2,644 research outputs found

    Disparity map generation based on trapezoidal camera architecture for multiview video

    Get PDF
    Visual content acquisition is a strategic functional block of any visual system. Despite its wide possibilities, the arrangement of cameras for the acquisition of good quality visual content for use in multi-view video remains a huge challenge. This paper presents the mathematical description of trapezoidal camera architecture and relationships which facilitate the determination of camera position for visual content acquisition in multi-view video, and depth map generation. The strong point of Trapezoidal Camera Architecture is that it allows for adaptive camera topology by which points within the scene, especially the occluded ones can be optically and geometrically viewed from several different viewpoints either on the edge of the trapezoid or inside it. The concept of maximum independent set, trapezoid characteristics, and the fact that the positions of cameras (with the exception of few) differ in their vertical coordinate description could very well be used to address the issue of occlusion which continues to be a major problem in computer vision with regards to the generation of depth map

    Conceptual design study for a teleoperator visual system, phase 2

    Get PDF
    An analysis of the concept for the hybrid stereo-monoscopic television visual system is reported. The visual concept is described along with the following subsystems: illumination, deployment/articulation, telecommunications, visual displays, and the controls and display station

    Stereo TV enhancement study Final technical report

    Get PDF
    Human depth perception of television displays in stereo, and nonstereo presentation

    The mosaics of Mars: As seen by the Viking Lander cameras

    Get PDF
    The mosaics and derivative products produced from many individual high resolution images acquired by the Viking Lander Camera Systems are described: A morning and afternoon mosaic for both cameras at the Lander 1 Chryse Planitia site, and a morning, noon, and afternoon camera pair at Utopia Planitia, the Lander 11 site. The derived products include special geometric projections of the mosaic data sets, polar stereographic (donut), stereoscopic, and orthographic. Contour maps and vertical profiles of the topography were overlaid on the mosaics from which they were derived. Sets of stereo pairs were extracted and enlarged from stereoscopic projections of the mosaics

    Shared-Frustum stereo rendering

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 52-54).by Michael Vincent Capps.S.M

    Stereoscopic high dynamic range imaging

    Get PDF
    Two modern technologies show promise to dramatically increase immersion in virtual environments. Stereoscopic imaging captures two images representing the views of both eyes and allows for better depth perception. High dynamic range (HDR) imaging accurately represents real world lighting as opposed to traditional low dynamic range (LDR) imaging. HDR provides a better contrast and more natural looking scenes. The combination of the two technologies in order to gain advantages of both has been, until now, mostly unexplored due to the current limitations in the imaging pipeline. This thesis reviews both fields, proposes stereoscopic high dynamic range (SHDR) imaging pipeline outlining the challenges that need to be resolved to enable SHDR and focuses on capture and compression aspects of that pipeline. The problems of capturing SHDR images that would potentially require two HDR cameras and introduce ghosting, are mitigated by capturing an HDR and LDR pair and using it to generate SHDR images. A detailed user study compared four different methods of generating SHDR images. Results demonstrated that one of the methods may produce images perceptually indistinguishable from the ground truth. Insights obtained while developing static image operators guided the design of SHDR video techniques. Three methods for generating SHDR video from an HDR-LDR video pair are proposed and compared to the ground truth SHDR videos. Results showed little overall error and identified a method with the least error. Once captured, SHDR content needs to be efficiently compressed. Five SHDR compression methods that are backward compatible are presented. The proposed methods can encode SHDR content to little more than that of a traditional single LDR image (18% larger for one method) and the backward compatibility property encourages early adoption of the format. The work presented in this thesis has introduced and advanced capture and compression methods for the adoption of SHDR imaging. In general, this research paves the way for a novel field of SHDR imaging which should lead to improved and more realistic representation of captured scenes

    THE DESIGN, PRODUCTION AND ANALYSIS OF A REALISTIC STEREO CG SHORT FILM ON A SIX MONTH BUDGET.

    Get PDF
    The production of stereoscopic CG films poses some interesting challenges, especially for student productions that work under the severe limitations of time and resources. This is mainly due to the non availability of off the shelf production tools catering to stereoscopic CG productions. This work presents the production process of one such student produced stereoscopic short film. The production process is described in detail starting from the initial conception of the narrative plot to the actual production of the film. Finally an experimental technique of using eye tracking as a tool for finding out the effectiveness of the various stereoscopic framing techniques used in the film is presented. The feasibility of eye tracking as an effective tool for filmmakers in stereoscopic 3D to analyze the viewing behavior of the audience and to improve the film using that information is assessed. This paper first provides the basic background needed to understand the various terms related to stereoscopic 3D. Then it describes the custom stereoscopic pipeline that was implemented for the film, followed by an in depth description of the actual production process. Finally, the eye tracking experiment is described in detail and the analysis of the result is presented

    A comprehensive taxonomy for three-dimensional displays

    Get PDF
    Even though three-dimensional (3D) displays have been introduced in relatively recent times in the context of display technology, they have undergone a rapid evolution, to the point that a plethora of equipment able to reproduce dynamic three-dimensional scenes in real time is now becoming commonplace in the consumer market. This paper’s main contributions are (1) a clear definition of a 3D display, based on the visual depth cues supported, and (2) a hierarchical taxonomy of classes and subclasses of 3D displays, based on a set of properties that allows an unambiguous and systematic classification scheme for three-dimensional displays. Five main types of 3D displays are thus defined –two of those new–, aiming to provide a taxonomy that is largely backwards-compatible, but that also clarifies prior inconsistencies in the literature. This well-defined outline should also enable exploration of the 3D display space and devising of new 3D display systems.Fundação para a Ciência e Tecnologi

    Comfort-driven disparity adjustment for stereoscopic video

    Get PDF
    Pixel disparity—the offset of corresponding pixels between left and right views—is a crucial parameter in stereoscopic three-dimensional (S3D) video, as it determines the depth perceived by the human visual system (HVS). Unsuitable pixel disparity distribution throughout an S3D video may lead to visual discomfort. We present a unified and extensible stereoscopic video disparity adjustment framework which improves the viewing experience for an S3D video by keeping the perceived 3D appearance as unchanged as possible while minimizing discomfort. We first analyse disparity and motion attributes of S3D video in general, then derive a wide-ranging visual discomfort metric from existing perceptual comfort models. An objective function based on this metric is used as the basis of a hierarchical optimisation method to find a disparity mapping function for each input video frame. Warping-based disparity manipulation is then applied to the input video to generate the output video, using the desired disparity mappings as constraints. Our comfort metric takes into account disparity range, motion, and stereoscopic window violation; the framework could easily be extended to use further visual comfort models. We demonstrate the power of our approach using both animated cartoons and real S3D videos
    • …
    corecore