 6.45 KW. Data were collected every day during daylight, with a 
sampling frequency of 15 minutes. 

As stated previously, among the environmental data, temperature of the solar 
panel and irradiation play the most significant role to evaluate the energy 
production of a PV installation [9, 80, 81], so they are chose as input parameters 
(see Section 4.2. for a more detailed description). 

The output parameter is the energy production related to the PV array and 
measured by the associated inverter.  

Data have been adapted in order to use them in a fuzzy classification problem, as 
explained in the following. Before beginning the data analysis, we needed to 
transform the energy numerical values into class labels. For the sake of simplicity, 
we operated a uniform partition on the output domain by identifying three intervals 
corresponding to three output classes (Low, Medium, High energy production, 
M=3). Then, we associated each output pattern with the energy label corresponding 
to its interval. In Fig. 5.1 we can see the scattering of the dataset (7303 samples) 
over the two dimensions and the distribution of the samples over the three output 
classes. 
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Figure 5.1. – Scatter diagram of the PV dataset and distribution of the samples over the three output 

classes (Low, Medium, High). 

5.3  A hierarchical approach to fuzzy classifier construction 
In this section we introduce the proposed methodology [33], which consists of a 

first step, a second iterative step and a final third step. Let us make some general 
considerations before describing each step in greater detail. Both in the first step 
and at each iteration of the second step we build a grid, respectively, on the whole 
input space and on a portion of the input space. Whatever the case, our aim is to 
find univocal mapping areas, i.e., input areas mostly containing patterns associated 
with the same class label. For each such area, an appropriate number of training 
samples are randomly extracted and used to generate fuzzy rules that model that 
area. Since we are interested in collecting training samples according to the real 
distribution of the available input patterns in relation with each output class, 
whenever we need to construct a grid in the input portion under consideration we 
should adopt an ad hoc non-uniform partition, e.g., based on the distribution of the 
input samples in the feature space. On the other hand, the frbc method expects a 
uniform partition of the input space. Thus, for a good compromise between 
efficiency and computational cost, we chose to perform a non-uniform grid 
partitioning of the original input space only in the first step, while we decided to 
adopt uniform grid partitioning of the relevant input area in all iterations of the 
subsequent second step. Of course, appropriate scaling will let the non-uniform 
grid partition correspond to an equivalent uniform partition used by the frbc 
system. 

In practice, our objective is to split the input domain into univocal mapping areas 
with possibly different grain size, and to build a separate set of fuzzy rules to 
model each such area. Let us now describe more thoroughly the three steps of the 
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methodology. 

5.3.1 First step: first-level grid partitioning 
In the first step, applied to the original input space, we carry out the following 

actions: 
i) we apply the k-means clustering algorithm [91] separately to each input 

dimension; 
ii) we use the separation thresholds between the clusters for: 

ii.1) building a non-uniform grid (made of k×k areas) in the input space, 
and 

ii.2) constructing a non-uniform fuzzy partition on each input 
dimension consisting of k membership functions; 

iii) we analyze separately each area of the grid previously built in order to 
discriminate among insignificant, univocal mapping and to-subgrid areas. 
More precisely, 

iii.1) an insignificant area is any grid area A containing a total number 
NA of input samples below a predefined first-step relevance 
threshold RT1 (the value of RT1 depends on the specific problem 
under consideration); each such area is eliminated from further 
consideration; 

iii.2) a univocal mapping area A is any non-insignificant area in which 
there exists a dominant majority class, i.e, the class associated with 
the majority of the samples falling in that area, such that the 
number AN

+  of majority class samples is greater than, or equal to, a 
given percentage, say first-step dominance percentage (DP1), of 
the numerousness NA of samples falling in A; 

iii.3) each non-univocal and non-insignificant grid area is called to-
subgrid area: each such area will undergo the second iterative step; 

iv) for each univocal mapping area A, a random extraction of 
min( , )aK perc N S+= ⋅  majority class samples is performed, with perc, 

appropriately chosen, representing a percentage of AN
+ , and S, appropriately 

chosen, being a problem-dependent upper bound of samples of the same 
class that can be extracted from the same area. The extracted samples will 
be used to generate, through frbc, the pertinent fuzzy classification rules 
that model the considered area; 

v) we build the first-level fuzzy model by training frbc with all the samples 
extracted from all the univocal mapping areas previously found. 

To complete the description of the first step of the methodology we must mention 
that, since we use the Wang and Mendel method implemented in frbc, which 
builds a uniform fuzzy partition of each input feature space, two more operations 
must be performed within action ii), namely: 
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ii.3) for each input feature we build a uniform fuzzy partition, 
consisting of k fuzzy sets, using the Wang and Mendel method 
implemented in frbc; 

ii.4) for each input feature, we use non-uniform scaling to transform the 
previous uniform partition into the corresponding non-uniform 
partition (built at stage ii.2): all the feature values are scaled from 
their original interval to the new interval, maintaining the 
proportionality. 

5.3.2 Second (iterative) step: deeper-level grid partitioning 
The second step is applied to each to-subgrid area, which has been found either in 

the first step or at any iteration of the second step itself. For a given to-subrid area 
A we perform the following actions: 

i) we build a uniform hard partition (consisting of k intervals) on each 
dimension of A, so as to construct a deeper-level uniform grid of the area 
itself; 

ii) we identify the insignificant, univocal mapping and to-subgrid areas inside 
the new grid. Similarly to what done before, first we eliminate from further 
consideration any insignificant area of the new grid, by using the second-
step relevance threshold 2

iRT , with i, 1i ≥ , representing the iteration 
number of the second step; then we identify the univocal mapping areas 
based on the second-step dominance percentage 2

iDP  with i, 1i ≥ , having 
the same meaning as before; finally, each to-subgrid area of the new grid 
will undergo the second iterative step, thus giving origin to one more 
iteration. Of course, second-step relevance thresholds 2

iRT , 1i ≥ , will 
typically decrease with the increase of the iteration number i, while 
second-step dominance percentages 2

iDP , 1i ≥ , may vary according to the 
iteration number i; 

iii) we identify the minimum (hyper)rectangle (see Fig. 5.2) containing all the 
samples falling inside the univocal mapping areas included in A; we 
construct a uniform fuzzy partition, consisting of k membership functions, 
on each dimension of the (hyper)rectangle, thus producing a fuzzy partition 
of the (hyper)rectangle itself; then we generate a deeper-level fuzzy model 
for the (hyper)rectangle by training frbc with an appropriate number 

min( , )aK perc N S+= ⋅  of majority class samples extracted from each 
univocal mapping area a related to the hyper(rectangle). 
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Figure 5.2. – A to-subgrid area containing five univocal mapping areas (colored areas), and the 

(hyper)rectangle (dashed line) including all the samples inside the univocal mapping areas. 

5.3.3 Third step: final fuzzy model generation 
In the third step, we generate the final fuzzy model, called merged fuzzy model, as 

the union of the first-level fuzzy model and all the deeper-level fuzzy models built 
during the hierarchical process. The fuzzy sets for each input variable of the 
merged fuzzy model are the union of the fuzzy sets (for that input) of all the 
models built. The merged fuzzy rule base is the union of the rule bases of all the 
fuzzy models. 

We observe that there may be input domain regions modeled by more than one 
fuzzy set (e.g., the larger one built at first level analysis and the narrower, and 
therefore more specific ones, built at higher level analysis). 

Figure 5.3 depicts the steps described above and shows the objects resulting from 
each step. 

In this way the final fuzzy model is obtained through a hierarchical process, by 
merging fuzzy models built on input domain regions increasingly smaller, as the 
result of the construction of appropriate grids on the pertinent areas of the input 
domain. The objective is to exploit the input domain space in an effective way, 
avoiding unnecessary analysis and thus the generation of too many, irrelevant 
rules. The proposed hierarchical method allows us to extract an ad hoc training 
dataset, so as to build the final frbc system as well as possible. This is a key 
feature when dealing, e.g., with non-uniformly distributed data. Actually, with 
reference to the used real-world dataset, months and days within a month may be 
typically different, due to the highly variable climatic conditions, so a random 
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selection of training samples would not meet efficient training requirements. 

1.  First-level grid 
partitioning

repeat until a 
to-subgrid area is 

found

2.  Deeper-level grid 
partitioning

3.  Combination of the first-
level fuzzy model and the 
deeper-level fuzzy models

deeper-level 
fuzzy models

first-level fuzzy 
model

merged fuzzy 
model

 
Figure 5.3. – Steps of the proposed hierarchical methodology and resulting objects. 

 

5.3.4 GA-based parameter optimization 
A genetic algorithm (GA) is an optimization process based on the mechanics of 

natural selection and genetics to produce better populations, according to a fitness 
function. Generally, GAs start with a randomly generated initial population of 
chromosomes, representing candidate solutions to the problem at hand, and evolve 
toward populations having a better fitness by applying genetic operators such as 
crossover and mutation. 

We apply a GA to optimize the following parameters (i refers to the iteration 
number of the second step): the relevance thresholds RT1 and 2

iRT , 1i ≥ , the 

dominance percentages DP1 and 2
iDP , 1i ≥ , the maximum number S of samples 

extracted from a given grid area (valid for the first step and all iterations of the 
second step), the minimum rule weight w (valid for the first step and all iterations 
of the second step), and the rule weight modifiers 1wΔ  and 2

iwΔ , 1i ≥ . In 
particular, the last two parameters aim, respectively, to control the complexity of 
the whole rule base, and to enhance/inhibit the influence of the rules of a given 
step/iteration. The maximum number of iterations is fixed heuristically. 

We adopt real-coded chromosomes. The range of possible values of each gene is 
chosen in heuristic way based on the specific dataset under consideration. When 
appropriate, integer approximations of real numbers are adopted. The fitness 
function is the classification error of the fuzzy classifier. 



52 

5.4  Application of the proposed methodology to the real-world 
dataset 

In this subsection we show the application of our methodology to the PV dataset. 
For the sake of simplicity, we adopt k=3 in the k-means algorithm. Further, we 
consider the percentage perc of majority class samples to extract from each 
univocal mapping area equal to 70%. 

5.4.1 First step 
In this step, we perform the actions described in Section 5.3.1. Figure 5.4 shows 

the non-uniform partitions obtained by the k-means algorithm (k=3) on the input 
features and the scattering of the original dataset over the three output classes on 
the 9 areas of the grid. In the figure, i1 and i2, and t1 and t2 represent, respectively, 
the separation thresholds for irradiation and temperature. The number on each area 
identifies the grid area. As we expected, two areas were found to be insignificant 
(areas 3 and 7). Insignificant areas correspond, for instance, to incompatible or 
unusual input conditions, such as high irradiance and low temperature at the same 
time, or vice versa. 

i1 i2

t1

t2

Irradiation (W/m2)

Te
m

pe
ra

tu
re

 (°
C

)

 

 

Low Medium High

9

54

7 8

6

1 2 3

 
Figure 5.4. – Partition of the input domain by applying the k-means clustering algorithm (with k=3) 

and identification of 9 areas (numbered from 1 to 9) on the grid. 

Figures 5.5(a) and 5.5(b) show, respectively, the uniform partition built on one 
input feature (irradiation) space by frbc, and the corresponding non-uniform 
partition based on the k-means algorithm. Both partitions consist of two-sided 
Gaussian membership functions. We chose two-sided Gaussian membership 
functions in the first level of analysis since they are known to be very accurate, 
provide complete coverage of the modeled space, and allow easy scaling from the 
uniform partition to the non-uniform one. Similar considerations hold for the 
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temperature input. 
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Figure 5.5. – Scaling from a uniform partition (a) to a non-uniform one (b). In both cases, two-sided 

Gaussian membership functions are used. 

Next, we need to take into account separately each area of the grid previously 
built, in order to discriminate among insignificant, univocal mapping and to-
subgrid areas. The bar diagrams in Figs. 5.6(a) and 5.6(b) shows the distribution of 
the samples in the areas of the first-level grid. Fig. 5.6(a) simply indicates the 
numerousness of the samples in each area, whereas Fig. 5.6(b) shows the class 
distribution in each area (for better clarity, we used a logarithmic scale on the y-
axis). As we can see only a few regions present samples from one class, while the 
other regions present samples belonging to at least two classes. 

With reference to Fig. 5.7, which shows the first-level and second-level grid 
partitions, two areas (i.e., 3 and 7) are found to be insignificant and so they are 
discarded. Areas 1, 4, 6 and 8 are univocal mapping areas, that is, we can find 
samples mostly from one class. In particular, Low energy class samples in areas 1 
and 4, Medium energy class samples in area 8, and High energy class samples in 
area 6. Each such area is candidate to represent a possible input state for the 
system. Finally, to-subgrid areas 2, 5 and 9 are marked for further analysis. 

5.4.2 Second step 
During this step, we analyze each to-subgrid area (in this case, areas 2, 5 and 9 in 

Fig. 5.7) in a similar way as done in the previous step with the following 
differences: 

• the initial partition built on each dimension is a uniform hard partition 
instead of non-uniform; 

• the deeper-level fuzzy model is built on the minimum (hyper)rectangle 
containing the univocal mapping areas included in the to-subgrid area 
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under consideration; 
• the fuzzy partitions are made of Gaussian membership functions.  

The process is repeated until no area needs to be further divided. 
 
 

 

1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y 
pe

r a
re

a

Area identifier  
(a) 

1 2 3 4 5 6 7 8 9
100

101

102

103

104 1st level grid analysis

Fr
eq

ue
nc

y 
pe

r c
la

ss
 p

er
 a

re
a 

(lo
g 

sc
al

e)

Area identifier

 

 
Low
Medium
High

 
(b) 

Figure 5.6. – Distribution of samples on the areas of the first-level grid: (a) total, and (b) per class 
(logaritmic scale on y-axis). 
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Figure 5.7. – The grid partitions of the original input space obtained by applying the first step and the 
first iteration of the second step of the methodology (the dot notation is used to indicate sub-areas). 
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Figure 5.8. – The grid partition of area 9.4 obtained through the second and third iterations of the 

second step of the methodology. 

Figure 5.8 shows the grid partitioning for the second and third iterations of the 
second step in sub-area 9.4 (which is marked “to-subgrid” in Fig. 5.7). Two areas, 
namely 9.4.6 and 9.4.9, are marked to-subgrid, so a further analysis level is 
required. In the third iteration of the second step only insignificant and univocal 
mapping areas are found, so the analysis of area 9.4 and its sub-areas ends at this 
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iteration. We wish to highlight dot notation used, e.g., A.a is used to indicate a sub-
area a inside a given area A. 

Figure 5.9 shows the hierarchical decomposition tree representing the analysis 
performed on the PV dataset: the tree shows four levels of analysis, which imply 
three repetitions of the second step of the methodology. More in detail, in Fig. 5.9, 
the root, labeled “start”, represents the whole input domain space, while each node 
represents an input domain subspace increasingly smaller with the hierarchy level. 
Dashed line rectangles close up insignificant areas; solid line (colored) rectangles 
represent univocal mapping areas, while double solid line rectangles correspond to 
to-subgrid areas.  

For each to-subgrid area found at a given analysis level, a partition is built on that 
to-subgrid area in the following analysis level. For example, three to-subgrid areas 
are found at first level (namely, areas 2, 5 and 9), thus three corresponding 
partitions will be built at second level within each level: each partition is identified 
by an order number (which is the same as the order number of the corresponding 
to-subgrid area in the preceding hierarchical level); so, with reference to Fig. 5.9, 
the first partition at the second level (consisting of to-subgrid area 7, insignificant 
areas 1, 2, 3, 4, 5, 6 and 9, and univocal mapping area 8) is pertinent to area 2, the 
second partition is related to area 5, finally, the third partition regards area 9.  

Each set of univocal mapping areas represents a leaf in the decomposition tree. 
For each leaf, a fuzzy model frbc is built, for a total of 23 fuzzy models. We 
observe that the decomposition of a grid area may actually not generate any fuzzy 
system, e.g., due to the lack of significant sub-areas found with the decomposition. 

5.4.3 Third step 
In the third step we build the final fuzzy model, by merging the 23 fuzzy models 

previously generated. The merged fuzzy model consists of 83 rules and 51 and 38 
fuzzy sets, respectively, for the irradiation input variable and the temperature input 
variable. 

The generic k-th rule has the following format (see Equation (2.2)): 

Rk: If irradiation is l_p_labelI  and temperature is l_p_labelT then energy is 
labelE with kγ , 

where, with reference to Fig. 5.9, l is the level in the decomposition tree, p is the 
order number of the partition on level l, labelI, labelT and labelE are the labels 
associated, respectively, with irradiation, temperature and energy, and can be, 
separately, either “Low”, “Medium” or “High”.  

So, e.g., the rule: 

If irradiation is 2_3_Low and temperature is 2_3_Medium then energy is 
Medium with 0.39, 

identifies a region of the input domain, to which the labels ‘2_3_Low’ for 
irradiation and ‘2_3_Medium’ for temperature correspond. The consequent class 
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for the output variable energy is ‘Medium’ with a certainty factor of 0.39. 

 
Figure 5.9. – Hierarchical decomposition tree. 
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More precisely, ‘2_3_Low’ means that the considered region of the input domain 
is the low part of the irradiation input in the third partition built at the second level. 
Similarly, ‘2_3_Medium’ means that the considered region of the input domain is 
the medium part of the temperature input in the third partition among the second 
level partitions. Thus, referring to Fig. 5.9, the rule corresponds to the partition of 
area 9. 

In Fig. 5.10 we show a subset of the rule base of the merged fuzzy model. More 
in detail, we show 11 rules: i) the first-level rules regarding areas 1 and 4, ii) the 
second-level rules regarding the partition of area 9, iii) the third-level rules 
regarding the partition of area 9.4. Please note the use of a compact notation: irr, 
temp and en stand for irradiation, temperature and energy, respectively, while L, M 
and H refer to Low, Medium and High, respectively. 

Figure 5.11 shows the fuzzy sets present in the rules of Fig. 5.10, used to model 
the linguistic variables irradiation and temperature, respectively.  

Hereafter we explain the interpretation of the rules in Fig. 5.10. The rules of the 
first level refer to the initial input domain partition. More in detail, rules R1 and R2 
refer to areas 1 and 4, respectively (see Fig. 5.11). The rules of the second level 
refer, as said earlier, to area 9. The rules of the third level refer to area 9.4. Indeed, 
considering, e.g., rule R44, we can easily see, from the used fuzzy set labels 
(‘3_6_L’ for irr and ‘3_6_L’ for temp), that we are referring to the sixth partition 
built at the third level (see Figs. 5.8 and 5.9). 

As we can see, the final fuzzy system contains a reasonable number of easily 
interpretable linguistic rules. 

 

Some first-level rules 
R1: If  irr  is  L  and  temp  is  L  then  en  is  L  with  1.45 
R2: If  irr  is  L  and  temp  is  M  then  L  with  1.45 
. . . 
Some second-level rules 
R16: If  irr  is  2_3_L  and  temp  is  2_3_H  then  en  is  M  with  0.45 
R17: If  irr  is  2_3_M  and  temp  is  2_3_L  then  en   is  H  with  0.45 
R18: If  irr  is  2_3_M  and  temp  is  2_3_M  then  en  is  H  with  0.44 
R19: If  irr  is  2_3_M  and  temp  is  2_3_H  then  en  is  H  with  0.44 
R20: If  irr  is  2_3_H  and  temp  is  2_3_M  then  en  is  H  with  0.45 
. . . 
Some third-level rules 
R44: If  irr  is  3_6_L  and  temp  is  3_6_L  then  en  is  M  with  0.85 
R45: If  irr  is  3_6_L  and  temp  is  3_6_M  then  en  is  M  with  0.85 
R46: If  irr  is  3_6_L  and  temp  is  3_6_H  then  en  is  M  with  0.85 
R47: If  irr  is  3_6_M  and temp  is  3_6_H  then  en  is  M  with  0.79 
. . . 

 
Figure 5.10. – Part of the final rulebase (compact notation). 
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Figure 5.11. – Fuzzy sets built by the hierarchical method to model areas 1, 4, 9, and 9.4. 

 

5.4.4 Genetic optimization 
With reference to the PV dataset, based on heuristic considerations, we 

considered four hierarchical levels, i.e., three iterations of the second step of the 
methodology. Thus, a chromosome contains the following real genes 
(corresponding to the parameters to optimize): i) the relevance thresholds 1RT and 

2
iRT , i=1, 2, 3, ii) the dominance percentages 1DP  and 2

iDP , i=1, 2, 3, iii) the 
maximum number S of samples extracted, iv) the minimum rule weight w, and v) 
the weight modifiers 1wΔ  and 2

iwΔ , i=1, 2, 3. 

For the sake of simplicity, in the experiments we set 3 2 1
2 2 2RT RT RT= =  and 

3 2 1
2 2 2DP DP DP= = . Figure 5.12 depicts the final structure of the chromosome. 

RT1 DP1 S w �w1 �w2
1 �w2

2 �w2
3RT2

1 DP2
1

 
Figure 5.12. –Structure of the GA chromosome used with the PV dataset. 
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5.5  Experimental results on the PV dataset 
In the experiments, conducted in Matlab®, on the PV dataset we started by fixing 

the GA-optimized model parameters based on heuristic considerations. Then, we 
chose the fuzzy inference process parameters of the fuzzy model based and on a 
preliminary analysis (see Table 5.1) in which we tried all the 56 possible inference 
process parameters configurations. Each configuration was tested 10 times on 10 
different test sets randomly generated from the available data. Table 5.1 shows the 
maximum correct classification values. 

Then, we performed the genetic optimization. We used stochastic uniform 
selection, scattered crossover with probability 0.8, and uniform mutation with 
probability 0.01. The population consisted of 30 individuals and the maximum 
number of generations was 300. These values are shown in Table 5.2, which 
summarizes the values for the final rule base parameters, the fuzzy inference 
process parameters, the GA parameters and the GA-optimized model parameters. 

For each chromosome, we used the values of the genes of that chromosome to 
perform 30 experiments on 30 different training and test sets randomly generated 
from the available data. Finally we computed the fitness as the mean correct 
classification value on the 30 test sets. The best chromosome achieved a mean 
classification performance of 97.38%, with a maximum classification performance 
of 97.91%. The model parameters contained in the best chromosome are shown in 
Table 5.2. 

 

Table 5.1. – Application of the multi-class fuzzy classifier on the PV dataset for 56 different FRMs 
(best results in bold). 

Aggregation 
function Stress function 

And operator, Implication operator 
Minimum, 

Product 
Product, 
Product 

Product, 
Minimum 

Minimum, 
Minimum 

Badd operator 
stress 97.32 97.05 96.78 97.01 
no stress 97.41 97.13 96.78 97.1 

Normalized addition 
stress 97.32 97.05 96.78 97.01 
no stress 97.41 97.13 96.78 97.11 

Arithmetic mean 
stress 97.30 97.17 96.82 97.07 
no stress 97.53 97.34 96.93 97.11 

Maximum 
stress 97.11 97 96.7 97.09 
no stress 97.11 97 96.7 97.09 

Sowa Or-like 
stress 97.11 97 96.7 97.09 
no stress 97.11 97 96.7 97.09 

Sowa And-like 
stress 97.53 97.17 96.82 97.07 
no stress 97.30 97.34 96.93 97.11 

Q.-arithmetic mean 
stress 97.11 97 96.72 97 
no stress 97.11 96.97 96.72 97.07 
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Table 5.2. – Final parameters of the merged fuzzy model for the classification of solar energy 
production. 

Parameter name Value 
Final rule base parameters 
Number of input variables F = 2 
Number of fuzzy sets per input variable Q1 = 51, Q2 = 38 
Shape of fuzzy sets Two-sided Gaussian, Gaussian 
Number of output classes M = 3 
Number of rules L = 83 
Fuzzy inference process parameters 
AND operator (T-norm) minimum 
Implication (h) operator product 
Stress function, g Square_SquareRoot (see Equation (2.17)) 
Aggregation function, Γ  Sowa and-like (see Table 2.1) 

GA parameters 
Selection stochastic uniform 
Crossover scattered (PC = 0.8) 
Mutation uniform (PM = 0.01) 
Number of individuals per population 30 
Maximum number of generations 300 
GA-optimized model parameters 

Relevance thresholds RT1  = 15, 3 2 1
2 2 2RT RT RT= =  = 2 

Dominance percentages DP1  = 80%, 3 2 1
2 2 2DP DP DP= =   = 50% 

Maximum number of samples extracted S = 145 

Minimum rule weight w = 0.95 

Weight modifiers Δw1  = 0.45, Δw2
1  = -0.55, Δw2

2   = -0.15, Δw2
3  = 0 

 
The available data at our disposal consisted of 7303 samples; based on the 

parameter values in Table 5.2, only 2614 (about 36%) of them were used for 
training. 
 

5.6  Validation on benchmark datasets and discussion 
This section aims to validate the proposed hierarchical methodology for building 

fuzzy classifiers. We apply the fuzzy system built following our approach (called 
HFRBC-GA from now on) to some well-known benchmark datasets, namely, the 
Fisher’s Iris data, the Wisconsin breast cancer data, the Pima Indians diabetes data, 
and the Wine data (all available at the UCI machine learning repository [48]). We 
compare the mean classification performance achieved by our method in 30 
executions with those obtained by other classifiers in the literature on the above-
mentioned datasets. 
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5.6.1 Iris dataset 
The Iris dataset is a commonly used benchmark for classification problems [85, 

161] and it consists of 150 samples belonging to three different species of Iris 
flower, namely, Setosa, Virginica, and Versicolor. Each sample is represented by 
four numerical features: petal length, petal width, sepal length and sepal width. The 
dataset is perfectly balanced with respect to the classes. 

We applied our method to this dataset and we compare our results with those 
achieved by some authors in the literature [4, 6, 73, 85, 90, 134, 137, 148, 153, 
159]. 

Table 5.3 shows the results achieved by the aforementioned authors on the Iris 
dataset along with our results (first row of Table 5.3). For each system we report 
the mean number of rules generated, the number of features used for classification, 
the total number of fuzzy sets employed for all features, and the mean test set 
accuracy. Sometimes, where appropriate, we show also the maximum test set 
accuracy (in brackets). In the table we used the symbol ‘-’ when no information is 
available. Please, note that in the first column of this table and the following ones 
we adopt the model acronym used by the author(s), if available; otherwise, we 
introduce a new acronym in quotation marks. 

In this and in the following experiments, we adopted the forward feature selection 
to decrease the input space dimensionality. The two features used by our method 
are sepal length and sepal width. 

The table shows that our method achieved the mean accuracy of 100%. 
The values of the GA-optimized model parameters for the Iris dataset and the 

others benchmark datasets are shown in Table 5.4. 

Table 5.3. – Classification results on Iris dataset (best result in bold). 

Model 
Mean # 
rules 

# Features 
Total # 
fuzzy sets 

Mean (max.) test 
set accuracy (%) 

HFRBC-GA 7.1 2 6 100 

“Fuzzy DT” [4] 3 4 - 96.11 

“HFP-2n tree” [6] 392 4 - 95.83 

HGBML [73] 10 4 - 94.67 

FEBFC [85] - 4 - 96.7 

HCGA [90] 3.3 - - 96.22 

FH-GBML [134] - 4 12 97.33 

“TSK-GA” [137] 3 4 12 99.4 

SoHyFIS-Yager [148] 16.33 4 - 95.66 (97.98) 

SANFIS [153] 3 4 11 97.47 

FNFN [159] 3.4 4 12 98.1 
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Table 5.4. – Values of the GA-optimized model parameters for the benchmark datasets. 
GA-optimized model parameters  Value 
Iris dataset 

Relevance Thresholds RT1  = 5, RT2
1  = 3 

Dominance percentages DP1  = 80%, 1
2DP  = 50% 

Maximum number of samples extracted S = 6 

Minimum rule weight w = 0.6 

Weight modifiers Δw1  = 0.23, Δw2
1  = 0, Δw2

2  = 0, Δw2
3  = 0 

Wisconsin breast cancer dataset 

Relevance Thresholds RT1  = 4, RT2
1  = 7 

Dominance percentages DP1  = 80%, DP2
1  = 50% 

Maximum number of samples extracted S = 12 

Minimum rule weight w = 0.99 

Weight modifiers Δw1  = 0.17, Δw2
1  = -0.02, Δw2

2  = 0, Δw2
3  = 0 

Pima Indians diabetes dataset 

Relevance Thresholds RT1  = 5, RT2
1  = 2 

Dominance percentages DP1  = 80%, DP2
1  = 50% 

Maximum number of samples extracted S = 12 

Minimum rule weight w = 0.77 

Weight modifiers Δw1  = 0.47, Δw2
1  = -0.17, Δw2

2  =0, Δw2
3  = 0 

Wine dataset 

Relevance Thresholds RT1  = 8, RT2
1  = 9 

Dominance percentages DP1  = 80%, DP2
1

 = 50% 

Maximum number of samples extracted S = 6 

Minimum rule weight w = 0.99 

Weight modifiers Δw1  = 0.28, Δw2
1  = -0.06, Δw2

2  = 0, Δw2
3  = 0 

 

5.6.2 Wisconsin breast cancer dataset 
The Wisconsin breast cancer dataset contains 699 samples representing two kinds 

of cancer (Benign, Malignant). The dataset involves nine features (clump 
thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion, 
single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and 
mitoses) and it is unbalanced (458 benign cancer samples, 241 malignant cancer 
samples). Since 16 samples contain missing values, we actually used 683 samples. 

Table 5.5 shows the results achieved by our classifier (first row) and those of 
some models available in the literature [4, 39, 47, 54, 73, 85, 90, 134, 153, 159]. 
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We achieved a mean classification accuracy of 98.32% with a maximum 
classification accuracy of 98.44% outperforming the other models (except for 
[54]). However, we adopted fewer features than [54]. The values of the GA-
optimized model parameters of the methodology are shown in Table 5.4. 

The three features employed in our experiments are clump thickness, uniformity 
of cell size, and bare nuclei. 

 

Table 5.5. – Classification results on Wisconsin cancer dataset (best result in bold). 

Model 
Mean # 
rules 

# Features 
Total # 
fuzzy sets 

Mean (max.) test 
set accuracy (%) 

HFRBC-GA 14.7 3 9 98.32 (98.44) 

“Fuzzy DT” [4] 2 2 3 96.82 

ABA [39] - - - 95.10 

HFRBCS [47] - 9 - 88.24 

HFP [54] 7.8 5 - 98.4 

HGBML [73] 20 9 - 96.68 

FEBFC [85] - 6 - 95.14 

HCGA [90] 3.1 - - 96.09 

FH-GBML [134] - 9 - 95.75 

SANFIS [153] 2 9 18 96.3 

FNFN [159] 1.6 9 - 98.3 

 

5.6.3 Pima Indians diabetes dataset 
The Pima Indian diabetes dataset contains 768 samples belonging to two different 

classes (Diabetes positive, Diabetes negative) and described by eight features 
(number of times pregnant, plasma glucose concentration, diastolic blood pressure, 
triceps skin fold thickness, 2-Hour serum insulin, body mass index, diabetes 
pedigree function, and age). The dataset presents a significant class overlap [Chang 
20] that usually makes it difficult to obtain high classification accuracy.  

The dataset is unbalanced (268 diabetes positive samples, 500 diabetes negative 
samples). 

Table 5.6 shows the achieved results (first row) compared with some models 
found in the literature [4, 39, 47, 73, 134]. 

Our mean accuracy, obtained using only three features, outperforms all the 
models considered. We achieved a mean classification accuracy of 78.31% with a 
maximum of 80.30%. The three features are: number of times pregnant, plasma 
glucose concentration, and diabetes pedigree function. The values of the GA-
optimized model parameters tailored to this classification problem are shown in 
Table 5.4. 

 



65 

 

Table 5.6. – Classification results on Pima Indians diabetes dataset (best result in bold). 

Model 
Mean # 
rules 

# Features 
Total #  
fuzzy sets 

Mean (max.) test 
set accuracy (%) 

HFRBC-GA 63.6 3 90 78.31 (80.30) 

“Fuzzy DT” [4] 11.2 8 - 73.05 

ABA [39] - - - 74.8 

HFRBCS [47] - 8 - 68.72 

HGBML [73] 20 8 - 75.83 

FH-GBML [134] - 8 - 75.91 

 

5.6.4 Wine dataset 
The Wine dataset contains 178 samples representing Italian wines belonging to 

three different cultivars. Each wine is described by thirteen features resulting from 
chemical analysis (alcohol, malic acid, ash, alcalinity of ash, magnesium, total 
phenols, flavanoids, non flavanoid phenols, poanthocyanins, color intensity, hue, 
OD280/OD315 of diluted wines, and proline). The class balancing is the following: 
59, 71, and 48. 

Table 5.7 (first row) shows that the results we achieved using only three features 
outperform all the considered models [4, 54, 72, 73, 90, 134, 137, 153, 159]. 

The three features considered are alcohol, flavanoids, and non flavanoid phenols. 
We achieved a mean classification accuracy of 99.41% with a maximum of 100%. 
The values of the GA-optimized parameters of the methodology tailored to the 
Wine classification problem are shown in Table 5.4. 

Table 5.7. – Classification results on Wine dataset (best result in bold). 

Model Mean # 
rules # Features Total # 

fuzzy sets 
Mean (max.) test set 
accuracy (%) 

HFRBC-GA 10.2 3 9 99.41 (100) 

“Fuzzy DT” [4] 3.6 13 - 91.22 

HFP [54] 6.8 4 - 89.2 

HGBML [73] 10 13 - 95.06 

“RW” [72] 15 13 - 95.51 

HCGA [90] 4.9 - - 95.66 

FH-GBML [134] - 13 - 93.79 

“TSK-GA” [137] 3 9 21 98.3 

SANFIS [153] 3 13 34 99.4 

FNFN [159] 1.2 13 - 99.1 
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5.7 Concluding remarks  
In this chapter we have proposed a hierarchical method to construct a fuzzy 

classifier by merging fuzzy systems built on input domain regions increasingly 
smaller, as the result of the creation of appropriate grids on the input domain. The 
aim is to exploit the easiness of use and the interpretability of the fuzzy approach 
along with a methodology of input domain space analysis which builds an optimal 
fuzzy rule base avoiding the generation of too many, unnecessary rules. The model 
parameters are optimized by a real-coded GA. 

We developed a fuzzy classifier aimed at classifying the energy produced by a 
PV panel as either low, medium, or high based on the irradiation and the 
temperature of the panel. Experimental results have showed mean and maximum 
classification performances of 97.38% and 97.91%, respectively, on the test sets of 
30 repetitions of the classification experiment. 

The performance of the proposed approach has also been successfully validated 
by building fuzzy classifiers for some well-known benchmark datasets. The 
achieved results outperform those obtained by other methods found in the 
literature. 
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6 
Neural network-based forecasting of energy 

consumption due to lighting in office buildings 

6.1  Introduction 
Energy consumption in buildings is one of the fastest growing sectors. It is 

estimated that the amount of the energy currently consumed in the European 
buildings is about 40–45% of the total European energy consumption [40, 44], as 
shown in Fig. 6.1(a). Buildings include shops, houses, offices, etc., but office 
buildings represent the largest share. In particular, as regards electricity 
consumption in office buildings (see Fig. 6.1(b)), earlier works have shown that 
electric lighting is a big component of electricity consumption: it accounts for 
about 25% of total electricity consumption [44, 83, 158]. The remainder 75% is 
due to HVAC (Heating, Ventilation, and Air Conditioning) and office equipment 
(PCs, printers, etc.). 

 

 
(a)    (b) 

Figure 6.1. – Statistics about energy consumption. (a) Total European energy consumption. (b) Office 
buildings electric consumption. 

Although the electric power consumption due to lighting is not the highest one in 
a building, it is present throughout the working day and it deserves to be taken into 
account alone for forecasting purposes as it represent one quarter of the total office 
electric consumption. 

The potential benefits of knowing energy consumption, in real time or even in 
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advance, can be useful for several purposes, ranging from cost reduction, improved 
energy control, and smarter load scheduling in the electric grid, especially in the 
case of smart grids. In addition, the European Commission has adopted a plan to 
reduce energy consumption of 20% by 2020 [43, 44, 97], by promoting energy 
efficiency, so the possibility of energy consumption forecasting is of the utmost 
importance. 

On the one hand, electric Energy Consumption due to Lighting (ECL) could be 
directly estimated knowing the lighting equipment: the kind and the number of 
lights existing in the office and their operating time. From another point of view, 
one could expect that the amount of ECL should be inversely proportional to the 
amount of natural daylight in the office, so electric ECL could be estimated starting 
from some knowledge about natural daylight. In this case, we need to know i) the 
global solar irradiation model, ii) the position of the building, its orientation with 
respect to the path of the sun, and the kind of glazed surfaces (i.e., windows effect 
of shading devices), iii) the weather conditions, in particular the sky conditions, 
which can influence the measured value of solar irradiation and thus the quantity of 
daylight available, and subsequently the values of energy consumption in buildings 
[78]. 

Actually, the main problem of such models is that all this kinds of information 
are not always easy to achieve. In addition, we need to take into account the 
unpredictable component given by occupants’ needs and behavior regarding the 
use of lights. 

Hence, we propose a way of estimating the electric ECL, using mainly the solar 
irradiation data and assuming a fairly good behavior of the occupants, already 
discussed in [36]. By “good behavior” we mean a rational, “green” behavior of 
people that try to assure the necessary visual comfort inside the office [59, 113] by 
paying attention to energy savings. 

Several techniques have been traditionally used for energy use forecasting. 
Among them, we can recall some time series analysis classical techniques such as 
ARIMA [1, 132] and regression [23, 104, 120]. Unfortunately, the correlation 
between solar irradiation and electric energy consumption is highly nonlinear, thus 
making classical techniques not well suited to solve this kind of problems. So in 
the last few years there has been a growing interest in computational intelligence 
tools, in particular, neural networks [25, 53, 105, 144, 158], expert systems [124], 
genetic algorithms [149], and hybrid systems, i.e., systems resulting, e.g., from the 
integration of neural networks and fuzzy logic [108, 117, 141]. In particular, the 
literature has demonstrated the superior capability of neural networks over 
conventional methods, thanks to the high potential to model non-linear processes, 
such as individual buildings energy consumption [78].  

Hence, in this chapter, we propose an artificial neural network model to forecast 
the electric ECL of a small office building, starting from some knowledge about 
the external daylight, without having to know any kind of information about the 
building, the lighting equipment, and the occupancy of the office, as usually 
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happens when using simulation tools. In fact, to have to know in advance all these 
kinds of information may be a drawback [59]. The two key points of the 
methodology are: i) the construction of a proper reference solar irradiation curve, 
and ii) the division of the working day into an appropriate number of time 
intervals. 

6.1.1. Outline of the chapter 
This chapter is organized as follows. Section 6.2 describes the experimental 

dataset concerning an office building located in Italy, Section 6.3 presents the 
proposed model to predict the electrical ECL. More in detail, first, we describe the 
analysis and elaboration of data, and then, we discuss the design of the forecasting 
model by setting the values of some model parameters. Section 6.4 shows the 
performed experiments and the achieved results, and, finally, Section 6.5 provides 
concluding remarks and future work. 

6.2  Description of the building consumption dataset 
The data used in this work were collected from the sensors of an office building 

located in Tuscany, Italy. The data were measured every 15 minutes during six 
months, from April to September 2011 and consisted of i) solar irradiation outside 
the building, measured by a meteorological station, ii) sampling timestamp (date 
and time), and iii) lighting electricity consumption, expressed in terms of active 
power averaged over 15-minute intervals, measured by a multimeter and related to 
the use of lights in four rooms. 

In addition, we acquire from data one more input: the day of the week, in order to 
model further cyclic activities, such as cleaning tasks, periodic meetings, etc. We 
chose not to use an explicit information regarding the kind of day (working or 
weekend) in order to maintain the model as general as possible. 

Table 6.1. – Characteristics of the building. 

Characteristic name Characteristic value 

Location Tuscany, Italy 

Office specifications Ground floor, four rooms 

Obstacles An obstacle (a tree) obscures the irradiation sensor 
at about 10 a.m. 

Usual office (business) operation hours  
Monday to Friday: 9 a.m.–9 p.m.; 
Otherwise: closed (occasionally open for 
maintenance) 

Cleaning schedule 
Tuesday to Friday (7 a.m.–8 a.m.) and  
on Saturday morning (the actual time is not fixed) 

 
The input variables of the model are the results of a processing made on the 
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available data, as better explained in the following. The output variable is the 
average active power over intervals of a few hours (time interval), which is known 
to be the real power transformed into work and represents the real consumption of 
the time interval. Moreover, we had some information about the cleaning schedule, 
the working hours, and the presence of obstacles in front of the irradiation sensor 
(see Table 6.1). These data helped us to correctly analyze and interpret the 
experimental results. 

6.3  The proposed model 
The proposed model consists of an artificial neural network and aims at 

forecasting the energy consumption of an office building, over intervals of a few 
hours, due to lighting. 

As we are concerned with a small office, we deal with very small values of 
consumption if compared with those found in the literature, which are related to 
big buildings or include the total HVAC systems consumption. Furthermore, the 
values we are concerned with are highly irregular. 

The correlation between solar irradiation and electric energy consumption is not 
straightforward. Actually, when a building is in use, the intensity and the stability 
of the solar irradiation can be considered as the factors that have the greatest 
influence on the decrease and increase in lighting consumption. By intensity we 
mean the absolute value of irradiation at every considered instant. It is obvious that 
the artificial lights are used because the value of the lighting is not enough inside 
the building. If in a hypothetical case the solar irradiation had the same time 
evolution every day, the electric power consumption would not vary significantly 
from one day to another. Actually, the electric power consumption trend presents 
many differences between days as Fig. 6.2 clearly shows. 
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Figure 6.2. – Evolution of consumption (red dotted line) and irradiation (blue solid line) from 

Monday May 9th to Sunday May 15th. 

Figure 6.2 shows the evolution of the electrical consumption and solar irradiation 
for seven days of a typical Spring week (from May 9th, Monday, to May 15th, 
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Sunday). Please note the partial and total absence of consumption on Saturday and 
Sunday, respectively. 

Therefore we need to make some considerations to exploit the available data so 
as to reproduce the relation between solar irradiation and electrical lighting 
consumption. 

6.3.1 Effects of climatic contest: analysis of solar irradiation 
The first consideration regards the analysis of the solar irradiation trend. Solar 

irradiation and thus daylight availability and intensity mainly depend on 
geographic latitude and on climatic contest. In particular, latitude-related variations 
are caused by changes in the sun position in the sky with the latitude during the day 
or during the year. Climate-related variations, also called sky conditions, can be 
classified as clear, partly cloudy, and overcast [84, 89] and may deeply affect 
energy consumption, as shown in Fig. 6.3. 

We noticed that cloudy sky days (Fig. 6.3(a)) present quite a lot of variations in 
the solar irradiation values (probably due to weather fluctuations, such as clouds 
moving caused by the wind), and to these days correspond a mostly irregular and 
pretty high electrical consumption. Instead, clear sky days (Fig. 6.3(b)), 
characterized by a regular solar irradiation trend, present a regular and lower 
electrical consumption. Besides, we have confirmed the above mentioned 
hypothesis, by considering the average daily consumptions (e.g., 640 W on 
Wednesday 8th, and 359 W on Thursday 16th). 
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       (a)      (b) 

Figure 6.3. – Solar irradiation and electrical consumption for four days of June with different sky 
conditions: (a) two cloudy sky days, and (b) two clear sky days. 

It is clear that there is a relation between the daily solar irradiation trend and the 
electrical consumption due to the use of lighting. It seems that if external daylight 
is enough, lights in the office are less used. 

Moreover, another consideration regarding solar irradiation is the following. We 
found that, given the same sky conditions in two consecutive days of a given 
climatic period, the daily solar irradiation curve slightly changes from one day to 
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the following (see the first three days in Fig. 6.4). On the other hand, if the sky 
conditions in the considered climatic period change, the irradiation curves differ 
from each other to a greater extent (see the last day in Fig. 6.4). In any case, over 
periods of about one month, most daily irradiation curves appear to be very close to 
each other. In addition, a month can be considered as an important time unit from 
the weather point of view [74], and works in the literature often deal with monthly 
analysis [10, 11]. 
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Figure 6.4. – Solar irradiation curves for four consecutive days of April. 

Based on these considerations, we can consider a single solar irradiation 
reference curve for each month, by simply using the curve that best approximates 
all the curves of the month. From now on we will call this curve ideal typical 
irradiation curve. Figure 6.5(a), 6.5(b) and 6.5(c) show the ideal typical irradiation 
curve for May, June, and September respectively. More precisely, from an 
operation point of view, for each month we have performed the following steps. 
After superimposing the irradiation curves relative to all days of that month (as 
done in Fig. 6.5), we have noticed that most curves almost coincide, in the sense 
that their difference is very small in all points. So, after removing the few curves 
that represent outliers, we have generated the curve that best approximates all the 
involved curves. 

In Fig. 6.6 we show the typical ideal irradiation curves for the six months 
available, from April to September. In Figs. 6.5 and 6.6 we can also notice that the 
discontinuity present in all curves at about 10 a.m., due to the presence of a tree 
that obscures the irradiation sensor, slightly changes as a result of the movement of 
the sun. Our choice to keep this discontinuity in the ideal typical curves stems from 
the will to use this curve to faithfully model the particular spatial context of the 
considered building. 

We may say that the reference solar irradiation curve represents the typical day of 
the month. So we can use the typical ideal irradiation curve to characterize each 
day in the month or distinguish among the different kinds of days. More precisely, 
we exploit the difference between the ideal curve and the actual daily irradiation 
curve, so as to highlight how the considered day differs from the typical day of that 
month. 
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Figure 6.5. – Daily irradiation curves and corresponding typical ideal irradiation curve (black line) 
for (a) May, (b) June and (c) September. 

Figures 6.7(a) and 6.7(b) show the typical ideal irradiation curves and actual 
irradiation curves for four days (from Tuesday September 6th to Friday September 
9th) and the corresponding differences, respectively. The third day (i.e., September 
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8th) in Fig. 6.7(b) presents a very small difference so we may consider that day as a 
typical day. In fact, the actual irradiation curve perfectly follows the ideal curve. 
On the contrary, the other days of Fig. 6.7 present a not negligible difference 
between the ideal and actual irradiation curve, so we can use this difference 
between the daily actual irradiation curve and the typical ideal curve as further 
input parameter to our system, as better explained in the following. 
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Figure 6.6. – Typical ideal irradiation curves for six months (April to September). 
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Figure 6.7. – (a) Typical ideal irradiation curve (magenta dotted line) and actual irradiation curve 
(blue solid line) for four days of September. (b) Difference between the two irradiation curves. 
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6.3.2 Analysis of energy consumption based on the office use 
The third consideration concerns the analysis of the energy consumption in 

relation with the specific use of the office taken into account.  
Figure 6.8 shows the evolution of the energy consumption during a typical 

working day in terms of average active power. The working time goes from 9 a.m. 
to 9 p.m., so we have considered the energy consumption in this time interval, even 
though the presence of a spike at about 8 o’clock in correspondence of the cleaning 
time of the office. 
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Figure 6.8. – Evolution of the energy consumption for a typical working day. Please note that, for the 
considered day, the working time ends at 8 p.m.. 

We have tried to split the working day into a small number of intervals with the 
aim of taking into account the use of the office building in the various parts of the 
day. In order to identify the most appropriate number of these intervals, we have 
tried several combinations and we finally found out that the working time can be 
profitably subdivided into three intervals of four hours each, as shown in Fig. 6.9. 
We used the average value within each considered time interval instead of all the 
instantaneous values because this is the usual practice found in the literature, 
although relative to daily average values [158]. 

Our goal is to predict the average energy consumption of a given time interval 
based on information pertinent to the previous interval. Of course, in order to 
perform the prediction of the electrical consumption related to the first interval, we 
added a service interval, called interval 0, from 5 a.m. to 9 a.m. (the dotted interval 
in Fig. 6.9). 

Finally, by analyzing the energy consumption, we found daily and weekly 
cyclicity in the data. Figure 6.10 shows the ECL in two consecutive weeks of 
April, randomly selected among the available data. From Monday (Mo) to Friday 
(Fr) there is a considerable variability of electric power consumption in the 
working hours, and on Saturdays (Sa) there is only consumption in a little span of 
one hour. In addition, in four days a week (from Tuesday (Tu) to Friday) and on 
Saturday morning at a non-fixed time, there is a spike, relative to a high electric 
power use for about one hour outside of the working time in correspondence with 
the cleaning time of the office. Clearly, on Sundays (Su) the energy consumption is 
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completely absent. 
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Figure 6.9. – Identification of the time intervals over the working time. 
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Figure 6.10. – Temporal evolution of the energy consumption for two consecutive weeks of April. 

6.3.3 Discussion 
After the processing of data we are now able to design the forecasting model, by 

setting the values of the model parameters, and by fixing the inputs and the output 
of the network.  

Regarding the values of the model parameters, we can state that: 
a) the climatic period considered to build the reference irradiation curve 

is, as stated before, one month; 
b) the dimension of each time interval is four hours. So, being the 

working day of twelve hours, we split each day in three intervals. 
The input parameters to our system are the following: i) day, ii) month, iii) time 

(hour and minutes), iv) mean difference between actual and ideal irradiation for the 
considered time interval, v) instantaneous difference between actual and ideal 
irradiation at that time, vi) average actual irradiation for the considered interval. 
All these input parameters are pertinent to a given time interval. The output 
parameter from our system is the average energy consumption, expressed in terms 
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of average active power, for the following interval. Table 6.2 shows the inputs and 
output of the system, and their units of measurement. 
 

Table 6.2. – Inputs and output variables of the neural network. 

Variable name Unit of measurement 

Input variables 
Day Encoding: from 1 to 7 

Month Encoding: from 1 to 12 

Timestamp (hour, minute) Encoding: hour:minute 

Mean difference for the considered time interval 
between actual irradiation and ideal irradiation W/m2 

Difference between actual and ideal irradiation for 
the considered timestamp W/m2 

Average actual irradiation for the considered time 
interval W/m2 

Output variable 
Average energy consumption for the following time 
interval W 

6.4  Experimental results 
We used a feed-forward neural network having one hidden layer, to implement 

the proposed approach in Matlab®. The transfer functions for the hidden neurons 
and the output neuron are, respectively, hyperbolic tangent sigmoid and linear 
functions. 

By using a trial-and-error strategy, we tried different neural configurations by 
varying the number of hidden neurons from 10 to 30 with step 1. For each of the 
training, validation and test sets, the same number of, respectively, training, 
validation and test samples is randomly extracted for each month so as not to create 
unbalanced sets. The percentages of samples extracted for each month are 60%, 
10% and 30%, respectively, for the three sets. 

Each kind of experiment has been repeated 30 times. The best configuration 
resulted to be a neural network with 28 hidden neurons in the hidden layer. Table 
6.3 summarizes the parameter values of the chosen neural configuration. 

The aim of the performed experiments was the comparison between the average 
actual electrical consumption in a given time interval and the average predicted 
electrical consumption in the same interval. 

For each month, we computed the average Mean Squared Error (MSE) on all the 
intervals of the days of the month, according to the following equation:  

2

1

1 ( ( ) ( ))
N

act pred
i

MSE EC i EC i
N =

= −∑ , (6.1) 
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with N representing the number of intervals of the considered month, and ECact 
and ECpred being the average actual electrical consumption and the average 
predicted electrical consumption respectively, for each considered interval. Then, 
so as to obtain fair values, we repeated the same experiment 30 times with different 
training and test sets and we averaged the MSEs obtained over the 30 trials, by 
obtaining an average error MSEav for each month. 

 

Table 6.3. – Learning parameters for the final neural network. 

Parameter Value 

Number of hidden layers 1 
Number of hidden neurons 28 
Hidden Layer tansfer function  Hyperbolic tangent sigmoid 
Output Layer tansfer function  Linear 
Training algorithm Levemberg-Marquardt 
Number of training samples 60% of available data 
Number of validation samples 10% of available data 
Number of test samples 30% of available data 

 
Furthermore, in order to make the error easier to understand, we computed for 

each month the corresponding average RMSE (Root Mean Squared Error), 
RMSEav, and the normalized RMSE (RMSEn) given by the following equation: 

av
n

av

RMSERMSE
EP

= , (6.2) 

where EPav is the average electric power for the considered month, i.e., the average 
consumption of the month. 

Table 6.4 shows the average monthly MSE (MSEav), the corresponding RMSE 
(RMSEav), the monthly average electric power (EPav), and the normalized RMSE 
(RMSEn), for the six months. Please note that in the available data there are some 
missing days in correspondence with sensor maintenance. In particular, there are 6, 
1, 6 and 6 missing days for April, May, August and September. Obviously, these 
numbers have been taken into account for computing the MSE values. 

As we can see from Table 6.4, we achieve good results for April, May, June and 
July. Poorer results are obtained in August and September. In both cases, the high 
error is most likely due to the presence of frequent weather changes within the 
same day, as we observed by analyzing the irradiation curves of August and 
September. In such conditions the electric power consumption can be sensibly 
different from what expected, thus causing an increased prediction error. Further, 
in August, we must also take into account the partial, non-regular daily occupancy 
of the office building during summer vacation, as testified by the low monthly 
electric lighting consumption. This situation obviously increases the prediction 
error. 
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Therefore, we can state that the RMSE error ranges from 4.84% to 38.27% of the 
monthly average electric power, with an average value of 17.25%. In absolute 
terms, the minimum and maximum RMSEs are 18.45 W and 110.05 W, obtained 
for August and September, respectively. 

Finally, to assess our results we applied the persistence method, which assumes 
as target value to forecast the average energy consumption of a given interval, the 
average energy consumption of the same interval of the previous day. We achieved 
an average monthly MSE one order of magnitude greater than the values shown in 
Table 6.4. 

Table 6.4. – Monthly performances of the forecasting system. 

Month MSEav RMSEav (W) EPav (W) RMSEn (%) 

April 548.1 23.41 483.13 4.84 
May 2058.9 45.37 408 11.12 
June 2647.3 51.45 487 10.56 
July 1816.8 42.62 307.24 13.87 
August 340.72 18.45 48.23 38.27 
September 12113 110.05 443.23 24.83 

6.5  Concluding remarks 
In this chapter a novel method to predict the ECL, mainly based on solar 

irradiation, has been described. The forecasting system predicts the average active 
power in a given time interval of the working day exploiting the difference between 
a reference ideal irradiation curve (pertinent to the specific month) and the actual 
irradiation curve in the previous time interval . In this way the electric energy 
consumption is essentially influenced by the quantity of available external daylight. 

We used a feed-forward artificial neural network, which was applied to a case 
study concerning a small office building located in Italy. In the experiments, made 
on the data pertinent to six months, the average RMSE error represents 17.25% of 
the monthly average electric power. 

As a future work, we are planning to extend the presented analysis to the heating 
and cooling consumption, in order to build a monitoring and simulation tool able to 
estimate the total HVAC consumption of an office building. 

Moreover, it could be interesting to integrate the proposed system with a weather 
forecasting system, so as to estimate directly the solar irradiation values. 
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7 
Thesis conclusions and future work 

The aim of this thesis was the design and the development of some 
Computational Intelligence novel methodologies for applications regarding energy 
systems. More in detail, two main problems have been addressed. First, the 
management of energy production in solar PV installations, by classification and 
forecasting, second, the forecasting of energy consumption in buildings. 

In the early chapters, we recalled the main concepts about artificial neural 
networks, fuzzy rule-based classification systems, and hybrid systems exploiting 
genetic algorithms. In addition, we revised some notions about forecasting and 
time series analysis. In the following chapters, we presented the developed 
methodologies applied to the problems described above.  

Regarding the management of energy production in solar PV installations, we 
faced the problem by building a one day-ahead energy production forecasting 
model. The model, resulting from a flexible and easy-to-use approach, uses the 
NARX time series analysis model and a neural network with tapped delay lines to 
reproduce the curve of daily produced energy starting from some knowledge about 
solar irradiation. Despite the existence of some methods for energy forecasting 
problems, the main novelty of our approach is the proposal of a general 
methodology, consisting of a sequence of steps to perform in order to find the 
optimal structure of the neural network (particularly, number of hidden neurons 
and number of delay elements) and the best configuration of the neural predictor 
(namely, the training window width and the sampling frequency). As a future 
work, thanks to the good results obtained, we may extend the forecasting horizon 
to a multiple of the day, so as to strengthen the long-term forecasting analysis. 
Besides, it would be of interest to integrate the proposed system with a weather 
forecasting system, so as, e.g., to estimate directly the environmental variables.  

The management of energy production in solar PV installations can be tackled 
also from a different point of view, that is, as a fuzzy classification problem of 
energy production, given the values of the irradiation and the temperature of the 
panel, so as to linguistically describe how the inputs of the fuzzy classification 
system (i.e., the temperature of the PV panel and the solar irradiation) relate to the 
class (low, medium, high) of the energy production. The main advantages of our 
approach are easier interpretability and versatility, as we deal with class labels. In 
addition, the model parameters are optimized by means of a genetic algorithm. The 
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fuzzy classifier results from the union of fuzzy systems (frbc), built on input 
regions increasingly smaller, according to a hierarchical multi-level grid-like 
partition. Only the necessary partitions are built, in order to guarantee high 
interpretability and to avoid the explosion of the number of rules as the hierarchical 
level increases. The fuzzy classifier was also successfully applied to several 
benchmark datasets, thus proving the validity of the methodology. 

Lastly, we address the problem of the forecasting of energy consumption due to 
lighting in office buildings. The system was developed as a feed-forward artificial 
neural network, which predicts the energy consumption related to a few hours, 
using some knowledge about external daylight, without having to know any kind of 
information about the building. As a future work, we aim to build a system for 
estimating the total HVAC consumption of an office building, by extending the 
analysis to the heating and cooling consumption. Furthermore, it would be of 
interest to build a simulation tool to simulate energy optimization actions. 
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A 
How to implement a generic classifier in PRTools 

First we introduce the PRTools framework1, then, the basic elements of PRTools, 
namely the dataset and mapping objects, in the sense of object oriented 
programming (OOP), and then we recall the phases for building a new generic 
classifier. Lastly we show the main steps of the implementation in PRTools of the 
classfier frbc presented in Chapter 2.  

A.1  PRTools framework 
The Pattern Recognition Toolbox (PRTools) is the de-facto standard toolbox for 

classification in Matlab, and is freely available for academic research. It offers 
many classifiers, like linear and quadratic discriminant classifiers, decision trees 
and neural networks. In addition, many base functions are available for training 
and testing classifiers, and plotting of decision boundaries. Furthermore, many 
types of feature selection (e.g., individual, forward, backward, branch-and-bound) 
could be performed. In the following, we outline main characteristic of PRTools. 

PRTools follows a base philosophy that is: 
a) powerful and concise syntax-oriented: PRTools exploits the Matlab 

support to object-oriented programming and overloads many operators 
(plus, times, disp, etc.). In this way, the syntax associated with the training 
of a classifier and its test is very concise. Operator concatenation also 
allows for an even more concise syntax: many basic tasks can be 
performed by including operators and objects into a single expression; 

b) command line-oriented: PRTools is not equipped with a graphical user 
interface: each task can be performed by entering command line 
instructions at the Matlab prompt or by using scripts/functions; 

c) multiple test set-oriented: PRTools decouples the training phase from the 

                                                        
 
1 For a detailed documentation see: i) van der Heijden F., Duin R.P.W., De Ridder D., Tax D.M.J., 
Classification, Parameter Estimation and State Estimation: an Engineering Approach Using 
MATLAB, John Wiley & Sons, 2004, and ii) Duin R.P.W., Juszczak P., de Ridder D., Paclik P., 
Pekalska E., Tax D.M.J., PRTools: The Matlab Toolbox for Pattern Recognition 
(http://www.prtools.org/), 2004, version 4.2.3. 
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test phase. To this aim, it maintains the data structure representing the 
input-output mapping learnt during training, so that this mapping can 
subsequently be exploited to test the classifier on as many test sets as 
needed; 

d) oriented to the reuse of existing Matlab toolboxes: PRTools does not intend 
to reinvent the wheel: if something is already available in Matlab then it 
reuses it. For instance, neural network-based classifiers exploit the Matlab 
Neural Networks Toolbox; 

e) oriented to as few free parameters as possible: classification algorithms 
may have a lot of free parameters to be set by the user. PRTools tends to 
limit the number of these parameters as much as possible, by privileging 
algorithms that need as few parameters as possible, and/or default 
(sometimes optimized) values for most of them; 

f) oriented to fast and heuristic-based training algorithms: the goal of 
PRTools is not to provide the most accurate results, achieved by means of 
very complex optimization methods, such as simulated annealing, 
evolutionary algorithms, swarm intelligence, etc. Instead, it frequently uses 
good heuristics to determine good classifiers quite quickly. For instance, 
treec, which is the PRTools implementation of decision trees, does not 
involve global optimization meta-heuristics, but instead it uses well-
assessed and efficient heuristics; 

g) data-driven oriented: PRTools is oriented to the automatic training of 
classifiers from data, without requiring any intervention by a human expert 
in the specific application domain; 

h) oriented to well-assessed and widely accepted methodologies: PRTools 
privileges well-assessed and widely accepted design methodologies, 
instead of more recent and cutting the edge ones. This choice allows for 
algorithms that perform generally well (although not superlatively well) in 
most of the application domains, in place of algorithms that perform well 
only in particular circumstances, and poorly in many other cases; 

i) oriented to the combination with other functions: PRTools easily allows 
passing a classification algorithm as parameter of other higher-level 
functions. In this way, e.g., a feature selection function is able to call any 
classifier and to rank features based on the performance achieved by that 
classifier, once trained using the subset of features under assessment; 

j) batch-mode oriented: PRTools is not oriented to online classification of 
data streams, but instead it assumes that all the data are available at the 
beginning. 

A.2  Basic elements of PRTools 

A.2.1 The dataset object 

The dataset object is one of the two fundamental elements in PRTools. A 
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dataset consists of a structure which contains both the patterns and the 
corresponding class labels. Further, it contains other useful information regarding 
the input domain, the class a-priori probabilities, etc.  

PRTools also defines several member functions for the dataset class, which 
are used to set and get field values, display selected information, and so on. It also 
overloads some Matlab® operators and functions, thus making the syntax very 
concise and powerful by exploiting operator concatenation, priority, etc. 

A.2.2 The mapping object 

Datasets are transformed by mappings, so a mapping is an object that may store 
the information about transformations to be made on data (e.g., in case of a neural 
network, the network architecture and its parameters), the routine to be used to 
perform the mapping itself, and the routine for training. It is used to transform data 
(e.g., normalization and scaling), to build classifiers, etc. 

PRTools supports the following four types of mapping: 
a) untrained mappings: they are empty mappings which store the specific 

mapping routine that has to be used when they are trained on a specific 
dataset. They can also store user-defined options (e.g., the value of k for a k-
nearest neighbor classifier); 

b) trained mappings: they store all the information gathered during the training 
process of a classifier, so as to classify (map) as many datasets as needed in 
the future; 

c) fixed mappings: they transform dataset objects, but in this case the type of 
transformation is defined by the user (scaling, normalization, etc.); 

d) combiners: they are mappings used to combine multiple mappings 
(associated to an ensemble of classifiers) into a combined mapping. 

A classifier is handled as follows: the function that has to be used to train the 
classifier is stored in a mapping object, as well as the function used to map a data 
set. When an object of type dataset is “multiplied by” a mapping object 
associated with a particular classifier, the relative training function is invoked on 
the provided dataset. 

As an example let us look at the following lines of code: 
 

1 U=ldc % builds an untrained mapping U with ldc 
(Linear Bayes Classifier) 

2 W=tr*U % perform training with dataset tr and 
builds a trained mapping W 

3 V=ldc(tr) % builds a trained mapping V directly 
4 e=testc(ts,W) % computes the misclassification error of W 

on a test dataset ts 

 
In PRTools each classifier has a constructor, which, by calling the mapping 

constructor, builds a mapping object after performing input check and other 
minor operations. In the following we describe how the constructor for a generic 
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classifier x has to be implemented. It is good practice to name such constructor xc.  

A.3  The construction of a generic trained classifier xc 
Implementing a new classifier under PRTools requires the implementation of 

three functions in an appropriate way. In the following we provide a template for 
implementing a generic classifier in PRTools, which may be useful for other 
researchers interested in extending PRTools. 

After analyzing some classifiers in PRTools, we can point out that the new 
classifier xc should be able to perform the following operations: 

1. the construction of a mapping object: the classifier; 
2. the training of the classifier; 
3. the application of a dataset to the trained classifier (i.e., the classification); 
4. the building of a dataset as the result of the classification consistently with 

PRTools routines like testc, etc.  
So the source code of a new classifier xc will consist of three main parts: the 

classifier constructor, the training phase and the mapping phase (the classification). 

A.3.1 The classifier constructor xc 

This is the main routine of the classifier. The classifier xc should be able to 
handle the following types of call:  

 
1 U=xc([],params) % builds an untrained classifier U with 

classifier xc and sets some training 
parameters params 

2 V=tr*U % trains the untrained classifier U with 
dataset tr 

3 W=xc(tr,params) % builds directly a trained classifier W 
with xc, specifying some training 
parameters, on dataset tr 

4 D=ts*W % uses W to perform the classification of 
a test dataset ts 

A.3.2 The training phase xc_train 
This phase performs the training of the classifier. The processing could be part of 

the main file xc or could be put apart. It requires as input a training dataset tr 
and, optionally, the parameters needed for training params, and provides a trained 
mapping as output. The routine xc_train is called when a trained classifier W is 
directly build (W=xc(tr,params)) or to train an untrained classifier U 
previously built (V=tr*U). 

A.3.3 The mapping phase xc_map 
For each classifier in PRTools, a mapping routine xc_map is needed. When a 
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trained mapping is applied to a dataset (D=ts*W) the routine xc_map is called. 
The dataset D contains the result of the classification. So the previous 
instruction is equivalent both to D=map(ts,W) and to D=xc_map(ts,W). 
Otherwise, if the mapping routine is applied to an untrained classifier U, 
(W=tr*U), the training of the classifier is performed and the routine returns a 
trained mapping. The previous instruction is equivalent to W=map(tr,U). 

A.4  The implementation of frbc in PRTools 
To implement frbc in PRTools we have to provide the following functions: the 

constructor (frbc), the training function (frbc_train) and the mapping 
function (frbc_map). Once provided these functions, PRTools will automatically 
support, for example, the following statements: 
 

1 W1=frbc(tr) % trains frbc W1 directly with 
default options 

2 W2=frbc(tr,opts) % trains frbc W2 directly using 
options opts 

3 U=frbc([],opts) % builds an untrained mapping U 
with frbc 

4 V=tr*U % trains the untrained mapping U 
on dataset tr 

5 [W,R]=faetself(tr,frbc,f,ts) % apply forward feature selection 
using frbc (find the feature that 
used alone gives the best result, 
then selects the second feature 
that with the first one gives the 
best result, and so on.  

6 plotc(V) % plot the decision boundary for 
V 

7 e=testc(ts,V) % computes the misclassification 
error of V on test dataset ts 

A.4.1 frbc (the constructor) 

This is the main routine of the classifier. We will analyze the structure of the 
source code through a flowchart (Fig. A.1), which summarizes the fundamental 
parts of the routine. 

This function builds a PRTools mapping object, which represents a classifier. 
What is interesting here is that, within the mapping object, the data related to the 
FRBC are stored in a Matlab FLT consistent FIS structure. This structure can be 
retrieved whenever necessary using the function frbc_getfis, and used in 
combination with other FLT functions (e.g., evalfis, mfedit, ruleview, 
showrule, etc.).  
frbc supports many options. They are provided through the input parameter 

opts which is a structure containing the parameters for the training and the fuzzy 
reasoning. The options fields are: i) the number of fuzzy sets per variable, ii) the 
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membership function type, iii) the certainty factor computing method. Moreover, 
as regards the fuzzy reasoning method, the user can choose different operators 
among the supported ones: i) the AND operator, ii) the association degrees 
operator, iii) the aggregation function, iv) the stress method, etc. Default options 
are handled by a specific routine, which also allows the customization of all the 
above mentioned options. The same function provides some shortcuts (e.g., 
classical FRM) to useful combinations of options. Moreover, the user can change 
the options fields of a predefined shortcut directly from the command line. 

begin

call frbc_train to 
train the classifier 
(this will produce 

the KB)

end

yes

call the mapping 
constructor to build a 
trained mapping that 
contains both the KB 

and the opts structures

has the input 
opts been 
provided?

is training 
dataset 

present?

generate the opts 
structure by using 

default options

call the mapping 
constructor to build an 

untrained mapping

no

no

yes

set frbc_map 
as mapping 

function

 
Figure A.1. – Flowchart describing the actions of the frbc constructor. 

A.4.2 frbc_train (the training function) 
This routine trains the classifier according to the Wang and Mendel approach2 for 

generating fuzzy rules from data, presented in Section 2.3.1. This function, first, 
generates an initial raw rule base, then generates the final rule base, by performing 
the following steps: a) removes ambiguous rules, b) removes duplicated rules, c) 
computes certainty factors, d) removes conflicting rules, i.e., rules with same 
antecedent but different consequent class (only the rule with the highest certainty 
                                                        
 
2 Wang L.-X., Mendel J.M., “Generating fuzzy rules by learning from examples”, IEEE Transactions 
on Systems, Man, and Cybernetics, vol. 22, n. 6, 1992, pp. 1414–1427. 
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factor is kept). 

A.4.3 frbc_map (the mapping function) 

This is the mapping routine (the flowchart shown in Fig. A.2), which contains the 
processing required to apply the FRM, as described in Section 2.3.2. It corresponds 
to the evalfis function under the Matlab FLT. 

 

begin

end

read inference 
operators, fuzzy 

rules and FIS 
model

compute 
membership 

function degrees

compute 
matching degree 

for all rules

compute 
association degree 
for each class for 

all rules

apply stress 
function 

compute 
classification 

soundness degree 
for each class 

build 
classification 

dataset 

is mapping 
trained?

execute 
training

build trained 
mapping

no

yes

 
Figure A.2. – Flowchart describing the actions of the mapping function frbc_map. 

A.4.4 frbc: some usage example 
The tests carried out with frbc have reproduced the results concerning fuzzy 
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rule-based classifiers in the literature3. 
In addition, we report some interesting examples on how to use frbc, combined 

with existing PRTools functions. 
We build and train frbc using an artificial dataset of two-class elements with a 

banana shaped distribution. Then we plot the decision boundaries of two well-
known PRTools classifiers (the Linear Bayes Classifier ldc and the K-Nearest 
Neighbor Classifier knnc) against frbc to compare them (see Fig. A.3). We can 
easily see from Fig. A.3 the good performance achieved by the frbc classifier.  

The following lines of code have been used to perform this test: 
 

1 tr=gendatb(500) % generates a banana-shaped distribution 
training dataset of 500 elements 

2 W=frbc(tr,opts) % trains frbc W directly using options opts 
on dataset tr 

3 V1=ldc(tr) % trains the Linear Bayes Classifier V1 
directly on tr 

4 V2=knnc(tr) % trains the K-Nearest Neighbor Classifier 
 V2 directly on tr 

5 scatterd(tr) % plots the training dataset 
6 plotc(W,V1,V2) % plot the decision boundaries for W, V1 and 

V2 
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Figure A.3. – Decision boundaries for knnc, ldc and frbc (dashed red line) on a two-class 

dataset. 

                                                        
 
3 Cordón O., del Jesus M.J., Herrera F., “A proposal on reasoning methods in fuzzy rule-based 
classification systems”, Int. Journal of Approximate Reasoning, vol. 20, n. 1, 1999, pp. 21–45. 
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