
Distributed Ensemble Feature Selection Framework

for High–Dimensional and High-Skewed

Imbalanced Big Dataset

1st Majid Soheili

Computer Engineering Department

Neka Branch, Islamic Azad University

Neka, Iran

soheili@iauneka.ac.ir

2nd Maryam Amir Haeri

Learning, Data-Analytics and Technology Department

University of Twente

Enschede, Netherlands

m.amirhaeri@utwente.nl

Abstract—The class-imbalance problem emerges when the
class labels of a dataset have a skewed distribution. In this
circumstance, the instances belonging to one class, which is
exactly the principal purpose, are dominated thoroughly by the
instances belonging to other classes. In recent years, feature
selection for high-dimensional imbalanced data has become
attraction research scope. This technique concerns selecting an
informative feature set to improve the accuracy of the classifi-
cation model. Moreover, as a subcategory of feature selection,
the feature ranking technique has been deliberated to cope
with high-dimensional datasets in the last decade. On the one
hand, most traditional feature selection methods are not scalable,
which is critical to cope with large-scale datasets. On the other
hand, scalability is an intrinsic characteristic of the ensemble
learning approach. This paper proposes a Distributed Ensemble
Imbalanced feature selection framework, called DEIM, to deal
with big imbalanced datasets.

The DEIM, at first, transforms default data partitions to
representative partitions in a single pass. Second, it applies
a feature ranking method in a bagging approach upon each
partition independently. Finally, It fuses intermediate feature
rankings in a stacking strategy. In this paper, two traditional
feature ranking algorithms, ReliefF and QPFS, are plugged
into DEIM. Therefore, two methods DEIM-Relief and DEIM-
QPFS, are produced. Experiments are accomplished on three big
imbalanced datasets and upon a computer cluster. The empirical
study depicts that the produced methods are scalable. Also, they
have lower execution times, and their final results can induce
better classification models than DiReliefF and DQPFS.

Index Terms—Scalable Feature Selection, Distributed Ensem-
ble Learning, Imbalanced Big Data Set

I. INTRODUCTION

With advances in digital technology and the vast diffusion

of IoT devices in the whole world, the data generation rate

has been increased tremendously, such that it has not been

imaginable earlier. Complexity and huge volume are two

prominent properties of this phenomenon, which is known as

Big Data. Such massive data include great valuable insight

so that applying data discovery algorithms to acquire that has

become crucial. Most traditional data discovery algorithms are

not scalable. They have been proposed to execute in a central-

ized computing environment where data can be stored, loaded,

and processed by only a single machine. This restriction is not

satisfactory in the Big Data era. Therefore, to analyze large-

scale datasets, an appropriate data discovery algorithm should

be scalable and distributable.

Many applications in the Big Data era, including anomaly

detection, and disease diagnosis, produce imbalanced datasets

for corresponding main classification tasks [1]. In an imbal-

anced dataset with a binary class, the number of instances

which belong to one class, the majority class, absolutely

dominates the number of instances that belong to another class,

the minority class. Typically, most classifier algorithms that

confront with imbalanced dataset neglect the instances of the

minority class [2]. Consequently, the classifier’s model has a

tremendous general accuracy while it has a weak performance

to classify the instances of the minority class. Meanwhile,

in most studies, the minority class has more sensitivity and

priority to learn correctly than the majority class. Moreover,

the complexity of the class imbalance problem is increased

dramatically when the dataset is high dimensional.

Several approaches have been proposed to address the

imbalanced dataset classification problem such that they can

be categorized into four main groups, Data-Level, Algorithm-

Level, Cost-sensitive, and Classifier ensembles [3]. Most

methods in these approaches may not work well when sub-

stantial data dimensions. In this circumstance, the feature

selection methods can be constructive for facing imbalanced

datasets [4].

Selecting a subset of original features such that the re-

dundancy among them becomes minimum, and the relevancy

between them and the class label becomes maximum is the pri-

mary objective of the feature selection technique [5]. Two main

subdivisions have been introduced regarding feature selection

algorithms’ outcomes, including feature subset selection (FSS)

and feature ranking (FR). FSS methods’ outcome is a subset

of features that can collectively keep predictive capability

the same as original features. In comparison, FR methods’

outcome is a ranking of features in a manner that the more in-

formative features will be stood in better (earlier) positions [6].

Also, per learning model dependency, these algorithms can

be categorized into three groups: Wrapper, Embedded, and

978-1-7281-9048-8/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 S
ym

po
siu

m
 S

er
ie

s o
n

Co
m

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (S
SC

I)
|

97
8-

1-
72

81
-9

04
8-

8/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SS

CI
50

45
1.

20
21

.9
65

99
37

Filter. In opposite to other groups, the algorithms belonging to

the filter category have neither dependency on a classification

model. Therefore they have better performance and can afford

outcomes with a better generalization, which are worthwhile

in the Big Data environment [7].

In recent years, the ensemble learning approach has been

mainly appealed in classification algorithms, while potentially

it can be an efficient approach in other data mining methods,

including feature selection as well [8]. The main idea of

ensemble learning is that combining several models instead of

a single model can obtain more accurate results [8]. In addition

to hoping for a better result, scalability is an innate charac-

teristic of ensemble learning because independent computing

nodes can generate base models. This characteristic causes this

approach would be suitable in the Big Data environment.

Apache Spark is the most famous distributed computing

platform that can process massive datasets in memory. Apache

Spark utilizes the Map-Reduce programming paradigm for par-

allel massive data processing over a computer cluster [9]. Also,

it applies an efficient data abstraction named resilient dis-

tributed dataset (RDD), a fault-tolerant collection of elements

that can be operated on in parallel. The proposed framework

is implemented based on the Apache Spark computing model.

In this paper, a Distributed Ensemble Imbalanced feature

selection framework, called DEIM henceforth, is presented

to cope with big imbalanced datasets. In high skewed big

imbalanced datasets, It is most likely that some data partitions

do not have any instances belonging to the minority class.

In this situation, the data partitions are not representative.

Consequently, the informative features of data partitions to

recognizing instances of the minority class would be lost. To

this matter, DEIM utilizes a novel and approximated method

to make representative data partitions only in a single pass.

Next, DEIM applies a feature ranking method on a bag of

random under-sampling datasets in each data partition. Finally,

the intermediate feature rankings are fused in a stacking

approach in two separated levels. In the empirical study, two

powerful and famous feature ranking algorithms, ReliefF [10]

and QPFS [11], are plugged as the base rankers into the DEIM.

Consequently, two algorithms, called DEIM-QPFS and DEIM-

Relief, are produced to cope with three large and high-skewed

imbalanced datasets. The produced methods belong to the

filter category because the base ranking methods plugged in

DEIM belonging the filter category. The experimental results

are compared with DiReliefF [12] and DQPFS [9]. The main

contributions with this work are as follows:

• Contributing feature ranking methods in the MLIB library

as a famous library based on Apache Spark computing

model. To this matter, a distributed ensemble imbalanced

feature ranking framework is proposed, which is presently

less investigated.

• Proposing a new pipeline as a general feature rank-

ing framework for coping with imbalanced large-scale

datasets.

• Experimental study of accuracy and scalability factors of

the proposed framework.

The rest of the paper is arranged as follows. Section II

considers the related works of feature selection methods. In

section III, the main idea of the DEIM framework and two pro-

duced methods, DEIM-QPFS and DEIM-Relief, are explained

extensively. Section IV describes the implementation of the

DEIM framework. The experimental study will be explained

in section V. Eventually, section VI raises concluded notes

and prominent issues for future works.

II. RELATED WORKS

This section investigates some feature selection methods

that are adaptable to the distributed environment or proper

to coping with imbalanced datasets.

Maldonado et al. considered feature selection and classi-

fication task issues simultaneously for binary, small sample

size, and imbalanced datasets [4]. They proposed a set of

methods for ranking features resting on a backward elimi-

nation approach. The DBFS method proposed by Beigi et

al. to tackle the small sample size in imbalanced datasets

can also be notified [13]. The DBFS method applies the

distribution of features over classes to explore the merit of a

feature. Both mentioned papers under-considered imbalanced

high dimensionality of the given datasets, but the scalability

has been neglected.

Hongmei et al. proposed a feature selection algorithm,

called RSFSAID, for imbalanced data employing neighbor-

hood rough set theory [14]. The proposed method defines a

discernibility matrix and applies particle swarm optimization

to determine the optimized parameters in the algorithm. The

experimental study is performed on public data sets and

depicts that the RSFSAID algorithm can improve the clas-

sification performance of imbalanced data compared to four

other algorithms; however, this study ignored the scalability.

Viegas et al. [15] proposed an evolutional feature selection

method based on genetic programming to deal with high

dimensional skewed datasets. In their approach, four feature

selection metrics are utilized and their goal was to demonstrate

the feasibility of their combination. As another feature selec-

tion method based on the evolutional approach, the paper of

Susana et al. [16] can be noticeable, but both of these papers

have used a classification model as an evaluation function,

which would be highly time-consuming in coping with large-

scale datasets.

In addition to the above-mentioned articles, some other

papers proposed scalable feature selection methods, whereas

their methods did not concern the imbalanced datasets.

Ramirez et al. published three papers about scalable feature

selection. The first work introduced a distributed version of

mRMR, the traditional feature selection method, called fast-

mRMR [17]. The authors considered the speed-up measure

for performing experimental studies, and they inform that

their proposed method has proper scalability. The second

work introduced a feature selection framework that provides

a scalable approach for a family of information-theory-based

methods [18]. The researcher concluded that the proposed

framework could handle large-scale and ultra-high dimen-

sional datasets in this work. The third work proposed a

redesign version of classical feature selection, ReliefF, called

BELIEF [19]. The proposed method utilizes a scalable ap-

proach for computing feature scores then eliminates the re-

dundant features by applying a novel measure called mCR.

The experiments depicted that their proposed method has

smooth scalability. These works were implemented relied on

the Apache Spark computing framework, and the experiments

were carried out on large-scale datasets, whereas the imbal-

anced dataset was not considered.

Furthermore, two other scalable feature selection methods

were proposed by Mendoza et al. as well. As the first work,

they introduced a new version of the traditional ReliefF

method, named DiRelief [12]. The experimental results show

that the proposed method is scalable, can handle large-scale

datasets, and has a lower execution time than the traditional

version. The second work, relying on the classical correlation-

based feature selection (CFS), proposed two distributed al-

gorithms applying the horizontally and vertically data parti-

tioning, named DiCFS-hp and DiCFS-vp [20]. Their methods

were implemented based on the Apache Spark programming

model. The experimental studies were performed over a cluster

of computers to confront large-scale datasets, although coping

with imbalanced datasets was not considered in these studies.

Soheili et al. [9] proposed a feature selection method named

DQPFS, a scalable and redesigned version of the traditional

method, quadratic programming feature selection, QPFS. Ex-

periments illustrated that the proposed method affords good

scalability for coping with large-scale datasets. This capability

leads to lower execution time than the traditional version,

whereas the outcome was not destroyed. Moreover, the au-

thor’s other work investigated the various rank combination

methods in an ensemble feature selection approach [21]. Their

proposed method focused on scalability and combining feature

rankings, whereas coping with imbalanced datasets was not

investigated.

In summary, some feature selection methods have been

introduced in prior works to cope with imbalanced datasets

or adapt to distributed environments. However, no research

proposes a method to execute in a distributed environment and

handle imbalanced datasets, to the best of our knowledge.

III. DEIM EXPLANATION

This paper proposes a distributed and scalable ensemble

feature selection framework for coping with big imbalanced

datasets. As Fig. 1 illustrates, the main idea of the DEIM

framework has five steps. Firstly, performing uniform class

label distribution to produce representative data partitions.

Secondly, making balanced sub-datasets of representative data

partitions. Thirdly, processing each balanced sub-dataset lo-

cally and independently using a feature ranking algorithm

and then producing corresponding intermediate feature rank-

ing. Eventually, fusing the intermediate feature rankings to

generate the final result by applying fusion methods in two

steps, four and five. Processing a large dataset as some sub-

datasets independently by separate computing nodes reduces

communication cost and the execution time of the feature

selection algorithm that is a proper advantage in a distributed

environment. Moreover, fusing the intermediate feature rank-

ings to produce the final result can cause a more accurate and

more stable final result that those are an expected benefit of the

ensemble learning. More details of this idea will be explained

in the below sub-sections.

A. Making Uniform Label Distribution

Generally, the DEIM framework has two options to make

sub-datasets for providing data diversity: first, sampling of

the distributed dataset, second, assuming each default data

partition as a sub-dataset. The first option has some disadvan-

tages, including that it needs to repeatedly explore whole data

partitions stored in the distributed file system (DFS) to make

required sub-datasets. Moreover, the generated sub-datasets

have to be processed as a sequential. The second option has

a disadvantage; there is no assurance that each default data

partition in the DFS is a representative partition. In this paper,

the representative partition refers to a data partition in which

the class label’s distribution is approximately the same as

the class label’s distribution of the whole given big dataset.

This approach to making representative partitions is similar to

what happens in the stratified sampling method [4]. Addressing

the second option’s weakness, all instances that belong to a

specific class label should be dispatched approximately equal

in all data partitions to make representative data-partitions.

As an example, the data partitions of a big imbalanced

dataset are represented in Fig. 2. The number of data partitions

is 32, such that before balancing the distribution of class labels,

data-partitions 1 to 29 have only instances that they belong to

the majority class label. Data partition number 30 has a few

instances of the minority class label as well, but data-partition

number 31 only has instances that belong to the minority class

label. After balancing the distribution of class labels, all of

the data partitions have instances of both class labels such

that the rate of the majority class labels to minority class

labels is approximately equal in all partitions. Consequently,

the main objective of this step is to make a uniform class label

distribution as the same as Fig. 2b. This idea is depicted in

the first phase of the proposed framework schema in Fig. 1.

B. Making Balanced Dataset by Under Sampling

After completing the first phase, each data partition of the

given big imbalanced dataset is representative. Therefore, each

data partition is imbalanced like the whole given dataset, and

each partition is processed independently by a worker node

In phase two, each data partition is undersampled b times,

such that the b is set as an input parameter. Notably, in the

undersampling method, the majority class is sampled to the

number of instances of the minority class. Then the sampled

instances belonging to the majority class are blended with all

instances belonging to the minority class to making a balanced

sub-dataset. In phase three, the produced balanced dataset is

Map Partition

Under Sampling

Map Partition

Under Sampling

Map Partition

Under Sampling

Map Partition

Repartition

Map Partition

Repartition

P
1

P
2

…

P
n

P
1

P
2

…

P
n

P
1

P
2

…

P
n

P
1

P
2

…

P
n

RDD
Imbalance and Skewed

label distribution

W-1

W-2

W-k

RDD
Imbalance and Uniform

label distribution

W-1

W-2

W-k

P
1

P
2

…

P
n

First Step
Make Uniform label distribution RDD

Second Step
Bagging under sampling per partition

Third Step
Apply a FR Algorithm

Fourth Step
Local rank fusion (First Fusion)

Map Partition

Repartition

W-1

W-2

W-k

Map Partition

FR Algorithm

Map Partition

FR Algorithm

Map Partition

FR Algorithm

W-1

W-2

W-k

Map Partition

Rank Fusion

Map Partition

Rank Fusion

Map Partition

Rank Fusion

Driver

Matrix of
Intermediate Feature Ranks

Rank
Fusion by

OWA
operator

Final
Feature Rank

Fifth Step
Global rank fusion (Second Fusion)

RDD
Bag of local Balanced and
Uniform label distribution

RDD
Bag of local feature ranking

RDD
Intermediate Feature ranking per partition

W Worker node symbol Legend: Feature weightsA rerecord with blue class label Skewed data partition Under-sampled local dataset

Fig. 1: The schema of the DEIM framework

Minority Class Label Majority Class Label

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1

4

7

10

13

16

19

22

25

28

31

Class label distribution

P
ar

ti
ti
on

 n
u
m

b
er

(a) Before balancing.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1

4

7

10

13

16

19

22

25

28

31

Class label distribution

P
ar

ti
ti
on

 n
u
m

b
er

(b) After balancing.

Fig. 2: Data partition schematic of an imbalanced big dataset.

processed by a feature ranking algorithm, and then a feature

ranking result is generated. This matter is repeated b times in

a sequential approach for each data partition.

C. Base Feature Ranking Methods

The DEIM framework can utilize an arbitrary feature rank-

ing algorithm, such as Fisher, and Gini Index [21], as the base

learner in phase three. Nevertheless, algorithms that belong

to the filter category would be better than others because

they have lower computational costs and more generality [22].

In this paper, two popular and traditional feature ranking

methods, including QPFS [11] and ReliefF [10], are plugged

into the DEIM that causes produce two distributed ensem-

ble feature ranking methods called DEIM-QPFS and DEIM-

Relief. Consequently, the experimental study to investigate the

performance of the DEIM framework is performed based on

these produced methods.

D. Fusing the Intermediate Feature Rankings

At the end of phase three, each data partition is transformed

to the b number of intermediate feature rankings, which should

be reduced to a final feature ranking by applying a rank

fusion method. The rank fusion is known by various names,

such as Rank Combination and Rank Aggregation as well,

and some methods such as Borda, Kwik-Sort, and Stuart are

introduced in this field [21]. Due to some advantages, the

proposed framework applies an Ordered Weighted Averaging

(OWA) operator to reduce the intermediate feature rankings.

These advantages are as follows. First, The OWA operators

are easy-used by utilizing a weight vector. Second, there is no

tie in the result generated by an OWA operator though that is

a usual issue in some classical rank fusion methods such as

arithmetic Min and Max. As the third and the most important

benefit, the OWA affords a vast and parameterized mechanism

for finding a proper model to interact among rankings [23].

OWA operator was introduced by Yager firstly [24], and

it is a well-established method for information aggregation.

Formally, the OWA operator Ow = ℜn → ℜ associates

a weight vector W = (w1, w2, w3, . . . , wn)
T

such that

wi > 0,Σn
i=1wi = 1. To the set Ow of n criteria as

Ow (a1, a2, a3, . . . , an) = Σn
i=1wibi such that the bi is the

ith largest of (a1, a2, a3, . . . , an). It is evident that the output

of the Ow strongly depends upon the weight vector W .

Therefore if the vector W is set to (1, 0, . . . , 0), the result of

the Ow is equal to the largest number of (a1, a2, a3, . . . , an),
namely Ow = max, also when the weight vector W is set to

(0, . . . , 0, 1), it would be Ow = min.

Using a probability density function is one of the strong

approaches for determining OWA operator weights [25].

Dispersion(entropy) and Orness are two major properties

of a OWA weight vector that they are applied to generate

weight vectors [24]. The former property, which is defined

Dispersion(W) = −∑n

i=1 wi lnwi, measures which all ag-

gregates are equally used, whereas the later property, which

is defined Orness(W) = 1
n

∑n

i=1 (n − i)wi , measures to

which the OWA is like an OR operation [26].

In this paper, an OWA operator is applied in such a way

its weights vector is generated by the OWG method proposed

by Lenormand in 2018 [24]. This method is based on the

probability density functions of truncated normal distributions.

By using the OWG method, OWA weights can be generated

automatically according to certain values of three input param-

eters, n, risk, and trade-off . The n is equal to the number of

criteria or length of the vector of weights, the risk is equal to

the Orness property, and the trade-off is the distance between

the weight vector Ow of an OWA operator and the uniform

weight vector
(

wi =
1
n

)

. Note that the uniform weight vector

has the maximum value of the Dispersion property, 1. The

OWG method has assumed a default value for the trade-off
parameter as 4× risk × (1− risk) for generating an accurate

result.

IV. DEIM IMPLEMENTATION

In this section, the phases of the DEIM framework explained

in the previous section will be detailed in some pseudocodes.

It is worth mentioning that the DEIM is implemented relied

on the Apache Spark computing framework and the Map-

Reduce paradigm. The main procedure of the DEIM is detailed

by Algorithm 1. The DEIM’s phases in Algorithm 1 are, (i)

Making Uniform Label Distribution, in line 3, (ii) Bagging

Under Sampling, in lines 6–8. (iii) Applying a Feature Ranking

Algorithm, line 9. (iv) Applying Local Rank Fusion, in line

11. (v) Applying Global Rank Fusion, in line 13.

In Algorithm 1, the DS ∈ R
n×d refers to the given dataset

with n instances and d dimensions. Furthermore, p refers to

the number of new data partitions with uniformed class label

distribution, and it will be passed to Algorithm 2. In another

perspective, the parameter p can be inferred as the number of

data subsampling applied in the ensemble learning approach.

Input parameter b refers to the number of local balanced

datasets to be generated in each data partition. Input parameter

RA refers to the feature ranking algorithm applied in each

local balanced dataset independently. Input parameters r1 and

r2 refer to two risk parameters applied to the rank fusion

method, and they will be passed to Algorithm 3.

As the first phase of Algorithm 1, the given dataset is

transformed to a uniform class label distribution dataset by

applying the UCDL method of Algorithm 2. To this aim,

each data partition tries to dispatch its instances that belong

to the same class label, among all new data partitions almost

equally. Therefore, the default data partition determines a new

data partition index for each instance. For this purpose, an

instance with class label label is dispatched to a new data

partition with the smallest number of instances with class label

label . If there are multiple new data partition candidates for a

specific instance, one is selected randomly. This dispatching

policy is repeated for all instances in all default data partitions

independently.

To implement the dispatching policy in Algorithm 2, a

matrix, labelParts ∈ N
nc×p is applied to keep the frequency

of the same class label instances dispatched among new data

partitions. In this matrix, the number of rows is equal to the

number of unique class labels, nc, of the given dataset, and

the number of columns is equal to the number of new data

partitions,p. Each default data partition has its own labelParts

Algorithm 1: DEIM - Main Procedure

Input : DS ∈ R
n×d

// the given dataset

Input : p ∈ N // the number of new data Partitions

Input : b ∈ N // the number of Bagging sampling

Input : RA // the feature Ranking Algorithm

Input : r1 ∈ R // the first Risk parameter

Input : r2 ∈ R // the second Risk parameter

Output: RR ∈ N
d

// the feature Ranking Result

1 FRMlocal = Matrix [b, d] // the feature rankings matrix

2 FRMglobal = Matrix [p, d] //

3 DSud = UCLD (DS , p) // Algorithm 2

4 forall partition ∈ DSud do in parallel
5 for i = 0 to b do
6 (dsminor, dsmajor)← Split partition into two sub

datasets, minor class label and major class label.
7 dssub−major = Subsampling of dsmajor

8 dssub−balanced = dsminor

⋃
dssub−major

9 FRMlocal [i, :] = FRA (dssub−balanced)
10 end
11 FRM global [partition.index , :] = OWAF (FRMlocal , r1)

// Algorithm 3

12 end
13 FR = OWAF (FRMglobal , r2) // Algorithm 3

14 return FR

Algorithm 2: UCLD- Uniform Class Label Distribution

Input : DS ∈ R
n×d

// the given dataset

Input : p ∈ N // the number of new data Partitions

Output: DSud ∈ R
n×d

// the Uniformed class label

Distribution dataset

1 nc ← Count distinct value of DS [:, d− 1] // the Number

of Class label

2 DS t =
3 forall partition ∈ DS do in parallel
4 labelParts = Matrix [nc, p]
5 forall instance ∈ partition do
6 label = instance [d− 1] // the last column is

the class label

7 parts = labelParts [label , :]
8 index = findSmallest (parts) // find the cell

index that has smallest value as a new

partition index

9 labelParts [label , index] + = 1
10 〈index , instance〉
11 end
12 end
13 DSud = DS t.partitionBy (HashPartitioner (p))
14 return DSud

matrix. For each instance of a default data partition, a new data

partition index is determined based on the labelParts matrix

and explained dispatching policy.

Therefore, each instance in each default data partition

transforms into a 〈key , value〉 tuple such that the key is set

to a new partition index, and the value is set to the instance.

Finally, the hash partitioning method is applied to perform new

data partitions. The hash partitioning method shuffles whole

tuples among all data nodes in such a way the entire tuples

in all data partitions that have the same key will be placed in

the same data partition. The result of partitioning by applying

the hash partitioning method is a dataset with uniformed class

label distribution such that each of its data partitions is a proper

representative. Algorithm 2 explains the uniform class label

distribution method in detail.

As mentioned before, each representative data partition

provided in the first phase of Algorithm 1 is processed

independently by a worker node. Next, in phase two of

Algorithm 1, a local and balanced sub-datasets is generated in

a way explained before in section III-B. Then, in phase three

of Algorithm 1, the local and balanced sub-dataset is processed

by a feature ranker algorithm, and then the corresponding

feature ranking is produced. Consequently, after repeating

phases two and three by b times, each representative data

partition has been transformed into a matrix of intermediate

feature ranking results, FRMlocal ∈ N
b×d.

The intermediate feature rankings are reduced to a final

feature ranking by applying the OWAF rank fusion method

in two levels. At the first level of fusion, in phase four of

Algorithm 1, each data partition’s intermediate feature ranking

results, whose number is equal to b, are reduced to a single

ranking of features independently. Consequently, a global

feature ranking matrix, FRMglobal ∈ N
p×d, is produced at the

end of phase four. At the second level of fusion, in phase five

of Algorithm 1, the FRMglobal matrix, whose number of rows

is equal to the number of new data partitions, is reduced to a

single final ranking of features as the final result. Therefore,

two risk parameters should be set as input parameters for

applying two-level rank fusion in a stacking approach.

Algorithm 3 details how a feature rankings matrix is fused

for making a final ranking. In this algorithm, the input param-

eter FRM ∈ N
n×d refers to a matrix whose rows are feature

rankings. It is worth mentioning that OWG is a weight vector

generator method presented in [24], and it receives three input

parameters risk , trade-off , and n. The risk is set by input

parameter r, the trade-off is set to a default value by t local

variable, and the n is the number of criteria that in Algorithm 3

refers to the row number of FRM matrix. Finally, a single

feature ranking result, RL, is returned by the algorithm.

Algorithm 3: OWAF - OWA Rank Fusion

Input : FRM ∈ N
n×d

// the Feature Ranking Matrix

Input : r ∈ N // the Risk of weight vector

Output: RL ∈ N
d

// the Ranking Result

1 t = 4× r × (1− r) // the default value for trade-off

2 FP = Matrix [d, n] // a matrix of Feature Positions

3 FW = Array [d] // an array of Feature Weights

4 for i = 0 to (n− 1) do
5 for j = 0 to (d− 1) do FP [FRM [i, j] , i] = j
6 end
7 W = OWG (r, t, n) // a weight vector based on [24]

8 for i = 0 to (d− 1) do FW [i] = FP [i, :]×WT

9 RL = Order (FW)
10 return RL

V. EXPERIMENTAL STUDY

Two traditional feature ranking algorithms, QPFS and Reli-

efF, are plugged in the DEIM framework as the base learners to

TABLE I: The properties of datasets used in experiments.

Dataset name #Instances #Features Minor:Major Format #Class

1 ECBDL (sampled) 2000000 631 (98:2) ASCII 2
2 FD (sampled) 2000000 900 (90:10) Binary 2
3 OCR (sampled) 1800000 1156 (98:2) Binary 2

perform the experimental study. Consequently, two algorithms,

called DEIM-QPFS and DEIM-Relief, are produced. Two

produced methods are executed on three experimental datasets,

and then their results are collected. Next, the various Gaus-

sian Naive Bayes and Random Forest classification models

are induced based on the selected features. Accordingly, the

outcomes of the classifier are gathered as final results by

applying a 5-fold cross-validation method. Note that two ad-

hoc parameters, the number of samples and neighbors, are set

to 20 in DiReliefF and DEIM-Relief algorithms. Furthermore,

the DQPFS and DEIM-QPFS algorithms utilized information

theory. Thus they need to transform continuous features into

categorical features. Therefore, continuous features are quan-

tized into ten equal width bins.

For reproducibility objectives, the DEIM framework code

has been uploaded to a repository1.

A. Datasets, and Cluster

Two produced methods, DEIM-QPFS and DEIM-Relief, are

executed on three well-known, high dimensional, and high-

skewed imbalanced datasets, ECBDL2, FD, and OCR3, whose

number of instances and features are large simultaneously.

Note that the OCR is originally a balanced dataset, so instances

belonging to the negative class are sub-sampled to make it an

imbalanced dataset. Table I shows the characteristics of the

experimental datasets. The experimental study is performed

on binary class datasets, whereas theoretically the proposed

framework can be applied in multi-class datasets as well.

The experiments are performed upon a cluster with 8-nodes

configured based on the master/slave architecture. All nodes

have two-core processors, 4 gigabytes RAM, and the Apache

Hadoop 2.7 and the Apache Spark 2.3 are installed.

B. Assessment Criteria and Results

In this section, some criteria, such as Classification Out-

comes, Execution-Time, and Speed-Up, are considered to

assess the performance of the two produced methods, DEIM-

QPFS and DEIM-Relief. Moreover, a deeply experimental

study compares the experimental results with DQPFS [9] and

DiReliefF [12]. DQPFS and DiReliefF are two distributed

feature selection algorithms published recently. Thus they are

attractive algorithms to study the performance of the produced

methods.

1) Geometric Mean (GM): The classification algorithm’s

accuracy is profoundly misleading for a classification task

in the imbalanced domain because minority classes are in-

significant in overall accuracy. Consequently, the majority

class’s performance can dominate the weak performance of the

1https://github.com/Majid-Soheili/DEIM
2http://cruncher.ncl.ac.uk/bdcomp/
3ftp://largescale.ml.tu-berlin.de/largescale/

Naïve Bays

DEIM-QPFS DQPFS

Naïve Bays

DEIM-ReliefF DiRelief

Naïve Bays

0.5

0.55

0.6

0.65

0.7

0.75

0.8

5 10 15 20 25 30 35 40 45 50

G
M

The Number of selected features

(a) QPFS, ECBDL

Naïve Bays

0.5

0.55

0.6

0.65

0.7

0.75

0.8

5 10 15 20 25 30 35 40 45 50

G
M

The Number of selected features

(b) ReliefF, ECBDL

Naïve Bays

0.5

0.55

0.6

0.65

0.7

0.75

0.8

5 10 15 20 25 30 35 40 45 50

G
M

The Number of selected features

(c) QPFS, FD

Naïve Bays

0.5

0.55

0.6

0.65

0.7

0.75

0.8

5 10 15 20 25 30 35 40 45 50

G
M

The Number of selected features

(d) ReliefF, FD

Naïve Bays

0.5

0.55

0.6

0.65

0.7

0.75

0.8

5 10 15 20 25 30 35 40 45 50

G
M

The Number of selected features

(e) QPFS, OCR

Naïve Bays

0.5

0.55

0.6

0.65

0.7

0.75

0.8

5 10 15 20 25 30 35 40 45 50

G
M

The Number of selected features

(f) ReliefF, OCR

Fig. 3: The GM results, DEIM-QPFS vs DQPFS, and DEIM-

Relief vs DiReliefF, by applying the Naive Bayes classifier.

minority class [1]. Therefore, using a measure that investigates

the performance of minority and majority classes altogether is

essential. The GM measurement aims to maximize the accu-

racy of each one of the two minority and majority classes si-

multaneously, and it has been used widely in literature [1], [3].

This measure is defined as GM =
√
sensitivity × specificity

where sensitivity = TP
TP+FN

, and specificity = TN
FP+TN

.

Note that TP , TN , FP , and FN refer to the true-positive,

true-negative, false-positive, and false-negative, respectively, in

a confusion matrix for a binary classification task. Moreover,

to compare the best configurations of the first and second risk

parameters of the produced method are selected.

As Fig. 3 and Fig. 4 illustrate, the produced methods,

DEIM-QPFS and DEIM-Relief, have better or comparable GM

results than the DQPFS and DiReliefF in most experiences

(115/120). In other words, just in two experiences, five selected

features in Fig 3a and Fig 3d, the produced methods have sig-

nificantly lower GM results than DQPFS and DiReliefF. Also,

these figures depict that the difference between GM results in

DEIM-QPFS with DQPFS is bigger than DEIM-Relief with

DiReliefF, and this matter is related to the randomized strategy

applied in the ReliefF algorithm.

2) Execution Time: The feature ranking algorithm plugged

into DEIM strongly affects its execution time. As Fig. 5 illus-

trates, the execution time of the DEIM-QPFS is significantly

more than DEIM-Relief in all experimental datasets, whereas

their difference decreases by increasing the number of worker

nodes. Another notable point is that the difference in the

produced method’s execution time is increased by growing

the number of experimental dataset’s features. Therefore, a

large number of dataset features can extend the execution time

difference between DEIM-QPFS and DEIM-Relief.

Moreover, the DEIM-QPFS and DEIM-Relief execution

time is compared with two distributed algorithms DQPFS

and DiReliefF. According to Fig. 5, two produced meth-

ods have lower execution times than DQPFS and DiReliefF.

Whereas the difference between DEIM-Relief and DiReliefF

DEIM-QPFS DQPFS DEIM-ReliefF DiRelief

0.55

0.6

0.65

0.7

0.75

0.8

0.85

5 10 15 20 25 30 35 40 45 50

G
M

The Number of selected features

(a) QPFS, ECBDL

0.55

0.6

0.65

0.7

0.75

0.8

0.85

5 10 15 20 25 30 35 40 45 50

G
M

The Number of selected features

(b) ReliefF, ECBDL

0.55

0.6

0.65

0.7

0.75

0.8

0.85

5 10 15 20 25 30 35 40 45 50

G
M

The Number of selected features

(c) QPFS, FD

0.55

0.6

0.65

0.7

0.75

0.8

0.85

5 10 15 20 25 30 35 40 45 50

G
M

The Number of selected features

(d) ReliefF, FD

0.55

0.6

0.65

0.7

0.75

0.8

0.85

5 10 15 20 25 30 35 40 45 50

G
M

The Number of selected features

(e) QPFS, OCR

0.55

0.6

0.65

0.7

0.75

0.8

0.85

5 10 15 20 25 30 35 40 45 50

G
M

The Number of selected features

(f) ReliefF, OCR

Fig. 4: The GM results, DEIM-QPFS vs DQPFS, and DEIM-

Relief vs DiReliefF, by applying the Random Forest classifier.

DEIM-QPFS DQPFS DEIM-Relief DiRelief

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7

T
im

e
(m

in
u
te

s)

The number of workers

(a) QPFS, ECBDL

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7

T
im

e
(m

in
u
te

s)

The number of workers

(b) ReliefF, ECBDL

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7

T
im

e
(m

in
u
te

s)

The number of workers

(c) QPFS, FD

0

50

100

150

200

250

300

1 2 3 4 5 6 7

T
im

e
(m

in
u
te

s)

The number of workers

(d) ReliefF, FD

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7

T
im

e
(m

in
u
te

s)

The number of workers

(e) QPFS, OCR

0

100

200

300

400

500

1 2 3 4 5 6 7
T

im
e

(m
in

u
te

s)

The number of workers

(f) ReliefF, OCR

Fig. 5: The execution time, DEIM-QPFS vs DQPFS, and

DEIM-Relief vs DiRelief

is more significant than the difference between DEIM-QPFS

and DQPFS.

3) Speed-Up: The speed-up as an important scalability

measure indicates an algorithm’s capability to exploit increas-

ing of worker nodes in order to execution time reduction. The

speed-up is computed as Speed -Up = T (n,1)
T (n,p) . Notice that

in the equation, T (n, p) refers to the execution time of the

algorithm processes the dataset with the n number of instances

by utilizing the p number of worker nodes.

As Fig. 6 depicts, both produced methods have a proper

speed-up, whereas the DEIM-QPFS has a better performance

than DEIM-Relief. In all charts, the speed-up will be decreased

by increasing the number of worker nodes. It is typical be-

havior in distributed algorithms and relates to communication

costs. The communication cost will be increased by increasing

the number of participating worker nodes. According to Fig. 6,

the speed -up of DEIM-QPFS and QPFS is similar, and DEIM-

Relief is better than DiReliefF in experimental datasets.

DEIM-QPFS DQPFS Linear DEIM-Relief DiRelief Linear

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7

T
im

e
(m

in
u
te

s)

The number of workers

(a) QPFS, ECBDL

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7

T
im

e
(m

in
u
te

s)

The number of workers

(b) ReliefF, ECBDL

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7

T
im

e
(m

in
u
te

s)

The number of workers

(c) QPFS, FD

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7

T
im

e
(m

in
u
te

s)

The number of workers

(d) ReliefF, FD

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7

T
im

e
(m

in
u
te

s)

The number of workers

(e) QPFS, OCR

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7

T
im

e
(m

in
u
te

s)

The number of workers

(f) ReliefF, OCR

Fig. 6: The speed-up, DEIM-QPFS vs DQPFS, and DEIM-

Relief vs DiReliefF

VI. CONCLUSION

This paper proposes a distributed and scalable feature

ranking framework to cope with high-dimensional and high-

skewed imbalanced big datasets, called DEIM.

The DEIM makes representative data partitions from the

default data partitions at the first step. Next, the DEIM creates

a bag of balanced small datasets on each representative data

partition and applies a feature ranking algorithm on each of

the small balanced datasets. Finally, it fuses the intermediate

results by applying an OWA operator in two levels.

In the DEIM framework, each arbitrary feature ranking

algorithm can be plugged as the base learner. In this paper,

two popular feature ranking algorithms, QPFS and ReliefF,

are utilized. Therefore, two distributed ensemble algorithms,

DEIM-QPFS and DEIM-Relief, are produced. The experimen-

tal study is performed on a cluster of computers upon three big

imbalanced datasets. The experiments’ outcomes illustrate that

the produced methods are scalable. Moreover, in comparison

to distributed versions of the classical algorithms, DQPFS

and DiReliefF, produced methods are faster and can produce

more suitable outcomes based on GM in most experiments for

diverse numbers of selected features. The comparison between

the DEIM-QPFS and DEIM-Relief illustrates that the former

has a longer execution time and better Speed-Up than the latter.

REFERENCES

[1] J. Kim, J. Kang, and M. Sohn, “Ensemble learning-based filter-centric
hybrid feature selection framework for high-dimensional imbalanced
data,” Knowledge-Based Systems, vol. 220, p. 106901, 2021.

[2] S. del Rı́o, V. López, J. M. Benı́tez, and F. Herrera, “On the use of
mapreduce for imbalanced big data using random forest,” Information

Sciences, vol. 285, pp. 112–137, 2014.

[3] M. Juez-Gil, Álvar Arnaiz-González, J. J. Rodrı́guez, and C. Garcı́a-
Osorio, “Experimental evaluation of ensemble classifiers for imbalance
in big data,” Applied Soft Computing, vol. 108, p. 107447, 2021.

[4] S. Maldonado, R. Weber, and F. Famili, “Feature selection for high-
dimensional class-imbalanced data sets using support vector machines,”
Information Sciences, vol. 286, pp. 228–246, 2014.

[5] Y. Li, T. Li, and H. Liu, “Recent advances in feature selection and its
applications,” Knowledge and Information Systems, vol. 53, no. 3, pp.
551–577, 2017.

[6] M. Soheili and A. M. E. Moghadam, “Feature selection in multi-label
classification through mlqpfs,” in 2016 4th International Conference on

Control, Instrumentation, and Automation (ICCIA), 2016, Conference
Proceedings, pp. 430–434.

[7] V. J. Hodge, S. O’Keefe, and J. Austin, “Hadoop neural network for
parallel and distributed feature selection,” Neural Networks, vol. 78, pp.
24–35, 2016, special Issue on ”Neural Network Learning in Big Data”.

[8] V. Bolón-Canedo and A. Alonso-Betanzos, “Ensembles for feature
selection: A review and future trends,” Information Fusion, vol. 52, pp.
1–12, 2019.

[9] M. Soheili and A. M. Eftekhari-Moghadam, “Dqpfs: Distributed
quadratic programming based feature selection for big data,” Journal

of Parallel and Distributed Computing, vol. 138, pp. 1–14, 2020.
[10] I. Kononenko, “Estimating attributes: Analysis and extensions of relief,”

in Machine Learning: ECML-94, ser. Machine Learning: ECML-94,
F. Bergadano and L. De Raedt, Eds. Springer Berlin Heidelberg, 1994,
Conference Proceedings, pp. 171–182.

[11] I. Rodriguez-Lujan, R. Huerta, C. Elkan, and C. S. Cruz, “Quadratic
programming feature selection,” Journal of machine learning research

: JMLR., vol. 11, no. 1, pp. 1491–1516, 2011.
[12] R.-J. Palma-Mendoza, D. Rodriguez, and L. de Marcos, “Distributed

relieff-based feature selection in spark,” Knowledge and Information

Systems, vol. 57, no. 1, pp. 1–20, 2018.
[13] M. Alibeigi, S. Hashemi, and A. Hamzeh, “Dbfs: An effective density

based feature selection scheme for small sample size and high dimen-
sional imbalanced data sets,” Data and Knowledge Engineering, vol.
81-82, pp. 67–103, 2012.

[14] H. Chen, T. Li, X. Fan, and C. Luo, “Feature selection for imbalanced
data based on neighborhood rough sets,” Information Sciences, vol. 483,
pp. 1–20, 2019.

[15] F. Viegas, L. Rocha, M. Gonçalves, F. Mourão, G. Sá, T. Salles,
G. Andrade, and I. Sandin, “A genetic programming approach for feature
selection in highly dimensional skewed data,” Neurocomputing, vol. 273,
pp. 554–569, 2018.

[16] S. M. Vieira, J. M. Sousa, and T. A. Runkler, “Two cooperative ant
colonies for feature selection using fuzzy models,” Expert Systems with

Applications, vol. 37, no. 4, pp. 2714–2723, 2010.
[17] S. Ramı́rez-Gallego, I. Lastra, D. Martı́nez-Rego, V. Bolón-Canedo,

J. M. Benı́tez, F. Herrera, and A. Alonso-Betanzos, “Fast-mrmr:
Fast minimum redundancy maximum relevance algorithm for high-
dimensional big data,” International Journal of Intelligent Systems,
vol. 32, no. 2, pp. 134–152, 2017.

[18] S. Ramı́rez-Gallego, H. Mouriño-Talı́n, D. Martı́nez-Rego, V. Bolón-
Canedo, J. M. Benı́tez, A. Alonso-Betanzos, and F. Herrera, “An
information theory-based feature selection framework for big data under
apache spark,” IEEE Transactions on Systems, Man, and Cybernetics:

Systems, vol. 48, no. 9, pp. 1441–1453, 2018.
[19] D. López, S. Ramı́rez-Gallego, S. Garcı́a, N. Xiong, and F. Herrera,

“Belief: A distance-based redundancy-proof feature selection method
for big data,” Information Sciences, vol. 558, pp. 124–139, 2021.

[20] R.-J. Palma-Mendoza, L. de Marcos, D. Rodriguez, and A. Alonso-
Betanzos, “Distributed correlation-based feature selection in spark,”
Information Sciences, vol. 496, pp. 287–299, 2019.

[21] M. Soheili, A.-M. Eftekhari-Moghadam, and M. Dehghan, “Statistical
analysis of the performance of rank fusion methods applied to a
homogeneous ensemble feature ranking,” Scientific Programming, vol.
2020, 2020.

[22] S. Garcı́a, S. Ramı́rez-Gallego, J. Luengo, J. M. Benı́tez, and F. Herrera,
“Big data preprocessing: methods and prospects,” Big Data Analytics,
vol. 1, no. 1, p. 9, 2016.

[23] R. R. Yager, “Owa aggregation of multi-criteria with mixed uncertain
satisfactions,” Information Sciences, vol. 417, pp. 88–95, 2017.

[24] M. Lenormand, “Generating owa weights using truncated distributions,”
International Journal of Intelligent Systems, vol. 33, no. 4, pp. 791–801,
2018.

[25] X. Liu, “Models to determine parameterized ordered weighted averaging
operators using optimization criteria,” Information Sciences, vol. 190,
pp. 27–55, 2012.

[26] Y. Ouyang, “Improved minimax disparity model for obtaining owa
operator weights: Issue of multiple solutions,” Information Sciences, vol.
320, pp. 101–106, 2015.

