5 research outputs found

    Determine OWA operator weights using kernel density estimation

    Get PDF
    Some subjective methods should divide input values into local clusters before determining the ordered weighted averaging (OWA) operator weights based on the data distribution characteristics of input values. However, the process of clustering input values is complex. In this paper, a novel probability density based OWA (PDOWA) operator is put forward based on the data distribution characteristics of input values. To capture the local cluster structures of input values, the kernel density estimation (KDE) is used to estimate the probability density function (PDF), which fits to the input values. The derived PDF contains the density information of input values, which reflects the importance of input values. Therefore, the input values with high probability densities (PDs) should be assigned with large weights, while the ones with low PDs should be assigned with small weights. Afterwards, the desirable properties of the proposed PDOWA operator are investigated. Finally, the proposed PDOWA operator is applied to handle the multicriteria decision making problem concerning the evaluation of smart phones and it is compared with some existing OWA operators. The comparative analysis shows that the proposed PDOWA operator is simpler and more efficient than the existing OWA operator

    Generating OWA weights using truncated distributions

    No full text
    International audienceOrdered weighted averaging (OWA) operators have been widely used in decision making these past few years. An important issue facing the OWA operators' users is the determination of the OWA weights. This paper introduces an OWA determination method based on truncated distributions that enables intuitive generation of OWA weights according to a certain level of risk and trade-off. These two dimensions are represented by the two first moments of the truncated distribution. We illustrate our approach with the well-know normal distribution and the definition of a continuous parabolic decision-strategy space. We finally study the impact of the number of criteria on the results
    corecore