14,163 research outputs found

    Generating Effective Recommendations Using Viewing-Time Weighted Preferences for Attributes

    Get PDF
    Recommender systems are an increasingly important technology and researchers have recently argued for incorporating different kinds of data to improve recommendation quality. This paper presents a novel approach to generating recommendations and evaluates its effectiveness. First, we review evidence that item viewing time can reveal user preferences for items. Second, we model item preference as a weighted function of preferences for item attributes. We then propose a method for generating recommendations based on these two propositions. The results of a laboratory evaluation show that the proposed approach generated estimated item ratings consistent with explicit item ratings and assigned high ratings to products that reflect revealed preferences of users. We conclude by discussing implications and identifying areas for future research

    Video Recommendation Using Social Network Analysis and User Viewing Patterns

    Full text link
    With the meteoric rise of video-on-demand (VOD) platforms, users face the challenge of sifting through an expansive sea of content to uncover shows that closely match their preferences. To address this information overload dilemma, VOD services have increasingly incorporated recommender systems powered by algorithms that analyze user behavior and suggest personalized content. However, a majority of existing recommender systems depend on explicit user feedback in the form of ratings and reviews, which can be difficult and time-consuming to collect at scale. This presents a key research gap, as leveraging users' implicit feedback patterns could provide an alternative avenue for building effective video recommendation models, circumventing the need for explicit ratings. However, prior literature lacks sufficient exploration into implicit feedback-based recommender systems, especially in the context of modeling video viewing behavior. Therefore, this paper aims to bridge this research gap by proposing a novel video recommendation technique that relies solely on users' implicit feedback in the form of their content viewing percentages

    Context aware advertising

    Get PDF
    IP Television (IPTV) has created a new arena for digital advertising that has not been explored to its full potential yet. IPTV allows users to retrieve on demand content and recommended content; however, very limited research has been applied in the domain of advertising in IPTV systems. The diversity of the field led to a lot of mature efforts in the fields of content recommendation and mobile advertising. The introduction of IPTV and smart devices led to the ability to gather more context information that was not subject of study before. This research attempts at studying the different contextual parameters, how to enrich the advertising context to tailor better ads for users, devising a recommendation engine that utilizes the new context, building a prototype to prove the viability of the system and evaluating it on different quality of service and quality of experience measures. To tackle this problem, a review of the state of the art in the field of context-aware advertising as well as the related field of context-aware multimedia have been studied. The intent was to come up with the most relevant contextual parameters that can possibly yield a higher percentage precision for recommending advertisements to users. Subsequently, a prototype application was also developed to validate the feasibility and viability of the approach. The prototype gathers contextual information related to the number of viewers, their age, genders, viewing angles as well as their emotions. The gathered context is then dispatched to a web service which generates advertisement recommendations and sends them back to the user. A scheduler was also implemented to identify the most suitable time to push advertisements to users based on their attention span. To achieve our contributions, a corpus of 421 ads was gathered and processed for streaming. The advertisements were displayed in reality during the holy month of Ramadan, 2016. A data gathering application was developed where sample users were presented with 10 random ads and asked to rate and evaluate the advertisements according to a predetermined criteria. The gathered data was used for training the recommendation engine and computing the latent context-item preferences. This also served to identify the performance of a system that randomly sends advertisements to users. The resulting performance is used as a benchmark to compare our results against. When it comes to the recommendation engine itself, several implementation options were considered that pertain to the methodology to create a vector representation of an advertisement as well as the metric to use to measure the similarity between two advertisement vectors. The goal is to find a representation of advertisements that circumvents the cold start problem and the best similarity measure to use with the different vectorization techniques. A set of experiments have been designed and executed to identify the right vectorization methodology and similarity measure to apply in this problem domain. To evaluate the overall performance of the system, several experiments were designed and executed that cover different quality aspects of the system such as quality of service, quality of experience and quality of context. All three aspects have been measured and our results show that our recommendation engine exhibits a significant improvement over other mechanisms of pushing ads to users that are employed in currently existing systems. The other mechanisms placed in comparison are the random ad generation and targeted ad generation. Targeted ads mechanism relies on demographic information of the viewer with disregard to his/her historical consumption. Our system showed a precision percentage of 69.70% which means that roughly 7 out of 10 recommended ads are actually liked and viewed to the end by the viewer. The practice of randomly generating ads yields a result of 41.11% precision which means that only 4 out of 10 recommended ads are actually liked by viewers. The targeted ads system resulted in 51.39% precision. Our results show that a significant improvement can be introduced when employing context within a recommendation engine. When introducing emotion context, our results show a significant improvement in case the user’s emotion is happiness; however, it showed a degradation of performance when the user’s emotion is sadness. When considering all emotions, the overall results did not show a significant improvement. It is worth noting though that ads recommended based on detected emotions using our systems proved to always be relevant to the user\u27s current mood

    Image-based Recommendations on Styles and Substitutes

    Full text link
    Humans inevitably develop a sense of the relationships between objects, some of which are based on their appearance. Some pairs of objects might be seen as being alternatives to each other (such as two pairs of jeans), while others may be seen as being complementary (such as a pair of jeans and a matching shirt). This information guides many of the choices that people make, from buying clothes to their interactions with each other. We seek here to model this human sense of the relationships between objects based on their appearance. Our approach is not based on fine-grained modeling of user annotations but rather on capturing the largest dataset possible and developing a scalable method for uncovering human notions of the visual relationships within. We cast this as a network inference problem defined on graphs of related images, and provide a large-scale dataset for the training and evaluation of the same. The system we develop is capable of recommending which clothes and accessories will go well together (and which will not), amongst a host of other applications.Comment: 11 pages, 10 figures, SIGIR 201

    Learning and Transferring IDs Representation in E-commerce

    Full text link
    Many machine intelligence techniques are developed in E-commerce and one of the most essential components is the representation of IDs, including user ID, item ID, product ID, store ID, brand ID, category ID etc. The classical encoding based methods (like one-hot encoding) are inefficient in that it suffers sparsity problems due to its high dimension, and it cannot reflect the relationships among IDs, either homogeneous or heterogeneous ones. In this paper, we propose an embedding based framework to learn and transfer the representation of IDs. As the implicit feedbacks of users, a tremendous amount of item ID sequences can be easily collected from the interactive sessions. By jointly using these informative sequences and the structural connections among IDs, all types of IDs can be embedded into one low-dimensional semantic space. Subsequently, the learned representations are utilized and transferred in four scenarios: (i) measuring the similarity between items, (ii) transferring from seen items to unseen items, (iii) transferring across different domains, (iv) transferring across different tasks. We deploy and evaluate the proposed approach in Hema App and the results validate its effectiveness.Comment: KDD'18, 9 page
    • …
    corecore