3 research outputs found

    Euler diagram transformations

    Get PDF
    Euler diagrams are a visual language which are used for purposes such as the presentation of set-based data or as the basis of visual logical languages which can be utilised for software specification and reasoning. Such Euler diagram reasoning systems tend to be defined at an abstract level, and the concrete level is simply a visualisation of an abstract model, thereby capturing some subset of the usual boolean logic. The visualisation process tends to be divorced from the data transformation process thereby affecting the userā€™s mental map and reducing the effectiveness of the diagrammatic notation. Furthermore, geometric and topological constraints, called wellformedness conditions, are often placed on the concrete diagrams to try to reduce human comprehension errors, and the effects of these conditions are not modelled in these systems. We view Euler diagrams as a type of graph, where the faces that are present are the key features that convey information and we provide transformations at the dual graph level that correspond to transformations of Euler diagrams, both in terms of editing moves and logical reasoning moves. This original approach gives a corre

    Generating Euler Diagrams from Existing Layouts

    Get PDF
    Euler diagrams have a wide variety of uses, from information visualization to logical reasoning. In all of their application areas, the ability to automatically layout Euler diagrams brings considerable benefits. In this paper, we present a novel approach to Euler diagram generation. We develop certain graphs associated with Euler diagrams in order to allow curves to be added by finding cycles in these graphs. This permits us to build Euler diagrams inductively, adding one curve at a time. Our technique is adaptable, allowing the easy specification, and enforcement, of sets of wellformednesss conditions; we present a series of results that identify properties of cycles that correspond to the wellformedness conditions. This improves upon other contributions towards the automated generation of Euler diagrams which implicitly assume some fixed set of wellformedness conditions must hold. In addition, unlike most of these other generation methods, our technique allows any abstract description to be drawn as an Euler diagram. To establish the utility of the approach, a prototype implementation has been developed
    corecore