

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Neve, James O

Title:
Advancing the field of content-based and collaborative filtering reciprocal
recommender systems

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

Advancing the field of content-based and
collaborative filtering reciprocal

recommender systems

By

JAMES NEVE

Department of Engineering Mathematics
UNIVERSITY OF BRISTOL

A dissertation submitted to the University of Bristol in ac-
cordance with the requirements of the degree of DOCTOR OF

PHILOSOPHY in the Faculty of Engineering.

DECEMBER 2021

Word count: fifty two thousand four hundred and fifty six

ABSTRACT

Recommender systems are personalisation tools that predict a user’s preference for an item.
They are used on services where users have to choose between a large number of options,
such as shopping services like Amazon and movie websites such as Netflix. Even with

search functions, the choice can often be overwhelming, and recommender systems provide users
easy access to the items that are best suited to them, usually based on their history of previous
preferences. Algorithmically, recommender systems often generate a score between 0 and 1 which
represents how much a user will like an item. Items with high scores can then be recomended.

Reciprocal recommender systems are a more complex subtype of recommender system de-
signed for services where the objective is to recommend people to each other, such as online
dating, social and recruitment services. They are considered complex because the recommenda-
tion must be based on a bidirectional preference relation: it is important that both the person
being recommended and the person viewing the recommendations are satisfied.

In spite of the relatively interesting algorithmic challenge their complexity presents, re-
ciprocal recommender systems have been overlooked in the literature, with a rich variety of
research concentrating on user-item recommendation, and very few techniques for reciprocal
recommendation. The purpose of this PhD is to contribute new methods and ideas to reciprocal
recommendation, to advance the field with modern techniques currently being used in user-item
recommendation, and to develop novel algorithms unique to reciprocal recommendation.

This thesis is divided into three main sections: content-based filtering, collaborative filtering
and hybrid filtering, to correspond to the main subdivisions of recommender systems. Each of
these sections contributes new techniques to that field within the context of reciprocal recommen-
dation. This includes both adaptations of existing algorithms and entirely novel methods.

All of these methods are tested against large datasets from industry, including data from a
popular online dating service, and from a social recipe-sharing website. Their success over and
above the current state of the art demonstrates the value of these new techniques, and provides
a base of modern techniques that can be further improved upon by researchers in this field.

i

DEDICATION AND ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Dr Ryan McConville, whose ex-
pertise in machine learning greatly contributed to my ability to develop new and interesting
ways to recommend people to each other. I truly appreciate him making time for me every

week, even during the busiest periods, for helping me with everything from maths to ethics, and
for astute TV and pizza recommendations.

I would also like to express my gratitude to the numerous other academics who helped me
along the way both at the University of Bristol and at conferences, with progress reviews and
ideas for improvements to papers or algorithms. In particular, I am grateful to Professor Weiru
Liu for helping guide the direction of my research, and for her thoughts on my thesis.

I acknowledge the academic contributions made by my former supervisor Dr Palomares to
the sections related to papers where he is listed as an author.

I’d like to thank my family: my wife Konatsu, my parents Peta and John and my sister Alice
for keeping me sane during a pandemic PhD. Without their support, this thesis would have been
a much more difficult and much less enjoyable endeavour.

Finally, I’d like to thank my fellow PhD students and especially my friend Ercan Ezin for all
sorts of interesting discussions and perspectives on both my algorithms and life in general.

iii

AUTHOR’S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the
requirements of the University’s Regulations and Code of Practice for Research
Degree Programmes and that it has not been submitted for any other academic

award. Except where indicated by specific reference in the text, the work is the
candidate’s own work. Work done in collaboration with, or with the assistance of,
others, is indicated as such. Any views expressed in the dissertation are those of the
author.

SIGNED: .. DATE: ..

v

TABLE OF CONTENTS

Page

List of Tables xiii

List of Figures xv

1 Introduction 1
1.1 Recommender Systems . 1

1.1.1 Recommender Systems Classification . 2

1.1.2 Recommender System Challenges . 3

1.1.3 Recommender System Evaluation . 4

1.2 Reciprocal Recommender Systems . 8

1.2.1 Reciprocal Recommender System Applications 8

1.2.2 Reciprocal Recommender Design . 9

1.2.3 Reciprocal Recommendation Evaluation . 11

1.2.4 Challenges of Reciprocal Recommendation 11

1.3 Motivation and Research Questions . 14

1.3.1 Content-Based Filtering . 14

1.3.2 Collaborative Filtering . 15

1.3.3 Hybrid Systems . 16

1.3.4 Features of Reciprocal Systems . 16

1.4 Original Contributions . 16

1.4.1 Content-Based Filtering . 16

1.4.2 Collaborative Filtering . 17

1.4.3 Hybrid Systems . 18

1.5 Thesis Overview . 19

1.6 Published Work . 20

1.7 Summary . 21

2 Background 23
2.1 Machine Learning Background . 23

2.1.1 Supervised Learning Methods . 24

vii

TABLE OF CONTENTS

2.1.2 Boosting . 26

2.1.3 Neural Network-Based Models . 27

2.1.4 Text Feature Extraction . 30

2.1.5 Learning from Images . 31

2.1.6 Suitability of Methods . 34

2.2 Reciprocal Recommendation Background . 34

2.2.1 Reciprocal Recommendation Literature Reviews 34

2.3 Content-Based Filtering . 35

2.3.1 Content-Based Recommendation . 35

2.3.2 Content-Based Features . 36

2.3.3 Image-Based Features . 37

2.3.4 Content-Based Recommender Systems . 38

2.3.5 Limitations of Content-Based Methods . 39

2.3.6 Content-Based Reciprocal Recommendation 40

2.3.7 Case Study: RECON . 42

2.4 Collaborative Filtering . 43

2.4.1 Collaborative Filtering for Recommendation 44

2.4.2 Collaborative Filtering for Reciprocal Recommendation 52

2.5 Hybrid Filtering . 55

2.5.1 Hybrid Recommendation . 55

2.5.2 Hybrid Reciprocal Recommendation . 56

2.6 Peripheral Topics . 56

2.6.1 Other Methods of Reciprocal Recommendation 57

2.6.2 Multistakeholder Recommendation . 57

2.7 Summary . 58

3 Collaborative Filtering 61
3.1 Introduction . 61

3.2 Background . 62

3.2.1 Collaborative Filtering . 62

3.2.2 Collaborative Filtering for Reciprocal Recommendation 62

3.3 Aggregation Strategies for Collaborative Filtering 63

3.3.1 Aggregation Functions . 64

3.3.2 Methodology . 65

3.3.3 Evaluation . 66

3.4 Latent Factor-Based Collaborative Filtering . 68

3.4.1 Methodology . 69

3.4.2 Evaluation . 70

3.5 Summary . 76

viii

TABLE OF CONTENTS

4 Hybrid Filtering 77
4.1 Introduction . 77

4.2 Background . 78

4.2.1 Hybrid Filtering . 78

4.3 Hybrid Filtering for Social Networks . 78

4.3.1 Hybrid Single-Class Reciprocal Recommendation 79

4.3.2 Item-to-User (Non-reciprocal) Matching . 80

4.3.3 Results and Discussion . 83

4.4 Summary . 85

5 Content-Based Filtering 87
5.1 Introduction . 87

5.2 Background . 88

5.2.1 Content-Based Reciprocal Recommender Systems 88

5.2.2 Machine Learning for Attractiveness . 88

5.3 Siamese Network-based Model for Image Preference 89

5.3.1 Methodology . 89

5.3.2 Recommendation Algorithm . 92

5.3.3 Evaluation . 93

5.4 Recurrent Neural Network-based Model for Image Preference 98

5.4.1 Training and Match Prediction . 99

5.4.2 TIRR vs Content-Based Algorithms . 101

5.4.3 TIRR vs Collaborative Filtering . 102

5.5 Summary . 103

6 Conclusions 105
6.1 Summary of Results . 105

6.1.1 Collaborative Filtering Results . 105

6.1.2 Hybrid Filtering Results . 107

6.1.3 Content-Based Results . 107

6.2 Summary of Original Contributions . 109

6.2.1 Collaborative Filtering Contributions . 109

6.2.2 Hybrid Contributions . 110

6.2.3 Content-Based Contributions . 111

6.3 Themes . 112

6.4 Answers to Research Questions . 113

6.4.1 Can the current state of the art for reciprocal recommender systems be

improved upon? . 113

ix

TABLE OF CONTENTS

6.4.2 What are the most effective methods for reciprocal recommendation, and

how does this contrast with the most effective methods for conventional

recommendation? . 113

6.4.3 Can models based on unstructured data such as photos be used to improve

on current content-based RRSs? . 113

6.4.4 Can content-based RRSs be used to improve on the results of collaborative

filtering RRSs in cold start situations? . 114

6.4.5 Is historical data a useful predictor of reciprocal preference in RNNs? . . . 114

6.4.6 Can modern techniques such as latent factor models be effectively adapted

to reciprocal recommender systems? . 114

6.4.7 Can the efficiency of reciprocal recommender systems be improved over

and above what’s possible with current models? 114

6.4.8 Does the aggregation function applied have a significant impact on the

effectiveness of the recommender system? . 114

6.4.9 Can hybrid systems be used to improve on the results of content-based and

collaborative filtering in reciprocal recommender systems? 115

6.5 Further Work . 115

6.5.1 Content-Based Filtering . 115

6.5.2 Collaborative Filtering . 115

6.5.3 Hybrid Filtering . 116

6.5.4 General . 116

6.6 Summary . 116

A Data 119
A.1 Online Dating Dataset . 119

A.1.1 Service Description . 119

A.1.2 Data Curation for Collaborative Filtering . 121

A.1.3 Data Curation for Content-Based Filtering 122

A.1.4 Dataset Characteristics and Limitations . 123

A.2 Recipe Sharing Dataset . 124

A.2.1 Service Description . 124

A.2.2 Data Curation for Hybrid Filtering . 125

A.2.3 Dataset Characteristics and Limitations . 125

B Experimental Procedures 127
B.1 LFRR . 127

B.2 HRRS . 128

B.3 ImRec . 129

B.4 TIRR . 130

x

TABLE OF CONTENTS

Bibliography 131

xi

LIST OF TABLES

TABLE Page

2.1 Content-Based Reciprocal Recommender Systems . 42

2.2 Example Ratings for Series by Users . 45

2.3 Mean-Centered Ratings . 46

2.4 Similarity ratings between pairs of users (2SF) . 46

2.5 Collaborative Filtering Reciprocal Recommender Systems 52

2.6 Content-Based Reciprocal Recommender Systems . 56

3.1 Best results obtained by varying the thresholds for different aggregation functions . . 68

3.2 Results based on best F1 score from each aggregation function tested applied to RCF

and LFRR . 74

3.3 Time (seconds) to calculate a user-user score, and to generate recommendations, from

a dataset of N interactions . 75

3.4 Training time in seconds for LRFF over 10 iterations of gradient descent, from a

dataset of N interactions . 75

4.1 Results obtained by varying the threshold for bidirectional preference score-based

recommendation . 85

5.1 The structure of the CNN used as the symmetrical part of the network to create

embeddings . 91

5.2 Results based on best F1 score for all relevant algorithms. 96

5.3 AUC for ImRec and LFRR for different preference indicators. 97

5.4 The layers of TIRR following the mapping of images into 128-dimensional space by

the pre-trained Siamese network . 99

5.5 Results based on best F1 score for content-based algorithms. Here we can see that the

proposed method TIRR significantly outperforms the other approaches. 102

5.6 Results based on best F1 score for the TIRR and LFRR algorithms. Here we can see

that the content-based TIRR improves upon the collaborative filtering-based LFRR. . 102

6.1 Time (seconds) to calculate a user-user score, and to generate recommendations, from

a dataset of N interactions . 107

xiii

LIST OF TABLES

A.1 Example dataframe for collaborative filtering training and testing. 122

A.2 Example dataframe for training a Siamese network. 123

A.3 Example dataframe for hybrid collaborative filtering algorithm. 125

A.4 Example vector representations of recipes. 125

xiv

LIST OF FIGURES

FIGURE Page

1.1 Recommender Systems Visualisation . 2

1.2 ROC Curve Example . 7

1.3 General conceptual model for Reciprocal Recommender Systems 10

2.1 Example Regression Tree . 24

2.2 Example Stump . 26

2.3 Perceptron . 27

2.4 Network of Perceptrons . 28

2.5 Feature Map of Local Receptive Field to Neuron . 29

2.6 Structure of a CNN . 29

2.7 Structure of a Siamese Network . 32

2.8 Structure of a Recurrent Neural Network . 33

2.9 Content-Based Filtering . 36

2.10 Using Similarities to Make Predictions. (Inspired by diagram on page 92 of [5].) . . . 48

3.1 ROC curve obtained for each aggregation function considered in the RRS model. . . . 67

3.2 LFRR Visualisation . 70

3.3 ROC curve obtained for each aggregation function considered in the RCF model. . . . 73

3.4 ROC curve obtained for each aggregation function considered in the LFRR model. . . 73

4.1 General scheme of the HRRS Model . 81

4.2 ROC curve obtained for the content-based, collaborative and hybrid models. 84

5.1 Siamese network visualisation. Refer to Table 5.1 for the CNN architecture details. . 91

5.2 ImRec visualisation . 93

5.3 ROC Curve for siamese network to predict image preferences. 94

5.4 Pretrained Siamese Network Embeddings . 94

5.5 ImRec and RECON ROC curves. 95

5.6 Curves for ImRec and LFRR for cold-start situations for various numbers of preference

indicators. 97

xv

LIST OF FIGURES

5.7 TIRR: the architecture to predict matches using an LSTM to interpret historical

preference data on user photographs. 98

5.8 The process by which TIRR is trained. Three independent datasets used represented

by different colours. 100

5.9 Content Based Algorithm ROC Curves demonstrating the significant improvement in

AUC with TIRR. 101

5.10 ROC Curves showing the performance of the content-based TIRR against the current

state of the art collaborative filtering algorithm LFRR. 103

6.1 ROC curve obtained for each aggregation function considered in the RCF model. . . . 106

6.2 ROC curve obtained for each aggregation function considered in the LFRR model. . . 106

6.3 ROC curve obtained for the content-based, collaborative and hybrid models. 107

6.4 Siamese Network Embeddings . 108

6.5 ImRec and RECON ROC curves. 108

6.6 ROC Curves showing the performance of the content-based TIRR against the current

state of the art collaborative filtering algorithm LFRR. 109

A.1 The usage flow for the online dating service . 120

xvi

C
H

A
P

T
E

R

1
INTRODUCTION

Recommender Systems (RSs) are personalisation tools that are used to help users of

services find what they are looking for. Conventional RSs recommend items to users.

Reciprocal Recommender Systems (RRSs) are a subset of recommender systems that rec-

ommend users to other users. They are used on social services, online dating and job recruitment

platforms. RRSs have received comparatively little attention compared to item recommendation.

This thesis describes a number of original contributions to the field of Reciprocal Recommenda-

tion that significantly advance the field, many of which are based on fundamentally different

technologies from conventional recommendation.

=======

1.1 Recommender Systems

Recommender Systems were popularised by services such as Amazon1 and Netflix2. Out of a

desire to increase user engagement and facilitate their choice between potentially tens of millions

of products on the site, RSs developed profiles of users based on their explicit preferences and

implicit preferences derived from behaviour on the site. These preference profiles could then be

used to recommend products to users. These systems effectiveness could easily be measured,

assessed and improved: if users clicked on or purchased items they were recommended, the

interaction was considered a success.

Recommender systems typically make recommendations by generating a preference relation

between a user and an item. This is a score representing how much the system estimates a

user will like an item, and generally lies between 0 and 1. Elementary RSs score a number of

1https://www.amazon.com
2https://www.netflix.com

1

CHAPTER 1. INTRODUCTION

candidate items, and either recommend the items with the highest scores, or re-rank search

results based on these scores. More sophisticated systems might also take into account factors

such as whether or not the user has seen the item before, and serendipity (whether the user is

unlikely to come across the item in the course of their normal behaviour) [49].

1.1.1 Recommender Systems Classification

Figure 1.1: Recommender Systems Visualisation

The general process by which recommendations are made is visualised in Figure 1.1. A RS

takes data from the user, which is generally (but not limited to) some combination of the user’s

ratings for previous items, which may be expressed as explicit or implicit preferences, their

behaviour and their own attributes. The recommender system uses these, often in combination

with data from other users, to calculate scores for candidate recommendations. These recommen-

dations are usually ranked, and then displayed to the user. As the system accumulates more data

about a user, the recommendations generally become more accurate.

As shown in the diagram, there are three main categories of Recommender System ac-

knowledged in the literature [5]: Content-Based Systems, Collaborative Filtering Systems and

Hybrid Systems. These three categories are also used to classify reciprocal systems, and are each

discussed briefly in this section.

Content-based systems use explicit or implicit preference expressions by users to establish

profiles of users describing their preferences for properties of items. These profiles are then used

to make recommendations of items that fit these preference profiles. The profiles are often built

from users’ behaviour. For example, on a shopping service a user Alice purchases four items from

the Gardening subcategory and two from the DIY subcategory. A content-based system might

infer that Alice likes home improvement, and subsequently recommend her items related to this.

Content-based systems have the advantage of being relatively simple to design and are often

efficient to run.

2

1.1. RECOMMENDER SYSTEMS

Collaborative filtering systems use correlations between users to make recommendations,

based on identifying similarities between the user viewing the recommendations and other

users who have expressed similar preferences. For instance, on a streaming platform, two users

Bob and Charlie have both watched The Matrix, Mission Impossible and Die Hard. After Alice

watches The Matrix and Mission Impossible, a collaborative filtering system might recommend

Die Hard to her based on her similarity to Bob and Charlie. There are a great many factors in

user choice; in the case of movies, people might make choices based on genre, preferred actors,

family situation and so on. Collaborative filtering has the advantage of being able to take account

of these factors without having to make the potentially faulty assumptions underlying content-

based systems, and as a result generally outperform them [39]. However, they do suffer from

the Cold Start Problem [76], where a new user is not able to receive effective recommendations

because similarity coefficients cannot be effectively calculated based on very little data.

Hybrid systems attempt to combine the advantages of content-based and collaborative

filtering. Burke describes a number of ways of doing this [29]. For example, in Weighted systems

the preference relation is based on a weighted average of the output of the content-based and

collaborative filtering algorithm. Switching systems will use the result of a content-based or

collaborative filtering algorithm depending on the context, often used to mitigate the Cold-

Start Problem by using a collaborative filtering system after sufficient behaviour data has

been generated. Hybrid systems tend to perform the best of the three categories based on

competitions on large datasets such as the Netflix Prize Challenge [22]. However, their design

and implementation is also more complex and the potential gains are sometimes minor over a

straightforward collaborative filtering implementation.

Besides these three main categories, there are a number of other minor categories of RS

for more specific situations. For example, Knowledge-Based Recommender Systems derive rec-

ommendations from general trends in user demographics, and Context-Sensitive Recommender

Systems tailor their recommendations to fluctuations in user behaviour over contexts such as time

and location. As reciprocal recommendation is still in a relative infancy compared to user-item

recommendation, these situation-specific subcategories are not discussed in this thesis.

1.1.2 Recommender System Challenges

This section describes challenges and common problems with all recommender systems, whether

user-item or reciprocal. These terms are used throughout this thesis and are therefore defined

here.

Data Sparsity [15] is a common feature of RS datasets. A popular shopping service such as

Amazon3 might have millions of users and tens of thousands of products, and each user is likely

to express an opinion about a small subset of them. Effective recommender systems algorithms

must be able to calculate recommendations based on vast quantities of very sparse data. This

3http://www.amazon.com

3

CHAPTER 1. INTRODUCTION

can be challenging, as collaborative filtering algorithms often interpret user preference for items

as a matrix [23], which causes practical problems if stored and operated on naively in memory.

The Cold-Start Problem [76, 82] is a specific problem within the context of data sparsity,

where recommendations are required for a user who has recently joined the service and recom-

mendations are needed with very little data. Generally, recommender systems depend on having

a certain amount of information about a users and items to make recommendations: collaborative

filtering solutions depend on expressions of preference to establish useful correlations between

users, and content-based filtering algorithms often depend on inferred preferences to create

profiles for users. New users and new items do not have this information, many of these methods

therefore generate ineffective recommendations for these users. Because attracting and keeping

new users is an important concern for many businesses, a considerable amount of work has been

dedicated to solving the cold-start problem [129], with many algorithms that are able to achieve

very high levels of accuracy on existing test data still performing poorly in the case of new users.

Filter Bubbles [100] occur when a user whose preferences have been established is then

recommended only items that relate to those preferences and never has an opportunity to see

other types of items. This problem is often self-reinforcing: if a user continues to click on their

own recommendations without searching, their preferences for those items are reinforced within

the system and they are even less likely to see different items in future. This is particularly a

problem in news recommendation [85, 86]. In this context, a filter bubble created where a user

is not exposed to information from different sources can significantly impact their views and

opinions. A recommender system that does not create a filter bubble is said to have Serendipity

[49].

Scalability [135] describes the problem where recommender systems take increasingly long

to make recommendations as users and ratings are added to the system. Real datasets often

have millions of users, so algorithms that can quickly make recommendations on toy examples

lose their ability to do so on large datasets. Online services often require recommendations to be

made in real time, which is not possible with some algorithms that require O(n2) time or even

longer to make accurate recommendations.

1.1.3 Recommender System Evaluation

There are two methods commonly used to evaluate recommender systems, Offline Evaluation

and Online Evaluation. This section discusses both methods, and a number of metrics that have

been used to evaluate RSs.

Online evaluation involves implementing the proposed recommender system into a live

service environment, where recommendations are displayed to users and their reactions to these

recommendations is recorded. Exactly what data is recorded depends on the environment and

what the service considers a successful interaction. A streaming service might consider a user

watching a recommended movie to the end and giving it a high rating a success; an advertising

4

1.1. RECOMMENDER SYSTEMS

agency might consider a click to be a success. Successes and failures over a fixed period of time

allow evaluation metrics described below to be calculated, which gives a measure of the system’s

performance.

Existing offline evaluation for recommender systems evaluates the system’s ability to perform

on a test dataset comprised of user preferences for items that the system has not seen before.

Offline evaluation has a number of advantages. It is often much more convenient than online

evaluation, as it does not require the recommender system to be implemented in a commercial

environment. The same test data can also be used to evaluate multiple recommender systems,

making it easy to compare results. However, it is not possible in the context of offline evaluation

to present a user with recommendations and have them choose, which is the ultimate goal of

RS design. It is therefore necessary to make some assumptions about what would be a useful

predictor of good recommendations in the context of a static test data set.

Classification metrics tend to be more useful for most applications of recommender systems.

These use a binary criteria such as whether or not a user watched a movie recommended to

them to measure an individual prediction as success or failure. The most common evaluation

methods use comparison metrics between the RS’s predicted score for an item and the user’s own

rating. Early RS evaluation was done with a focus on accuracy: minimising the error between the

system’s predicted ratings and a user’s actual ratings. The metric most commonly used in older

evaluations is the Mean Absolute Error (MAE) [27, 130]. For N ratings of r i i ∈ 1..N, and for pi as

the rating for r i predicted by the recommender system, the MAE Ē is defined as:

(1.1) ¯MAE =
∑N

i=1 pi − r i

N

Intuitively MAE would correlate well with real world recommender system performance.

However, it is particularly unrepresentative of the most common task of recommender system:

that of finding the best items to present to the user [55]. From the point of view of this type of

recommender system, which might aim to select items with extremely high predicted ratings

from tens of thousands of possibilities, differentiating 1/10 from 7/10 is less important than

differentiating 9.4/10 and 9.5/10. However, the MAE does not take this into account, and a system

with a low MAE from its ability to accurately predict poor ratings for items is not necessarily

able to present satisfactory recommendations to users.

Some of these issues are solved through the use of Mean Squared Error (MSE).This is

calculated as:

(1.2) ¯MSE =
∑N

i=1(pi − r i)2

N

This ensures that all results are positive, and has the advantage of emphasising outliers

in the results. However, squaring the results can make the error less intuitive, as it becomes

5

CHAPTER 1. INTRODUCTION

measured in squared units of the response variable. The Root Mean Squared Error is therefore

more commonly used, which retains the advantage of the MSE but is measured in the same units

as the MAE. This is the square root of the MSE:

(1.3) ¯RMSE =
√∑N

i=1(pi − r i)2

N

More commonly used evaluation metrics in modern recommender systems are Precision and

Recall. Precision in this context describes the proportion of recommendations that were successful,

and recall describes the proportion of potentially successful recommendations retrieved [55]. If

the set of recommendations made is R and the set of successful recommendations is Rs, the

precision is defined as:

(1.4) Precision = |Rs|
|R|

We define the set of items in the test set that would be considered successful recommendations

by the system as Ps, then the recall is defined as:

(1.5) Recall = |Rs|
|Ps|

There are a number of methods of combining these two metrics, most commonly the F1 Score

[118], which is essentially the harmonic mean of precision and recall:

(1.6) F1= 2∗Precision∗Recall
Precision+Recall

There also exists a more general form of the F1 Score known as the F-Score or Fβ Score.

This is used when the precision is known to be more or less important than the recall, and uses

a modifier, β, which represents how many times more important recall is than precision. It is

defined as:

(1.7) Fβ = (1+β2)∗Precision∗Recall
(1+β2)Ṗrecision+Recall

However, due to the lack of current research into the correct precision/recall balance for

evaluation of reciprocal recommender systems, all research in this PhD measures the standard

F1 score, providing precision and recall separately.

The final metric that is commonly used in recommender system evaluation is related to

the Receiver Operating Characteristic Curve (ROC Curve). This is a line graph that plots the

true positive rate of the model against the false positive rate. An example ROC Curve (taken

6

1.1. RECOMMENDER SYSTEMS

Figure 1.2: ROC Curve Example

from Chapter 5) is shown in Figure 1.2. In the case of recommender systems, an algorithm will

usually output a value between 0 and 1 of predicted user preference for an item. To draw the

ROC curve from test data, a threshold is varied between 0 and 1, and the item is considered a

recommendation if the generated score is above the threshold. The rate of true and false positives

from that threshold value then becomes a point on the graph. An algorithm’s general effectiveness

over all possible thresholds can be measured by the area under the ROC curve, known as the

Area Under the Curve (AUC).

It is important to note, however, that even with the existence of the F1 Score and similar

metrics, it is important to consider precision and recall independently, as the two metrics are not

of equal value, and their importance depends on the recommender system and the application

in question. An extremely large online shopping service might be particularly concerned with

precision, retrieving all possible recommendations is less important than ensuring that the

retrieved recommendations are accurate. A new streaming service with a relatively small number

of movie choices might be concerned with recall to ensure that the user sees a variety of potentially

successful recommendations and isn’t shown the same small set of recommendations every day.

In addition to these metrics, a number of other evaluation methods have been designed to

measure more specific facets of RSs [64]. For example, Ge et al.[49] describe metrics to measure

Coverage (the number of items over which a RS has enough information to make a successful

recommendation) and Serendipity (the extent to which a RS is capable of making successful

recommendations that are not very similar to items the user has liked in the past). Diversity is

sometimes used as a metric for the amount of variety present in recommendations, which can

often lead to higher levels of satisfaction and engagement for users [133].

7

CHAPTER 1. INTRODUCTION

1.2 Reciprocal Recommender Systems

This section describes the basics of reciprocal recommendation, which is person-to-person rather

than item-to-person recommendation, including the areas they are used in, common RRS de-

sign and evaluation, and the challenges presented by this field as compared to conventional

recommender systems.

1.2.1 Reciprocal Recommender System Applications

The most common application of RRSs in the literature is online dating [72, 113]. Dating services

rose to popularity in the ’90s with Match.com and in the last decade, services with broad appeal

such as Tinder4 and other services such as OurTime5 helped extend the appeal of the field to

certain demographics. Online dating is an interesting application of reciprocal recommendation

for several reasons:

• Users of dating services often provide very rich information about themselves, including

categorical data such as age and job, descriptive text profiles and photographs. Different

users might base their decisions on very different subsets of these criteria [45, 146].

• It is popular, especially recently, for online dating services to include binary methods of

expressing positive and negative preferences for other users, which facilitates machine

learning and evaluation.

• Dating services often have a huge number of registered users, sometimes in the millions, of

which only a very small number might be successful matches for each other.

For these reasons, much of the research done on reciprocal recommender systems has used data

from online dating services - more detail on this can be found in Chapter 2. However, very few of

these datasets are public, which often impedes progress in this area.

Online dating in particular is an interesting research area because dating services have

widely different objectives and presentations of information depending on their objectives. Some

services such as Twitter are aimed at younger people, and focus very heavily on using photos

as the primary decision-making process for users. Other services, such as Match.com, focus on

slightly older markets, and present entire profiles. The correct recommender system for an online

dating service may vary significantly depending on the presentation and primary market of the

service.

Reciprocal recommendation is also commonly applied to job recruitment. An example of such a

RRS can be seen in [132]. Recruitment is often slightly more complex in the sense that a company

is generally not a single person, but conceptually two entities are aiming to make decisions about

4https://tinder.com/
5https://www.ourtime.co.uk/

8

1.2. RECIPROCAL RECOMMENDER SYSTEMS

each other, and it is beneficial to recommend jobs to candidates who might be able to successfully

apply for them. Both candidates and companies often specify in great detail what they are looking

for, making content-based filtering in this area an interesting challenge.

Social recommenders such as He et al. [53] and Tsuorougianni et al. [137] are a much larger

field, thanks to the proliferation of social networks such as Facebook6, and the fact that unlike

dating, many social services make the user-user connections public. Much of the research into

social matching is based on graphs and recommending friends of friends. While this is valuable

and informative research, systems based on friends-of-friends tend not to be applicable to the

one-to-one matching in dating and recruitment because in particular heterosexual dating is

represented by a bipartite graph, and Alice’s connection’s connection is another female and

therefore not a potential match. LBGTQ+ dating data was not available for experiments during

this thesis, but graph-based algorithms from social networks might be applicable in this case.

Reciprocal recommenders have a number of other potential applications which have yet to be

explored in depth. There are a few descriptions in the literature of systems related to education,

such as matching teachers to students [160] or matching learning partners with each other [114].

The potential scope for RRSs is much wider than this, however, and they might usefully be

applied in any situation where two people interact with each other, from matching customers to

customer service representatives, to creating business connections and matching investors to

company founders.

1.2.2 Reciprocal Recommender Design

In Section 1.1.1, methods of classifying Recommender Systems were discussed. These classifica-

tions logically extend to reciprocal recommendation: RRSs can also be described as Content-Based,

Collaborative Filtering and Hybrid. Similarly to conventional recommendation, the objective of

reciprocal recommendation is to establish a preference relation between 0 and 1. However, while

a conventional recommender estimates a unidirectional preference relation of, for instance, how

much Alice might like the movie Die Hard, a RRS estimates a bidirectional preference relation

for how much Alice and Bob will like each other.

As shown in Figure 1.3, a basic RRS uses elements of conventional recommender systems

to calculate this bidirectional preference relation. Depending on whether the relationship is

symmetrical (as in a social service) or asymmetrical (as in recruitment or heterosexual dating),

one or two models is used to establish two unidirectional preference relations that represent

Alice’s preference for Bob, and Bob’s preference for Alice. These are then aggregated into a single

unidirectional preference relation that can be used to make recommendations.

To illustrate this, a RRS RECON is described [113]. RECON is a RRS for online dating,

and is one of the earliest reciprocal recommenders in the literature, and the paper to establish

the term Reciprocal Recommender. It is a content-based reciprocal recommender, and makes

6https://www.facebook.com/

9

CHAPTER 1. INTRODUCTION

Figure 1.3: General conceptual model for Reciprocal Recommender Systems

recommendations based on categorical data (such as binned age, job and hobbies) as opposed

to unstructured data such as freetext profiles and images. In order to generate unidirectional

preference scores for Alice, RECON establishes a preference profile for her based on her historical

expressions of preference. For example, if all of her previous messages had been to people in

the age range 20 - 30, this category would be identified with a higher number in her preference

profile.

In order to identify whether Bob would be a good match for Alice, RECON compares Bob’s

attributes to Alice’s preference profile, and calculates a score that represents how closely the two

match, which represents a unidirectional preference relation from Alice to Bob. RECON then

performs the same operation in reverse, comparing Alice’s attributes to Bob’s preference profile to

calculate a second unidirectional preference score from Bob to Alice. Finally, the system combines

the two scores using the harmonic mean into a single reciprocal preference score that represents

how much Alice and Bob might like each other.

While many reciprocal recommender systems follow the above pattern of generating two

unidirectional preference relations that are subsequently aggregated, more recent works such

as Neve et al. [92], which uses have shown that there may be advantages to predicting the

bidirectional preference relation directly. This is described in more detail in Chapter 5. Some

reciprocal recommender systems also base their recommendations on solutions to the Stable

Matching Problem formulated by Gale and Shapley [47] where N men and N women must be

optimally paired with each other. While solutions to this theoretical problem have limitations

in terms of efficiency on a large number of real users unevenly divided into gender and sexual

preference, some of the solutions have informed modern RRS designs.

10

1.2. RECIPROCAL RECOMMENDER SYSTEMS

1.2.3 Reciprocal Recommendation Evaluation

Conventional RSs are generally evaluated using standard machine learning methods: the dataset

generally represents a sparse matrix of users and items, with users indicating either binary

positive and negative preferences or scores for items. Where a model is part of the system, they

are usually trained using a percentage of this dataset, and then datapoints that were excluded

from the training set form the test set, from which the model’s metrics such as accuracy, precision

and recall can be inferred. Recommender system designers often consider precision an important

metric for RSs [21], as a high precision helps to establish trust in the system. Users who trust

their recommendations are much more likely to use them in future.

In the RRS domain, Pizzato et al. [112] suggest modified versions of the precision and recall

metrics for evaluation. These take account of the fact that a recommendation in a RRS setting is

only successful if both users like each other. Precision is therefore defined as the proportion of

recommendations where the user being recommended and the user being recommended indicated

positive preference. RL is defined as the set of users who were recommended each other and

expressed mutual preference, and RN is the set of users who were recommended to each other

but at least one of them expressed negative preference. Precision is then defined as:

(1.8) Precision = |RL|
|RL|+ |RN|

Recall in RRS settings is defined as the proportion of the total set of expressions of mutual

preference retrieved by the model. A low recall indicates a small total number of recommendations,

and therefore a high chance that a returning user will see the same recommendations repeatedly.

Where P is the set of total reciprocal matches, recall is defined as:

(1.9) Recall = |RL|
|P|

The F1 score can also be calculated exactly as described in Section 1.1.3.

Note that success of a model in the context of these metrics based on matches in a reciprocal

setting implies a degree of coverage that it does not in non-reciprocal settings. Success based on

matches would not be achieved by recommending the top users on the service, as these users

match with a very small percentage of their recommendations, so even if it achieved one-way

success, it would not generate a high precision.

1.2.4 Challenges of Reciprocal Recommendation

Reciprocal recommendation has challenges over and above the normal demands of recommenda-

tion in the sense of correctly establishing bidirectional preference. This section describes several

additional challenges that are unique to reciprocal recommendation.

11

CHAPTER 1. INTRODUCTION

1.2.4.1 Data Structure

Conventional recommender systems are trained on sparse matrices of user preferences for items.

In order to make effective recommendations, either numerical ratings or binary positive and

negative preferences are required - we cannot make inferences about a user’s preference or lack

thereof for an item based on no interaction with it. On, for instance, shopping and streaming

services, users are quite likely to provide both positive and negative feedback about the items.

It may, however, be unethical for social and recruitment services to provide the ability for

users to publicly rate each other. Positive and negative preference must therefore be inferred

implicitly from user actions. Positive preference is relatively easy to infer - users tend to interact

with other users who they prefer. Negative preference is more difficult, as a simple lack of

interaction might indicate a variety of factors besides negative preference, including the users

not having seen each other. A likely more accurate method of inferring negative preference is

to consider a lack of a response to an interaction. If Alice indicates a preference to Bob, and he

sees this but chooses not to respond, Bob most likely has a negative preference towards Alice.

While this method allows us to build models, it has some weaknesses. In particular, while star

ratings on shopping services provide a clear scale and approximate symmetry, users might ignore

preferences for a variety of reasons besides negative preference.

In addition to preference indicators, direct objectives of reciprocal recommendation are often

difficult to evaluate against based on data held by the system. The ultimate objective of a

recruitment service might be hiring, but the service might only hold data until the company and

candidate exchange contact details. Similarly, an online dating service is unlikely to have complete

data on which couples have stayed together. RRSs therefore have to use intermediate objectives

such as binary indicators of preference to make their recommendations. While increasing the

number of positive interactions is likely to increase the chance that one of these interactions will

represent a success ultimately, it is more difficult for system designers to evaluate the impact of

the system on the service as a whole than it is for conventional recommender system designers.

1.2.4.2 Fairness

In standard RS settings, extremely popular items tend to make the task of recommendation easier.

On a streaming service that uses a collaborative filtering algorithm, a universally popular movie

is likely to appear in Alice’s recommendation lists because she is highly likely to be correlated

with someone who watched and expressed a preference for it regardless of her history. However,

if she also watches and enjoys it that isn’t necessarily a problem.

Conversely, a similar pattern on a RRS is much more likely to result in a negative outcome.

On a recruitment service, recommending a popular job opening to a large number of candidates

is likely to inundate the company with applications, and candidates who fail to get the job are

unlikely to be happy with the outcome. Similarly, the distribution of preference expressions on

dating services tends to form a long tail, with a small number of users receiving an extremely high

12

1.2. RECIPROCAL RECOMMENDER SYSTEMS

volume of preference expressions. Including these users in recommendation lists, regardless of

preference scores, is likely to result in a negative experience for both the user being recommended

and the user viewing recommendations.

Maintaining fairness is an important challenge in RRS environments, and while a few authors

have attempted to address this problem [70], it continues to be a problem for system designers.

1.2.4.3 Preference Aggregation

As discussed in Section 1.2.2, a RRS often consists of generating two unidirectional preference

relations that are combined into a single bidirectional preference relation. This aggregation is

unique to reciprocal recommendation and worthy of study in its own right. The formula used

to combine these two scores is known as an aggregation operator. Even for combining only two

numbers, there are a variety of options, the most simple of which is the arithmetic mean, defined

for two numbers a and b as:

(1.10) AM(a,b)= a+b
2

While a simple arithmetic mean might represent a balance between the two scores, there

are a number of situations where this is intuitively not a representative aggregation. If Alice’s

preference score to Bob is 0.6 and Bob’s preference score to Alice is also 0.6, an arithmetic mean

results in a bidirectional preference relation of 0.6. The same result is given by the arithmetic

mean if the unidirectional scores are 0.3 and 0.9 respectively, even though the much lower

score from Alice to Bob makes a positive mutual preference intuitively less likely. Similarly, an

extremely popular user is much less likely to respond to preference indicators irrespective of

score. The most commonly used aggregation operator in the literature [111, 150] is the harmonic

mean, defined for two numbers a and b as:

(1.11) HM(a,b)= 2 ·a ·b
a+b

The harmonic mean of two numbers punishes large differences in a and b therefore helping

to resolve the main weakness of the arithmetic mean as described above. While HM(0.6,0.6)

still resolves to 0.6, HM(0.3,0.9) resolves to 0.45, which intuitively might represent a better

estimation of how likely a reciprocal recommendation consisting of these two scores is likely to

succeed.

More complex aggregation operators exist [154]. Depending on how these unidirectional scores

are combined the performance of the reciprocal recommender system can change substantively

[94], making this a valuable area of research.

13

CHAPTER 1. INTRODUCTION

1.3 Motivation and Research Questions

Conventional RSs have received significant attention over the last decade. Partly because of

commercial interests and the willingness of companies involved to finance research through

competitions such as the Netflix Prize [22], there are a very large number of papers on the

application of advanced machine learning techniques to user-item recommendation.

In contrast, there is relatively little in the literature regarding reciprocal recommendation,

and various opportunities to advance the field, both by applying modern recommendation tech-

niques to the reciprocal field, and through research into the aspects of RRSs that differentiate

them from conventional recommenders. In this section, these gaps in the field are described in

more detail based on the standard categories for recommender systems. This lack of research

into RRSs forms a strong motivation for further investigation into this field.

This section briefly reviews the current state of each subcategory of RRS, and defines one or

more research questions that this thesis will aim to answer. In addition, the following general

research questions will be explored through every chapter:

1. Can the current state of the art for reciprocal recommender systems be improved upon?

2. What are the most effective methods for reciprocal recommendation, and how does this

contrast with the most effective methods for conventional recommendation?

1.3.1 Content-Based Filtering

As discussed in Section 1.2.2, the earliest example of a RRS in the literature is RECON, which is

a content-based system. RECON makes recommendations based on categorical data and binned

continuous data, which is often provided by users on dating services. Other examples of content-

based systems in the literature make similar inferences about user preferences from categorical

data, and base their recommendations on this data.

While categorical data is an extremely useful resource in the sense that it is both straightfor-

ward to develop algorithms based around it, and often very efficient for these algorithms to run,

services in RRS settings often have very rich unstructured data available. Users on dating ser-

vices often provide photographs and detailed text profiles about themselves. Recruitment services

often allow companies and candidates to describe in detail what they are looking for. Informal

research suggests that users often focus heavily on this unstructured information when making

preference decisions, and incorporating this into recommendation could significantly improve

results. Modern machine learning methods, and especially Convolutional Neural Networks, have

recently been very successful at extracting meaning, usually from unstructured text and images,

and these techniques could be extracted to extract features from this data in RRS contexts and

subsequently estimate user preference and make recommendations.

Content-based RRSs also have a significant advantage over conventional RSs, because they

are less susceptible to outside influences. Users will often base decisions regarding what movie to

14

1.3. MOTIVATION AND RESEARCH QUESTIONS

watch or what product to buy on information from outside the service, such as recommendations

from friends or review sites. However, users on social and especially dating services make their

decision based solely on the information available on the service itself.

Research questions for content-based filtering are as follows:

3. Can models based on unstructured data such as photos be used to improve on current

content-based RRSs?

4. Can content-based RRSs be used to improve on the results of collaborative filtering RRSs

in cold start situations?

5. Is historical data a useful predictor of reciprocal preference in RNNs?

1.3.2 Collaborative Filtering

The field of conventional recommendation has advanced significantly in the last decade, with

relatively advanced methods making incremental improvements to recommendation results on

public datasets. Modern systems often consider user-item preference as a matrix, and use dimen-

sionality reduction methods to infer latent factors from these matrices. User preference for these

latent factors are inferred from their preferences, and can be used to make recommendations.

In contrast, until 2019, the most advanced collaborative filtering algorithm used for reciprocal

recommendation was based on the nearest neighbour algorithm, one of the simplest methods of

collaborative filtering, and the first example algorithm introduced in Aggarwal’s seminal text on

recommender systems [5]. Research shows that kNN solutions to recommendation often do not

exhibit the performance of more advanced methods in terms of the evaluation metrics introduced

in Section 1.2.3[22]. While the basis many modern recommendation techniques are likely to

be transferable to reciprocal environments, research is needed on the best ways to adapt these

algorithms, and which ones perform particularly well or badly in these environments.

This thesis aims to improve on current collaborative filtering reciprocal recommender systems

by adapting techniques that have been proved effective in user-item recommendation. In addition,

collaborative filtering RRSs commonly determine the reciprocal score by combining results from

two user-item recommender systems. This thesis aims to determine whether the use of alternative

aggregation functions has an impact on the results from the RRS.

Research questions for collaborative filtering are as follows:

6. Can modern techniques such as latent factor models be effectively adapted to reciprocal

recommender systems?

7. Can the efficiency of reciprocal recommender systems be improved over and above what’s

possible with current models?

8. Does the aggregation function applied have a significant impact on the effectiveness of the

recommender system?

15

CHAPTER 1. INTRODUCTION

1.3.3 Hybrid Systems

Hybrid content-collaborative algorithms are often capable of outperforming algorithms based on

only one of these two technologies. This is demonstrated through competitions such as the Netflix

Prize challenge [22], which make it easy to compare the performance of two algorithms directly

against each other.

However, there are very few examples of hybrid RRSs in the literature. As with the other

areas, this could potentially form a set of algorithms with very high impact to the users of services

in RRS environments, and further research into combining the rich content available with more

advanced collaborative filtering techniques could potentially be used to develop algorithms with

much stronger evaluation metrics than the ones currently available.

Where hybrid systems are concerned, this thesis explores the following research question:

9. Can hybrid systems be used to improve on the results of content-based and collaborative

filtering in reciprocal recommender systems?

1.3.4 Features of Reciprocal Systems

As explained in Section 1.2.4, there are a number of unique features of reciprocal systems. Until

relatively recently, RRS algorithms were usually adapted directly from conventional recom-

menders, with relatively little treatment given to these unique factors. Few systems attempted

to account for fairness directly. When aggregation of unidirectional preference relations was

required, the harmonic mean was generally used without justification.

While the RRS algorithms in the literature were successful without necessarily considering

these unique aspects of the field, taking them into account might significantly improve results,

and further research was needed to establish the extent to which they could effect results.

1.4 Original Contributions

This section outlines the original contributions made by the author to the field of reciprocal

recommendation, divided broadly into content-based, collaborative and hybrid filtering and

practical technological innovations.

1.4.1 Content-Based Filtering

Many dating services allow users to present their profiles using unstructured data. This data

might include photographs and freetext profiles. Social services such as Instagram 7 increasingly

use images or videos as their main form of communication. On services specific to certain hobbies,

such as cooking, users might present their recipes or creations as photographs. Visual media is

7http://www.instagram.com

16

1.4. ORIGINAL CONTRIBUTIONS

extremely important in determining interactions, and informal research demonstrates this to

some extent 8.

Although categorical data can be a valuable resource, as demonstrated by algorithms such

as RECON [113], unstructured data such as freetext and videos is also valuable, but before

the work conducted in this thesis there were no algorithms based on interpreting unstructured

data. Chapter 5 introduces a system that predicts personal preference based on images. This

system outperforms previous content-based RRS algorithms, and this difference is particularly

pronounced in cold-start situations.

The original contribution of this thesis to the field of content-based RRS algorithms is fourfold:

1. To the best of our knowledge, the first model to predict personal preference using image data

is presented. This model uses a Siamese Network to differentiate between user preference

of two photographs of each other. The fact that machine learning can predict preference to

photos of each other is a significant step forward for both machine learning and potentially

social psychology.

2. A novel algorithm is presented using this model to predict attraction on an online dating

service. This model is demonstrated to outperform current content-based methods and to

outperform collaborative filtering algorithms in cold-start situations. It is also the first RRS

to use unstructured data to make recommendations.

3. A second model was developed to evaluate histories of user preferences for images and

make predictions based on this history. This is the first model that interprets user history

as a continuous time series for RRS.

4. This model is used as part of a RRS that predicts reciprocal preference directly instead

of two bidirectional preferences. This model is extremely accurate, and predicts user

preferences better than current collaborative and content-based filtering methods.

This represents a significant advancement of the field of content-based RRSs, and demon-

strates that perhaps even more so than user-item recommender systems, advanced machine

learning techniques can effectively be applied to the unstructured data dominant in reciprocal

environments to create very accurate RSs.

1.4.2 Collaborative Filtering

Since the advent of recommender systems, collaborative filtering has been the gold standard for

effective models in all settings. In user-item recommendation, this has resulted in increasingly

complex models used for recommendation, based on various machine learning techniques such

as Convolutional Neural Networks [163] and Restricted Boltzmann Machines [123]. Reciprocal

8https://www.gwern.net/docs/psychology/okcupid/weexperimentonhumanbeings.html

17

CHAPTER 1. INTRODUCTION

collaborative filtering techniques had, however, been stagnant for a number of years, with little

progress past kNN based models such as RCF [150].

Chapter 3 presents a collaborative filtering reciprocal recommender based on latent factor

models. Most modern user-item collaborative filtering RSs use latent factor models in some form

to make recommendations; they have the advantage of both producing accurate recommendations,

and being very time efficient.

An important part of collaborative filtering is preference aggregation. Collaborative filtering

by design is suited to predicting unidirectional preferences, and in the case of RRSs, these

unidirectional preferences must be combined into a single bidirectional preference relation. Since

the development of RECON, the harmonic mean was used for this with no particular justification

[113]. Testing reveals that this is not necessarily either the overall best or the best in certain

situations.

The contribution of this thesis to collaborative filtering is threefold:

1. An original latent factor model is trained based on stochasic gradient descent. This model

is demonstrated to effectively predict latent factors representative of user preferences for

unidirectional preference estimation.

2. This latent factor model is used to develop a RRS for predicting mutual attraction. Offline

evaluation demonstrates that this system has very similar evaluation metrics to the best

in class RRS, but significantly improves on efficiency.

3. An evaluation of aggregation functions for preference aggregation in RRSs is performed,

which demonstrates that the choice of aggregation function has a significant impact on the

evaluation metrics of RRSs.

These contributions move the field of collaborative filtering in reciprocal environments closer

to their user-item counterparts. The demonstration that latent factor models are effective in

reciprocal environments opens the door for other researchers to experiment with more advanced

methods of generating latent factors, while the results regarding preference aggregation represent

the first exploration of this unique aspect of reciprocal systems.

1.4.3 Hybrid Systems

There are some ambiguities in the term Hybrid Recommender System. A few papers such as

that by Qu et al. [115] imply a hybrid RRS in the sense of recommendations based on both

unidirectional and bidirectional preferences. There are, however, no examples of hybrid RRSs

in the commonly understood sense of using both content-based and collaborative filtering to

generate recommendations.

Chapter 4 presents a hybrid system using techniques from both content-based and collab-

orative filtering to make recommendations for a social service based on recipe sharing. The

18

1.5. THESIS OVERVIEW

hybrid system uses a weighted system to balance the contributions of the content-based and

collaborative filtering systems to the bidirectional preference relation. This system produced

better results than individual techniques based on offline testing.

The contributions of this thesis to hybrid filtering are threefold:

1. A model was trained based on Word2Vec [120] that made recommendations based on

freetext recipe text. This represents the first content-based model incorporating freetext

used as part of a RRS.

2. An original hybrid system was developed to make recommendations on a social service for

recipe sharing. This system proved more effective than the individual models for making

reciprocal recommendations.

3. The vast majority of RRSs in the literature operate on two separate classes of users (for

instance, male and female users as part of heterosexual dating recommendation). We

demonstrate that similar technologies can be used on social services with only a single

class of users.

These contributions represent a significant advancement to the field of hybrid reciprocal

recommendation, and the advantages of this hybrid system over its component models indicates

that hybrid filtering is also a powerful tool for reciprocal recommender system designers.

1.5 Thesis Overview

This section gives a brief overview of the ground covered by each individual chapter of this thesis

following this introduction in Chapter 1.

Chapter 2 provides a thorough overview of the research literature related to this thesis. This

is primarily research related to recommender systems and especially reciprocal recommendation.

However, some peripheral topics used in the construction of certain algorithms described in this

thesis are also covered. For example, certain machine learning technologies are particularly

important to the design of image-based recommender systems, and these are covered extensively

in the literature, so relevant papers are presented in Chapter 2.

Chapter 3 describes an algorithm, Latent Factor Reciprocal Recommender, (LFRR) which

makes reciprocal recommendations based on user preference for latent factors extracted through

training. This algorithm is evaluated against the previous best in class collaborative filtering

RRS as a baseline. This chapter also discusses preference aggregation and evaluates the impact

of different aggregation functions on both the baseline algorithm and on LFRR.

Chapter 4 presents an algorithm Hybrid Reciprocal Recommender System (HRRS) for mak-

ing recommendations for recipes. The construction of a freetext-based model for predicting user

preference is described in detail, and the weighted combination of the results from this model

19

CHAPTER 1. INTRODUCTION

with a latent factor model for recommendation is also described. This algorithm is evaluated

against other baseline algorithms.

Chapter 5 describes contributions made to content-based reciprocal recommendation. In

particular, two models are discussed in detail: a model trained to differentiate between liked and

disliked images, and a modeltrained to predict user image preference based on preference history.

These models are used as the key component of recommender systems that are evaluated against

each other and against existing baseline content-based and collaborative filtering algorithms.

Chapter 6 provides a final brief summary of the work presented in this thesis including

original contributions made, and defines the themes and conclusions that can be drawn from this

work when viewed as a whole.

1.6 Published Work

Much of the material in this thesis is based on peer-reviewed and published works. In this section,

a list of publications by the author is presented below, alongside the chapter in this thesis where

it is described.

Arikui - A Dubious User Detection System for Online Dating in Japan [95]. James

Neve, Ivan Palomares. 2018. IEEE SMC. Outside the scope of this thesis.

Latent factor models and aggregation operators for collaborative filtering in recip-
rocal recommender systems [96]. James Neve, Ivan Palomares. 2019. ACM Recsys. Chapter

3.

Group Decision Making with Collaborative-Filtering ‘in the loop’: interaction-based
preference and trust elicitation [43]. Ercan Ezin, Ivan Palomares, James Neve. 2019. ACM

Recsys. Outside the scope of this thesis.

Aggregation Strategies in User-to-User Reciprocal Recommender Systems [94]. James

Neve, Ivan Palomares. 2019. IEEE SMC. Chapter 3.

Hybrid Reciprocal Recommender Systems: Integrating Item-to-User Principles in
Reciprocal Recommendation [97]. James Neve, Ivan Palomares. 2020. WebConf. Chapter 4.

ImRec: Learning Reciprocal Preferences Using Images [92]. James Neve, Ryan Mc-

Conville. 2020. ACM Recsys. Chapter 5.

Reciprocal Recommender Systems: Analysis of state-of-art literature, challenges
and opportunities towards social recommendation [104]. Ivan Palomares, James Neve,

Carlos Porcel, Luiz Pizzato, Ido Guy, Enrique Herrera-Viedma. 2021. Information Fusion. Chapter

2.

Photos Are All You Need for Reciprocal Recommendation in Online Dating [93].

James Neve, Ryan McConville. 2021. ArXiV. Chapter 5.

20

1.7. SUMMARY

1.7 Summary

This chapter first described recommender systems and identified three classifications into which

they are commonly divided: collaborative filtering, content-based filtering and hybrid filtering.

These three sections form the structure for this thesis, which makes original contributions to all

three areas.

Following this, reciprocal environments were described in more detail, including the general

structure of reciprocal systems, how their evaluation differs from conventional user-item recom-

menders and some of the problems and challenges that make RRS design more difficult than

standard recommender systems.

There are a number of important gaps in the literature with regard to reciprocal systems, as

described in Section 1.3. RRSs and the models behind them have recieved very little attention

compared to conventional systems. This thesis addresses the gaps in content-based, collaborative

and hybrid systems through a number of original models briefly outlined in Section 1.4, as well

as exploring various peripheral topics unique to reciprocal environments such as preference

aggregation and malicious user identification.

Finally, this chapter introduced the structure of the rest of this thesis, and enumerated the

peer reviewed and published work that forms the backbone of the chapters describing the original

contributions made in detail.

21

C
H

A
P

T
E

R

2
BACKGROUND

There has been extensive research done on Recommender Systems in general. For user-item

recommender systems, there are large public datasets available provided by companies

such as Netflix and Amazon. While the lack of public datasets available has made

research into reciprocal environments significantly more difficult, there has nonetheless been

some research conducted specifically into RRSs, usually using private datasets provided by

companies such as online dating services. In this section, relevant user-item recommender

systems are reviewed in addition to all research into reciprocal systems that has helped to

advance the field. As described in Chapter 1, recommendation can be divided into content-based,

collaborative and hybrid filtering. This section follows this division, reviewing the three types of

recommender in this order.

=======

2.1 Machine Learning Background

This section provides a background on some of the general machine learning technologies used

in RSs, which will be referred to throughout this and subsequent chapters. They are used for

extracting features from users and items and for direct score prediction, and are referred to

throughout this dissertation.

The techniques described in this section were chosen because they relate specifically to other

parts of this thesis. This is either because they relate specifically to a technique described later

in this thesis, such as Random Forest Models, which are described below and subsequently used

in Chapter 5, or because they are part of an algorithm discussed in a paper that is covered in

the literature review section of this chapter, such as AdaBoost’s use in [70], discussed in Section

2.4.1.2.

23

CHAPTER 2. BACKGROUND

2.1.1 Supervised Learning Methods

Supervised Learning describes machine learning algorithms that learn to predict an output given

a training set of input-output pairs. Recommender systems can be described in these terms. The

output is simple: either a binary positive/negative preference for an item, or a score within a

range. The input is less straightforward: any aspect of the user’s behaviour until they indicated

preference for the item in question could be considered as the input part of the input-output pair,

such as previously purchased items and the user’s own profile.

Most supervised learning methods are adaptable to classification tasks (assigning a distinct

category to an item) and regression tasks (predicting a value within a range). While both of

these are used in the context of recommender systems, regression is more common, as most

recommender systems aim to rank items in order, which is easiest to do if every item has a

distinct score. Regression-based methods are therefore the focus of this section, with the caveat

that all of the methods described are trivially adaptable to classification tasks.

2.1.1.1 Regression Trees

Regression trees, and their sister technique for solving classification problems, Decision Trees,

are a machine learning technique that make predictions by repeatedly splitting the data based

on the input features. They are occasionally used directly in recommender systems [35, 68], and

also form the basis for other techniques that are more commonly used. Regression trees consist

of branches that split the data based on specific criteria, and leaves that represent predictions.

For example, consider predicting a user’s score for popular horror movie The Shining directed by

Stanley Kubrick. A simple regression tree might look as follows:

Figure 2.1: Example Regression Tree

In Figure 2.2, blue nodes represent decision points and green nodes represent outputs. The

tree’s branches divides the decision space into a set of J non-overlapping regions R j. While the

24

2.1. MACHINE LEARNING BACKGROUND

above simple tree was manually constructed, for large data sets consisting of many items and

parameters, the tree is learned from the data. In constructing a regression tree, an objective

function known as an Impurity Function is minimised. An example of this is the Residual Sum of

Squares function. This is the difference between the observed value in the training data yi, and

the mean value ŷ of the values in its region as defined by the regression tree.

(2.1) RSS =
J∑

j=1

∑
i∈R j

(yi − ŷ)2

Regression trees are generally trained by Recursive Binary Splitting: creating a new split

that results in the greatest immediate reduction in RSS. Formally, this is a split of R j into R1

and R2 where the following is minimised:

(2.2)
∑

i∈R1(j,s)
(yi − ŷR1)2 + ∑

i∈R2(j,s)
(yi − ŷR2)2

Regression trees trained naively for optimal performance on a test set have the weakness of

overfitting: fitting too closely to the training set, reducing their efficacy on the test set and on

real-world performance [122]. A detailed discussion of overcoming this is outside the scope of this

thesis, but pruning techniques, where branches are removed to reduce the variance of the tree’s

performance at the cost of accuracy on the training set.

2.1.1.2 Random Forest

Random Forest [57] models aim to improve on the performance and reduce overfitting of decision

trees. A simple random forest classifier for regression trains B regression trees. In order that the

trees do not all end up at the same result, bagging is used: each tree is trained using a random

subset of training data and features. For the output of a regression tree fb, the prediction for a

sample in the test set x′ is typically the mean of the results of all decision trees:

(2.3) f̂ (x)=
B∑

b=1
fB(x′)

Models such as random forest that are based on the outputs of a number of weaker models

are known as ensembles. Random forest models are often used in recommender systems, either

directly or as part of classifying or extracting features from content at an intermediate stage

[9, 159].

Random forest models are widely used as part of recommender system implementations

[9, 159]. They are often used as part of extracting features for collaborative filtering. In the

context of this thesis, they are used in Chapter 5 for combining preferences for content-based

features into a single score.

25

CHAPTER 2. BACKGROUND

2.1.2 Boosting

Boosting is an alternative method to bagging to improve on the results of other models, most

commonly used with regression and decision trees. While bagging creates an ensemble from

random samples in the training set, boosting creates an initial model, and then trains each

subsequent model on the incorrectly classified examples from the previous model. The ensemble

consists of all of the previously trained models.

The most commonly used method of boosting in the literature at the time of writing is

AdaBoost [46]. As with other boosting methods, AdaBoost can be used to attempt to improve on

the results of any classifier, but is most commonly used with Decision Stumps - the weakest form

of a decision tree, consisting of a single branch and two leaves, which split the data based on the

criteria of the branch.

Figure 2.2: Example Stump

N stumps are initially selected, one for each variable in the data, and each initially with

weight 1
N . For each stump, the Total Error (TE) is calculated, which is the fraction of incorrectly

classified examples. The performance of each stump n can then be calculated as αn:

(2.4) αn = 1
2

ln
1−TE

TE

The weights of each stump wn are then updated by:

(2.5) wn = wn ∗ e±αn

Where αn is treated as positive in cases where the predicted output and the actual output are

different, and negative in cases where the predicted and actual output agree.

AdaBoost has been successful both as a core part of recommender systems [128] and in

tackling peripheral problems such as fairness [70] and attack detection [155].

26

2.1. MACHINE LEARNING BACKGROUND

2.1.3 Neural Network-Based Models

2.1.3.1 Neural Networks

Neural Networks are a form of machine learning originally based on simulating the way that

neurons (human brain cells) work. A neuron receives signals across synapses from surrounding

cells. If these signals exceed a certain threshold, the neuron triggers and sends signals to other

nearby cells. The logical representation of a neuron is a perceptron, shown in Figure 2.3.

Figure 2.3: Perceptron

A perceptron takes inputs x1, x2, ... multiplied by weights w1,w2, These are generally

described as vectors x and w such that their dot product w · x constitutes the sum of the products

of the weights and inputs. The equivalent value to the neuron’s threshold is the perceptron’s bias,

b. The output of the perceptron is 1 or 0 depending on whether the sum of the products of weights

and inputs exceeds the bias:

(2.6) output=
0, if(w · x)+b ≤ 0

1, if(w · x)+b > 0

Single perceptrons are only capable of solving linearly separable problems. To solve more

nuanced problems with non-linear solutions, they are networked together as in Figure 2.4 such

that the output of one perceptron forms one of the inputs of another. The layers in between the

input and output layer are known as Hidden Layers.

Equation 2.6 is known as the activation function. In this case, the activation function is a step

function. In networks, Sigmoid Neurons are commonly used in place of perceptrons, which have

the same essential function, but replace the activation step function with the Sigmoid Function,

which is a smooth function constrained between 0 and 1:

(2.7) σ(z)= 1
1+ e−z

27

CHAPTER 2. BACKGROUND

Figure 2.4: Network of Perceptrons

Neural networks are generally trained using Stochastic Gradient Descent (SGD). This process

minimises an objective function for the network by taking small steps down the gradient of the

function. A commonly used objective function for simple networks is the Mean Squared Error

(MSE). For a training set of n pairs (x, y(x)) where x is the input and y(x) is the desired output,

and where a is the value predicted by the network, the objective function is:

(2.8) C(w,b)= 1
2n

∑
x
||y(x)−a||2

SGD repeatedly computes the error over a mini-batch of training examples, and then takes

small steps down the error gradient based on the results of this mini-batch by modifying the

weights of the final layer of neurons before the output. A technique called backpropagation is

then used to compute the changes to previous layers in terms of the changes made to the final

layer in order to graudally minimise the error. As this thesis focuses mainly on applications of

neural networks and not on network design as such, a detailed discussion of the mathematics

involved in this is outside the scope.

2.1.3.2 Convolutional Neural Networks

Fully-connected neural networks are often more difficult to work with compared to other methods

of machine learning such as random forests due to the very large number of hyperparameters.

Convolutional Neural Networks (CNNs) are a specific type of neural network that are particularly

adept at classifying complex data such as images [79]. They have been extremely successful at

tasks that other machine learning methods have struggled with, such as classifying objects on

arbitrary backgrounds [74].

Conceptually, CNNs have been successful at classifying various types of data, including

music and videos. However, for simplicity of language they are described here in the context of

interpreting image data. CNNs slide a small n×n window across the image, known as a local

28

2.1. MACHINE LEARNING BACKGROUND

receptive field. At each position covered by the local receptive field, the pixels inside the field

are taken as the inputs to a neuron in the network, as shown in Figure 2.5. The fact that CNNs

divide images into regions in this way allows them to interpret local features of the image, as

opposed to fully connected networks which treat each pixel value as an input independent of the

surrounding pixels. The map from the input to the hidden layer is known as a feature map.

Figure 2.5: Feature Map of Local Receptive Field to Neuron

CNNs often consist of multiple feature maps across the same local receptive fields. This

information is generally simplified by Pooling Layers which condense the information in convo-

lution layers by mapping the outputs from a small region of neurons in a convolution layer to

a single neuron in one or more pooling layers. Pooling is often a relatively simple function: for

example, Max Pooling outputs the largest of the inputs, as a way of keeping the most significant

information.

The output of a CNN is generally one or more layers of neurons that are fully connected

to every output in the preceding pooling layer. Through training, this expresses the features

interpreted by the hidden convolution and pooling layers as the objective of a regression or

classification task. The structure of a CNN as a whole is depicted in Figure 2.6.

Figure 2.6: Structure of a CNN

CNNs have been successfully applied to a variety of areas, including image recognition to

levels of accuracy that surpass human performance [54], as well as extracting information from

various other mediums such as music [36] and video [98]. The following sections explore the

application of these techniques to recommender systems.

29

CHAPTER 2. BACKGROUND

2.1.4 Text Feature Extraction

Text comprises important content in many RS environments. In some, such as news RSs, text is

the main form of content. In other cases, such as online streaming services, text descriptions of

items are often used by users as part of their decision-making process. In this section, methods

for extracting meaning from text commonly used in RSs are described.

2.1.4.1 Term Frequency - Inverse Document Frequency

Term Frequency - Inverse Document Frequency (TF-IDF) [51, 78]. TF-IDF aims to identify the

most significant words in a document based on their frequency across the whole dataset. It is

calculated as the product of two numbers: the term frequency and the inverse document frequency.

The term frequency t(t,d) of a term t in a document d, where f t,d is defined as the number of

times the term t occurs in d is given by:

(2.9) t f (t,d)= f t,d∑
t′∈d f t′,d

The inverse document frequency is a measure of how rare a term is across all documents, and

therefore how significant it is if it appears repeatedly in any individual document. If d is part of

a set D of N documents, the inverse document frequency is defined as:

(2.10) id f (t,D)= log
N

|{d ∈ D : t ∈ d}|
The TF-IDF is defined as their product:

(2.11) t f − id f (t,d,D)= t f (t,d) · id f (t,D)

Because TF-IDF is a measure of the importance of a word in a document that forms part of a

set, it can be used to extract the most significant words for the purposes of matching. For example,

movies about sports are quite common, but movies about very specific sports such as badminton

are rare, so if a user watched several movies where the word "badminton" was mentioned several

times in the description, this could be a useful predictor of their preferences and could be used to

make recommendations in future.

2.1.4.2 Word2Vec

Subsequent approaches used more advanced methods for feature extraction such as Word2Vec

[89] or deep learning-based methods [19], which represents words as vectors, and similarities

in vectors as compared with the dot product corresponds to a similarity in meaning between

words [67]. Word2Vec represents words as embeddings: vectors that represent the words in a

30

2.1. MACHINE LEARNING BACKGROUND

space, where similar vectors imply semantic similarity between words. For example, a Word2Vec

implementation might have the word "dog" represented by [1,4,3], "bulldog" represented by

[1,4,4] and "computer" as [8,2,7]. Vector similarity in this context is generally calculated as the

cosine similarity, which for two vectors A and B is defined as:

(2.12) sim(A,B)= A ·B
|A||B|

Word2Vec-based systems are trained on large corpuses of text. They are based on next word

prediction models, which aim to predict a missing words in a corpus of text. These models are

relatively easy to train because of the existence of large corpuses of text data such as Wikipedia1,

and the fact that no explicit labeling is needed. These models are generally trained using skip-

grams: moving windows over words before and after the word being predicted. Word2Vec systems

use these models to estimate similarity between words within a certain context. For example,

given a skip-gram for the sentence, "John sat on a ____", and the next word prediction model

estimates a high probability for the omitted word being "chair" or "sofa", we can infer that those

two words have similar meaning in this context.

This can be more effective than TF-IDF alone because in recommender system contexts,

text is written with the user rather than the recommender system in mind, and often different

item descriptions are written by different people with different writing styles. Word2Vec-based

systems are able to make recommendations even when the specific words used are different.

2.1.5 Learning from Images

Many recommender system environments contain image data, such product photos on shopping

sites, preview images on movie streaming services and user photos in online dating environments.

These images are part of users’ decision making process, and therefore being able to extract

features from them can improve recommendations.

As discussed in Section 2.1.3.2, CNNs are an extremely effective method for training models

to extract information from images. This section outlines in more detail two extensions to the

basic CNN model that are used later in this thesis.

2.1.5.1 Siamese Networks

Siamese Networks [71] are a particular structure of CNN that compare two items against each

other, and evaluate them based on the difference between their features. Their most common

use in the literature is in face recognition, where they are used to compare two images of faces

against each other and decide whether or not they are photos of the same person. However, they

have been adapted to a variety of domains, such as object tracking [25]. Siamese Networks also

1http://wikipedia.com

31

CHAPTER 2. BACKGROUND

perform significantly better than standard CNNs at one-shot learning: learning a class based

on a single or a very small number of examples [143]. This is a benefit in RS environments:

recommenders should be able to predict preferences for a user based on a small number of

expressions of preference.

Figure 2.7: Structure of a Siamese Network

Siamese networks are structured as in Figure 2.7. For simplicity of language, the following

discussion assumes that the inputs are images, although Siamese Networks can be used for any

type of input. The two inputs y1 and y2 to be compared are used as the inputs of two symmetrical

neural networks. These are commonly CNNs, although other types of networks are sometimes

used. The outputs of the final fully-connected layer of the CNNs form embeddings hy1 and hy2

of the images: vectors that represent the meanings of the images in the context of the network.

These two embeddings are then combined into a single vector that represents the difference

between the two images.

(2.13) DW (y1, y2)= |hy1 −hy2|

Siamese networks are often trained with Contrastive Loss. Traditional loss functions for

training CNNs such as Binary Crossentropy result in a small loss when the embeddings for

two images are similar to each other. This is often not desirable: in the case of face detection,

classifying two similar faces as the same face is just as wrong as classifying two very different

images as the same face. The Contrastive Loss function, uses a margin m, and depending on the

size of the margin, results in a high loss when the the network’s prediction is wrong about two

similar images. The loss function is defined as:

(2.14) L(y1, y2)= (1−Y)
1
2

(DW (y1, y2))2 +Y
1
2

(max(0,m−DW (y1, y2))2

where Y is the binary indicator representing Like and Nope, DW (y1, y2) is the embedded distance

between two images and m is the margin.

32

2.1. MACHINE LEARNING BACKGROUND

Siamese Networks have been used successfully for reciprocal recommendation [92], and are

described in this context with more detail in Chapter 5.

2.1.5.2 Recurrent Neural Networks

Data from RS environments often consists of sequences - in particular, when considering user

behaviour. There are a number of intuitive reasons why this might be the case. When using

streaming services, users might prefer certain kinds of music or movies at different times of the

day or week. Purchases on an online shopping service might relate to a specific objective, such

as building a new computer, and continuing to recommend them items related to this long after

they have finished is unlikely to be successful.

The neural networks described in Section 2.1.3 are known as Feedforward Networks: the

model produces an output for a single example that is independent of other examples. Recurrent

Neural Networks (RNNs) are an architecture of neural network that incorporates memory such

that the output from the last of a series of examples is different from that of a single example.

They have been used successfully in recommender systems to incorporate time series data into

recommendations [139, 147].

Figure 2.8: Structure of a Recurrent Neural Network

RNNs contain loops, which feed the output of a network back into current neurons. This

means that they implement the concept of memory: they store computed results, and these results

have an impact on subsequent predictions. This is shown in Figure 2.8. Each step therefore

incorporates information from the previous steps into the prediction.

’Standard’ RNNs are particularly good at processing short sequences, but their memory is

short-term memory: when training them using longer sequences, the early items in the sequence

have very little impact on the final prediction. This is known as the vanishing gradient problem

[58]. (This also exists in deep neural networks, where early layers learn very slowly when trained

with backpropagation).

Various structures have been proposed to overcome this limitation. One that has been partic-

ularly successful in allowing RNNs to hold and use information for longer is the Long Short-Term

Memory Network LSTM [59]. A LSTM uses a forget gate comprised of a Sigmoid function that

determines whether information is kept or not: a value close to 0 results in the information

being forgotten by the network, whereas closer to 1 results in the information being stored. This

33

CHAPTER 2. BACKGROUND

allows for much longer sequences to be processed, which is particularly useful in the field of

recommendation, where long sequences of user behaviour are common.

2.1.6 Suitability of Methods

This section describes a large variety of machine learning methods, and the most effective method

for a particular recommender system is not always immediately apparent without trial and error.

However, there are some rules of thumb that might usefully be followed when choosing which to

apply to a given situation.

As a general rule, problems are best explored using simple methods initially. If a problem can

usefully be solved using machine learning, simple models will often demonstrate some decree

of predictive power. Recently, Random Forest models are often used as part of initial modelling,

particularly for tabular data, as they are not very resource-intensive, and have a small number

of hyperparameters that significantly affect their predictive power, so tuning them is generally

not time-intensive. A random forest model that is able to make effective predictions can often

lead to the use of other methods such as boosting to gradually improve on evaluation metrics.

Two- or three-dimensional data such as photos and videos is often approached with neural

networks, and specifically CNNs. Certain structures have been demonstrated experimentally

to be especically good at solving certain problems, such as Siamese Networks for solving facial

recognition problems [71].

Problems related to text data are recently approached through the use of transformer-based

methods such as BERT [41]. These have not only been successful in general tasks such as

predicting the next word in a sentence, but also produce embeddings for sentences and documents

that can be conveniently visualised, clustered or used as the input to other machine learning

methods.

2.2 Reciprocal Recommendation Background

This section briefly presents background for reciprocal recommendation unrelated to individual

specific technologies. This includes literature reviews of RRS topics, in addition to psychological

research that provides a base for some recommender systems and RRS concepts.

2.2.1 Reciprocal Recommendation Literature Reviews

Several papers have reviewed existing literature in the RRS field, and explored the extent of

current technologies and opportunities for future advancement. The first paper to do this was

written by Pizzato et al. [112]. The paper was published in 2013, and reviewed the state of the art

at the time. The next publication to provide a review of RRS literature was a book chapter of the

Recommender Systems Handbook titled People-to-People Reciprocal Recommenders, by Koprinska

and Yacef [3]. Although this was intended as an introduction and is therefore briefer, but covers

34

2.3. CONTENT-BASED FILTERING

some more recent literature. Most recently Palomares and Neve conducted a more thorough and

up-to-date review of RRS literature, including definitions of various elements of the fields and

comparison of results from the different algorithms [104].

In addition to these three general reviews, Zheng also condicted a review of RRSs specifically

connected to recruitment [132]. This mainly focused on content-based recommender systems that

used analysis of candidate profiles to recommend suitable jobs.

2.3 Content-Based Filtering

This section presents an overview of the literature of content-based filtering. Firstly, it describes

collaborative filtering advancements in conventional recommender systems. Next, all available

research on content-based filtering in reciprocal environments is presented. Finally, a detailed

case study on a representative content-based filtering algorithm used as a baseline in subsequent

chapters, RECON, is presented.

2.3.1 Content-Based Recommendation

Content-based filtering is based on the concept that users like items that are similar to each

other. If 80% of Alice’s purchases on an Internet shopping service are DVDs, a DVD is intuitively

more likely to succeed than any other type of recommendation. This concept has been used since

the early days of Recommender systems research in the 1990s [17] [107]. Meteren et al. provide

an overview of this research [141].

The process of making recommendations is illustrated in Figure 2.9. The recommendation

process is generally as follows [62]:

1. Relevant attributes of items are identified

2. User profiles of preferences for items are created through explicit or implicit inference

3. Items are recommended based on their similarity to user preferences

Depending on the setting, different parts of this process may be more or less challenging.

In a setting such as news recommendation [78], the content is unstructured text, so feature

extraction is a challenging problem. In areas such as online shopping, where items usually have

predefined numerical and categorical attributes, research focuses on refining the recommendation

process. These areas of research are all highly relevant to reciprocal recommendation, where

both categorical and unstructured data is often available. In the following sections, approaches to

different aspects of content-based recommendation are discussed, followed by a discussion of the

inherent problems with content-based filtering.

35

CHAPTER 2. BACKGROUND

Figure 2.9: Content-Based Filtering

2.3.2 Content-Based Features

Item feature extraction is a non-trivial problem when the salient information about items is

either freetext or images. Even in the case of simple numerical and categorical data, there are

some nuances as far as feature extraction is concerned. For instance, Xia et al. [150] point out that

when using continuous numerical data such as age and height for online dating recommendation,

creating categories by binning the data might result in problems for users at the edges of bins.

However, in general feature extraction for categorical data is relatively straightforward, and

unstructured data such as text and images presents more challenges.

2.3.2.1 Text-Based Features

Since the inception of recommender systems, there has been a particularly strong interest in

news recommendation [65]. This is partly because of the public availability of very large news

datasets such as MIND dataset [148], and partly because of a number of unique challenges

associated with this field. In particular, some news items lose relevance very quickly [102] and

conventional collaborative filtering techniques, which often favour items with longer histories,

are less likely to be useful. Users also often change their preferences rapidly [31], which makes it

risky to rely on either explicit or implicit profiles [8].

Of relevance to reciprocal recommendation is the difficulty of feature extraction from news

articles, which are often of a variety of different styles and levels of formality. In particular, the

process of feature extraction has potential uses in reciprocal recommendation, where unstructured

text profiles for users are common.

More recently, recommender systems built on transformer-based feature extraction models

such as ELMO [110] and BERT [41] have become increasingly widely used [52, 152]. These are

transformers [142], which are deep neural networks consisting of an encoder and a decoder. The

encoder represents a sequence of words as a vector in high-dimensional space, and the decoder

maps that representation to another meaningful sequence of words (for example, in the case of

translation, this could be a sequence of words with the same meaning in another language). The

36

2.3. CONTENT-BASED FILTERING

vector produced by the encoder can be used as a meaningful representation of the text for the

purposes of recommendation.

2.3.3 Image-Based Features

Examples of content-based recommender systems basing their results on images is much less

common. Lei et al. used user preferences to train a model based on ImageNet [40] that predicted

user preference for one of two images [80]. This trains a network to map both users and images

into the same space by generating embeddings for both, with images that the user preferred

being close to the user in the space, and images the user did not like being further away. User

preference for subsequent images can then be predicted by relative distance from the user.

A similar example is DeepStyle [84], which uses a Siamese Network (described in Section

2.1.5.1 to predict user preference for clothes based on images). DeepStyle uses pairs of positive

and negative samples with user preference as the output to differentiate between the two images.

This can then be used to make predictions about whether a user might like a new image by

comparing it to an existing liked image. Arapakis et al. also designed an affective computing-based

recommender system, where user facial expressions are used to improve recommendations.

Outside the direct field of recommendation, work has been done on feature extraction that

is relevant to the work on recommendation using images presented in Chapter 5. In machine

learning, feature extraction on images is often done using Convolutional Neural Networks

(CNNs), which have been shown to be highly accurate at image classification tasks [40, 90]. Of

particular relevance is the high performance of CNNs in classifying images of people [7]. There

are fewer studies of feature extraction using human images; a few models claim to be able to

identify features such as age and even height from images of faces [61, 81], but the evaluations of

these models do not compare them to simple baseline methods such as predicting the average

every time, so it is difficult to ascertain how accurate they are.

Of particular relevance to reciprocal recommendation in the context of online dating, which is

of key interest in this thesis, is the prediction of attractiveness. Photos are an important part of

attraction to profiles in online dating [140, 146], and therefore being able to predict attractiveness

of a user from a photo is potentially a useful basis for the design of a recommender system for

this field. There is research on predicting the absolute attractiveness of images on social services

[88]. There are a number of papers that attempt to solve the problem of predicting absolute

attractiveness within the bounds of the demographic represented by a dataset - to predict how

attractive Alice is to the average person. Xu et al. [153] trained a neural network to predict facial

beauty trained directly on image data, which accurately predicts scores. Fan et al. [44] use a

deep neural network to estimate facial landmarks and predict attractiveness based on the ratios

between these landmarks.

A more relevant concept is personal preference - whether or not Bob’s photo is attractive to

Alice specifically rather than whether the photo is attractive in general - is an important part of

37

CHAPTER 2. BACKGROUND

a content-based recommender in this setting. There have been a small number of papers that

attempt to predict this. Rothe et al. [121] designed a CNN based on using extracted facial features

in combination with preference data from an online dating service to predict ratings for users,

with 82% accuracy. Jekel et al. [63] used a similar method, predicting unidirectional preference

based on features extracted by FaceNet and achieving an AUC of 0.83, which has comparable

accuracy, using various models including a neural network, SVM and linear regression. Although

these methods do not consider reciprocity or attempt to incorporate the models as part of a

recommender system, the results are evidence for the capacity of machine learning to predict

physical attractiveness from photos.

2.3.3.1 Recommendation Methods

Once relevant features for content-based recommendation have been identified, recommendation

can be done using a number of different methods. Nearest neighbour (kNN) methods are especially

common, where features are considered as a vector space, with items proximate to a user’s

previously preferred items being recommended [26]. kNN methods are also the most commonly

used methods in reciprocal environments.

kNN methods represent items as vectors in a space. These vectors may be as simple as a list

of numerical attributes (age, height and so on) or they may be more complex representations in

high dimensional space extracted from unstructured data such as text or images. kNN methods

use a similarity function to measure how close the two vectors are. The most common similarity

function is the Cosine Similarity. For two vectors X̄ and Ȳ , the Cosine Similarity is defined as:

(2.15) Cosine(X̄ , Ȳ)=
∑d

i=1 xi yi√∑d
i=1 x2

i

√∑d
i=1 y2

i

Recommendations are made in kNN settings by determining a Preference Profile for the user,

which consists of the average of the attributes previously preferred by the user. In the case of a

ratings scale, this profile might weight the attributes towards items with higher ratings. The

Cosine Similarity is then used to determine the closest items to the user’s preference profile.

2.3.4 Content-Based Recommender Systems

In addition to nearest neighbour, a number of other methods have been used to make recommen-

dations from features in content-based settings:

• Rule Induction Methods use rule induction to generate rules from a hierarchy of features

such as categories and subcategories on a shopping service. A decision tree is constructed

from these rules, and used to make recommendations for individual users [68].

38

2.3. CONTENT-BASED FILTERING

• Probabilistic Methods use systems such as Bayesian Classifiers to predict the probability

that a user will like a particular item given the items that they have previously liked [91].

• Heuristic Methods use custom designed algorithms to weight the importance of certain

features for recommendation, and use these to determine which items will be recommended

[48].

As the examples above show, the complexity in content-based algorithms tends to reside in

the feature extraction process, especially where unstructured data is part of the recommendation

process.

2.3.5 Limitations of Content-Based Methods

As discussed in previous sections, content-based algorithms have a number of strengths. To

summarise, they are straightforward to develop, they can make recommendations based on

relatively few preference expressions, and the data they use is the same data that the users

have used to make their decisions. However, content-based algorithms also have a number of

shortcomings:

1. Content-based filtering suffers from overspecialisation [2]. This occurs when a user becomes

trapped in a filter bubble [100] of only expressing preferences for items that are similar to

each other, which in turn reinforces the likelihood that those items will make up future

recommendations. For example, if Alice’s two favourite restaurants are Italian restaurants,

she is very likely to be recommended more Italian restaurants even if there are others that

she might enjoy. A few attempts have been made to design systems that compensate for this

tendency and introduce more serendipity [49]. For instance, genetic algorithms have been

proposed, where the mutations generate serendipitous recommendations that could then

be reinforced by the user [131]. However, the majority of purely content-based algorithms

still suffer from this problem.

2. Features used for content-based filtering are selected by ’feature engineering’. Representa-

tive features can be difficult to extract from unstructured data, and while the recommender

system is often trained to weight features based on effectiveness, the original feature

selection is done by the algorithm designers, depends on the domain knowledge of the

designers and is sometimes arbitrary [62]. This can limit the effectiveness of even a very

well designed algorithm. In addition, users can make decisions about purchases based

on data that does not exist on the service - for instance, Alice might decide to watch the

series Friends based on a review in the newspaper, or a friend’s recommendation. This is

important content that cannot be incorporated into the algorithm.

3. Even in offline testing, where issues such as the filter bubble do not arise, content-based

filtering methods consistently underperform compared to collaborative and hybrid methods

39

CHAPTER 2. BACKGROUND

[39]. Results for content-based filtering are generally worse on all metrics. The only area

where they outperform collaborative filtering is in cold start situations e.g. Neve et al.

[92], where collaborative filtering generally needs more information to make effective

recommendations.

As a result of these shortcomings, it is rare for modern services to use content-based filtering

as their main form of generating recommendations. Indeed, none of the top performing algorithms

in the Netflix Prize challenge were purely content-based algorithms [22]. However, as a part of

hybrid systems and in domains where there is rich content, they can still play an important part

in the recommendation process.

2.3.6 Content-Based Reciprocal Recommendation

Reciprocal environments are an interesting application for content-based algorithms because they

often negate some of the usual disadvantages of content-based systems. Certain filter bubbles are

desirable in reciprocal recommendation - for example, relationships with users who live in or near

the same city are more likely to be successful [134]. In general, in reciprocal environments, all of

the content that users are using to make their decisions is available to the algorithm. Empirically,

content-based methods have been relatively successful in reciprocal environments, with some

promising results. In this section, previous content-based RRSs are presented with a discussion

of their methods and results.

The earliest RRS in the literature is RECON [113], which is a content-based algorithm that

uses categorical data to make recommendations. The results were promising at the time, and it

provided a prototype formula for subsequent reciprocal recommenders. RECON is discussed in

detail as a case study in the subsequent Section 2.3.7, so the discussion is omitted here.

Alanzi & Bain [13] used Hidden Markov Models (HMMs) to develop a content-based RRS

for online dating. HMMs are statistical models used to interpret situations where the data

consists of a series of observations x(t). The causes of these events y(t) must be inferred from the

sequence x(1...t) The system uses user profile data to determine a user’s preferences: a successful

interaction implies a user’s preference for another user’s profile data. The data consisted of

interactions from a real online dating service, where users initiated interaction with each other by

sending messages. A message followed by a positive reply was considered a successful interaction,

whereas no reply or a negative reply was a negative interaction. The recommendation problem

is conceptualised as a bipartite graph, and the HMM is used to predict the next link given a

time series of previous links. The system outperformed other algorithms previously used on this

dataset by 9% [12].

Tu et al. developed a reciprocal recommender using Latent Dirichlet Allocation (LDA) to

cluster similar users [138]. Clustering is useful for recommendation because it identifies similarity

between users within the same clusters, which can then be used to recommend users to users

who have showed historical preference for certain groups. They first identify important variables

40

2.3. CONTENT-BASED FILTERING

of users’ profiles and eliminate redundant ones by calculating conditional entropy between these

variables. LDA is used to identify latent factors from these variables, and classify users into

groups that can subsequently be used to make recommendations. The recommender system

presented positive results based on synthetic data, and the authors hope to present further

results based on a real implementation.

O. Otakore et al. propose a system for reciprocal recommendation based on the results of a

questionnaire [101]. Users fill in a questionnaire upon registration giving their own preferences

and also what preferences they would accept from a potential partner. This is interesting as the

only example in the literature of explicit reciprocal preference inference. Some users are likely

to have strong preferences when they join an online dating service, and it would be useful to be

able to make initial recommendations based on these preferences. The authors do not give the

information required to evaluate in detail the effectiveness of this technique, but it nonetheless

constitutes an original and interesting approach.

In content-based filtering outside of online dating, Ding et al. describe a content-based

recommender system for graduate recruitment [42]. The system compares profiles of graduates

to historical data from other graduates who have already found employment, and uses this to

recommend jobs. The specifics of the similarity metric used are not discussed, but the system

appeared to outperform other similar systems. Yu, Liu and Zhang describe a content-based RRS

for recruitment based on inferring implicit and explicit preferences of companies and matching

them with candidates’ attributes and incorporating them into a vector space model [158]. Their

solution achieved a success rate of above 50% based on offline experiments.

A similar content-based system to RECON was developed for matching learners in MOOCs

(Massively Open Online Courses) [114]. These online study platforms have the level of connectiv-

ity of social networks, and they can encompass a large and diverse range of learners with different

background and demographics. Another characterising feature of MOOCs are their possibilities

for learning to work together in groups. Unlike previous recommender systems in MOOCs where

the course itself is the item being recommended, in this algorithm the users are recommended

to each other as peers to potentially study with, hence motivating the need for reciprocity. The

algorithm makes recommendations based on similarities between two users’ profiles. First, each

attribute i is mapped to an integer distance metric; for example, the distance metric for age is

the difference between binned ages. The distance score is the mean of the distances between

individual attributes di(x, y) out of N attributes:

(2.16) distance score(x, y)=
∑N

i=1 d(x, y)
N

While this section outlines the most interesting contributions to the field of content-based

reciprocal recommendation, a number of other papers have also been written on this topic. All

contributions to the field in chronological order are presented in Table 2.1.

41

CHAPTER 2. BACKGROUND

Reference Year Field Recommendation Method
Pizzato et al. [111, 113] 2010 Dating Nearest Neighbour recommen-

dation using inferred prefer-
ences

He et al. [53] 2010 Social Networks A Social Network-Based Recom-
mender System

Yu et al. [158] 2011 Recruitment Nearest neighbour graduate re-
cruitment

Alanzi & Bain [13] 2013 Dating Time series recommendation us-
ing Hidden Markov Models

Tsourougianni & Ampazis [137] 2013 Social Network Recommendation on Twitter us-
ing feature extraction

Hong et al [60] 2013 Recruitment Recommendation based on clus-
tering profile attributes

Tu et al. [138] 2014 Dating Recommendation based on clus-
ters from Latent Dirichlet Allo-
cation

Almalis et al. [14] 2014 Recruitment Recommendation from
Minkowski distance between
profile and posting

Ding et al. [42] 2016 Recruitment Nearest neighbour-based gradu-
ate recruitment

Prabhakar et al. [114] 2017 Social Nearest neighbour recommenda-
tion

Otakore et al. [101] 2018 Dating Questionnaire-based recommen-
dation

Zheng et al. [162] 2018 Dating Multi-stakeholder approach to
maximise utility

Garcia et al. [119] 2019 Dating Matching based on semantic
similarity between preferences
and profiles

Neve & McConville [92] 2020 Dating Siamese Network for image-
based recommendation

Neve & McConville [93] 2021 Dating Photos Are All You Need for Re-
ciprocal Recommendation in On-
line Dating

Table 2.1: Content-Based Reciprocal Recommender Systems

2.3.7 Case Study: RECON

RECON was the first RRS [113], and is a content-based RRS for online dating. The basis for

RECON was a technical report by Pizzato et al., who proposed a method for learning implicit

user preferences, considering user messages as expressions of preference [111]. In subsequent

chapters, RECON is used as a baseline for comparison and it is therefore presented in detail

42

2.4. COLLABORATIVE FILTERING

here.

RECON infers user preferences for specific attributes based on their previous expressions of

preference towards users with those attributes. Assume a user profile Ux of a user x represented

by:

(2.17) Ux = {vx,a∀ a ∈ A}

where vx,a represents the value of an attribute a ∈ A associated with Ux.

Defining m as the number of times a user expresses preference for a user y with attribute

value vy,a on attribute x, the authors define the preference of a user x for that attribute value as

a distribution:

(2.18) px,a = {(v,m) :∀unique discrete values v of a}

RECON then calculates preference scores (how much a user x likes a user y) by comparing

the inferred preferences to profiles of potentially recommended users. In order to make recom-

mendations, the harmonic mean aggregation operator is applied between pairs of unidirectional

preference scores to generate predicted reciprocal preference scores, which indicate how much

two users might like each other.

RECON performed favourably in offline testing compared to normal user search, and also

compared to standard non-reciprocal recommenders. It also has the advantage of largely avoiding

the cold start problem [76, 82, 129], as it is able to start making recommendations for a user after

having provided their first expression of preference. However, it does have several weaknesses in

addition to those inherent in content-based systems:

1. It accounts for continuous user attributes such as age by dividing them into buckets. This

reduces the likelihood that users whose attributes are on the edges of those buckets will be

recommended to similarly aged users in an adjacent bucket, even if they would otherwise

be suitable matches, thereby often categorising similarly-aged users as unsuitable for

matching. It was subsequently demonstrated that calculating distance scores rather than

bucketing continuous attributes improves results from RECON [150].

2. It does not account for the bias often caused by user popularity in its recommendations.

Users with universally popular traits are likely to be recommended disproportionately,

whereas less popular users might seldom be recommended.

2.4 Collaborative Filtering

Collaborative filtering has been the most successful method for making recommendations [39].

This section first describes collaborative filtering techniques for user-item recommender systems.

43

CHAPTER 2. BACKGROUND

After that, reciprocal recommender systems based on collaborative filtering are described. Finally,

a case study on a collaborative filtering algorithm that is used as a baseline, RCF, is described.

2.4.1 Collaborative Filtering for Recommendation

Collaborative filtering uses similarities between users to make recommendations. If Alice has

watched and enjoyed The Matrix and Apocalypse Now, and Bob has watched and enjoyed both of

those movies as well as Die Hard, we might infer that Alice’s preferences are similar to Bob’s,

and make recommendations based on this.

Even at this basic level, it is clear that collaborative filtering has some advantages over

content-based filtering. The data required to perform collaborative filtering is significantly easier

to extract and interpret - only users, items and preferences are required. Recommendations are

also not dependent on assumptions about which pieces of content are relevant: Alice might pick

movies by genre or by favourite actor, but in either case she will be similar to users who have made

choices based on the same motivations and therefore likely to receive accurate recommendations.

Collaborative filtering is commonly divided into memory-based methods and model-based

methods. Because the steps involved in making recommendations for these two methods are

quite different, they are discussed separately in Sections 2.4.1.1 and 2.4.1.2 respectively.

2.4.1.1 Memory-Based Collaborative Filtering

Memory-based collaborative filtering describes collaborative filtering strategies that calculate

recommendations as required rather than doing significant precomputation, and using these

to make recommendations. The most common of these is Neighbourhood-Based Collaborative

Filtering [5]. This was one of the earliest models developed for collaborative filtering. This is

described below as a representative example of memory-based collaborative filtering, and as a

basis for the design of a number of reciprocal collaborative filtering algorithms.

Memory-based methods make recommendations by estimating user ratings for items they

have not interacted with, and recommending those estimated to have high ratings. There are two

steps to neighbourhood-based collaborative filtering: identifying similar users to the target user,

and making recommendations from these users. Users’ preference histories are represented as

vectors. Similar users are then identified by calculating a Correlation Coefficient - a measure of

how alike two vectors are - between them and other users. Predicted ratings are then calculated

from ratings given by similar users. This is usually done by taking a weighted average of other

scores from N users depending on their degree of similarity.

This process is illustrated by the example in Table 2.2 using fictional users of an online

streaming service and their ratings for TV series. Series that the user has not previously

interacted with are denoted by "?", and the objective of the example is to estimate a rating for

Alice for The Sopranos so as to determine whether or not to recommend it.

44

2.4. COLLABORATIVE FILTERING

Series →
User ↓ The West Wing Friends The Sopranos 24

Alice 7 5 ? 9
Bob 9 5 9 7
Charlie 1 ? 4 4
Dick 2 7 3 ?

Table 2.2: Example Ratings for Series by Users

First, some notation is introduced to be used throughout this section. Collaborative filtering

methods consider user-item ratings as a m×n Ratings Matrix, notated by R = [ru, j] for m users

and n items, where ru, j is the rating by user u for item j. (The reasons for considering it a matrix

rather than a series of vectors becomes clearer in discussions of model-based filtering in Section

2.4.1.2.) The set of items rated by a user u is defined as Iu. For example, IAlice = {The West Wing,

Friends, 24}. The intersection operation for two users Iu ∩ Iv is also commonly used to determine

the ratings they have in common. For example, IAlice ∩ IDick = {The West Wing, Friends}.

In order to know whether or not to recommend The Sopranos to Alice, we must estimate its

rating. In this example, we use the Pearson Correlation Coefficient [24], which is a commonly

used similarity measure in collaborative filtering [5]. Before this can be effectively used, the user

ratings are first mean normalized. In our example above, Bob rates everything very highly, and

Charlie gives everything a very low rating; mean normalization allows us to calculate similarities

based on their relative preferences without a bias towards low or high numbers affecting this.

The mean calculation µu for each user u is defined as:

(2.19) µu =
∑

k∈Iu ru,k

|Iu|
The mean µu for the example in Table 2.2 is 7.0. We can then calculate the mean-centered

rating for each user su, j as:

(2.20) su, j = ru, j −µu

The mean-centered ratings for each user are presented in Table 2.3.

The correlation coefficient between two users, Sim(u,v) can then be calculated using Pearson’s

method:

(2.21) Sim(u,v)=
∑

Iu∩Iv su,k · sv,k√∑
Iu∩Iv su,k2

√∑
Iu∩Iv sv,k2

The similarities calculated using Pearson’s method are displayed in Table 2.4. The calculation

is commutative, so the resulting table is symmetrical along the diagonal, and a user’s similarity

45

CHAPTER 2. BACKGROUND

Series →
User ↓ The West Wing Friends The Sopranos 24

Alice 0 -2 ? 2
Bob 1.5 -2.5 1.5 -0.5
Charlie -2 ? 1 1
Dick -2 3 -1 ?

Table 2.3: Mean-Centered Ratings

Series →
User ↓ Alice Bob Charlie Dick

Alice 1.0
Bob 0.48 1.0
Charlie 0.44 -0.37 1.0
Dick -0.83 -0.95 0.6 1.0

Table 2.4: Similarity ratings between pairs of users (2SF)

with themselves is always exactly 1. In our example, Alice’s similarity with Bob based on Equation

2.21 is 0.48, her similarity with Charlie is 0.44 and her similarity with Dick is −0.83 (to 2sf).

Neighbourhood methods estimate scores using the top k correlated users, where k is generally

chosen based on empirical evidence from the application of the algorithm. Let Pu(j) be the set of

k closest users to u from the correlation coefficient who have rated item j. The prediction function

for r̂u, j, the estimated score for user u and item j is as follows:

(2.22) r̂u, j =µu +
∑

v∈Pu j Sim(u,v) · sv, j∑
v∈Pu j |Sim(u,v)|

If we set k = 2 in our example, Alice’s two closest users are Bob and Charlie so her estimated

score for The Sopranos is calculated as follows:

(2.23) r̂Alice,TheSopranos = 7.0+ 0.48×1.5+0.44×1.0
0.48+0.44

= 8.26

This is a relatively high estimated score for Alice, so depending on estimated scores of other

series, this might well be featured on the service.

There are some alternative methods of calculating similarities in memory-based collaborative

filtering such as the Cosine Similarity. While there are some differences in the applications of

these functions in data science in general, within the context of Recommender Systems the terms

similarity and correlation are essentially interchangeable, with this thesis preferring the term

similarity.

Memory-based methods have the advantage of being straightforward to design and implement.

The main problem with memory-based methods is that they do not scale well [5]. For a service

46

2.4. COLLABORATIVE FILTERING

with m users and a naive implementation, similarities between m2 pairs of users must be

calculated to make recommendations. A popular service might have millions of users and items,

so the computational power required to calculate correlation coefficients becomes intractable.

Some solutions to this problem have been proposed, often involving heuristic rule-based

clustering [103, 127] so that similarities only need to be calculated between subsets of users.

These solutions do, however, exclude based on heuristics a certain amount of information that

could potentially be used in recommendation. As a result, model-based implementations of

collaborative filtering, which are able to make recommendations using all of the available

information through precomputation and machine learning methods, are generally more accurate

[27]. These are discussed in the next section.

2.4.1.2 Model-Based Collaborative Filtering

Memory-based collaborative filtering, described in Section 2.4.1.1, uses lazy methods to generate

recommendations, doing the computations on demand to determine similar users. As discussed,

this is often inefficient for large datasets without heuristic-driven preprocessing. Model-based

collaborative filtering methods learn models that reduce the data down to important factors that

describe the facets of the data important for recommendation, and that can then be used to make

recommendations efficiently. This gives them several important advantages over memory-based

methods:

1. Model-based methods are empirically more successful predictors of preference than memory-

based methods. Competitions such as the Netflix Prize Challenge allow for the comparison

of different types of algorithm on the same data; model-based methods are significantly

more effective in general [22].

2. While memory-based methods often require computations, model-based methods generally

only need a trained model to make predictions, which represents a summary of the relevant

parts of the data. This allows model-based methods to be faster and more responsive.

3. Model-based methods are less influenced by random fluctuations in the data. An extremely

high or low rating by a user in a neighbourhood method can significantly influence another

user’s recommendations. Model-based methods use global information to make recommen-

dations, so this is unlikely to be a problem.

This section describes an example of a model-based method of recommendation, and explains

how this method is representative and generalisable to other techniques while retaining the

same basic principles. The method explained is the Latent Factor Model, which aims to simplify

recommendation by extracting latent factors of items and users’ preferences for these latent

factors. Latent factors can be thought of as inherent attributes that all items possess, and are

often used by people in everyday conversation. For example, if Alice wants to recommend a movie

47

CHAPTER 2. BACKGROUND

to Bob, asking him for all the movies he’s ever watched and his rating for them would be very

arduous. Instead, she might ask him what genre he likes, or his favourite director. In this case,

genre and director are latent factors of movies: inherent properties that all movies have which

reduces a very large amount of information down to a much more manageable amount.

Figure 2.10: Using Similarities to Make Predictions. (Inspired by diagram on page 92 of [5].)

Recall that the user-item preference table can be considered a matrix. Model-based methods

have their origins in linear algebra, where techniques for performing computations to reduce the

complexity of matrices existed long before there was any need for recommendations. The m by

n user-item matrix for a popular service is often very large, where m might be in the millions.

However, because of similarities, the approximate dimensionality of the data is likely to be much

smaller. For example, imagine a streaming service has three series: Friends, The Sopranos and

The West Wing. Ratings between 0.0 and 10.0 are distributed as shown in Figure 2.10. After noise

reduction, the ratings are distributed along a one-dimensional Latent Vector. Given the rating for

one series, the ratings for the other two series can be accurately predicted by the intersection of

the plane that the rating describes with the latent vector.

A much larger service with many more series is unlikely to have such a simple distribution,

but we assume that similarities and inverse similarities between series means that the matrix

describes a hyperplane with k dimensions, where k is the rank of the matrix. For a complete

matrix with no noise, this hyperplane is described by the eigenvectors of the matrix, which can be

found by factorising the matrix. There are a number of different methods for factorising complete

matrices, such as the Singular Value Decomposition, which was used as early as the year 2000

48

2.4. COLLABORATIVE FILTERING

for matrix factorisation in recommendation [124]. In early implementations such as this one,

unknown cells in the matrix were filled with a fixed value because the SVD only operates on

complete matrices. However, this often creates bias in the results [5], because most matrices

found in recommendation environments are very sparse, so the filled values come to dominate

the estimations.

Figure 2.10 shows this process. The ratings by a number of users for the three series in the

diagram (Friends, The Sopranos and The West Wing) are represented by points on the diagram.

The latent vector represents the trend of those ratings. A rating for Friends by a new user

describes a plane, represented in the diagram in blue. The point in 3D space at the intersection

between this plane and the latent vector predicts this user’s rating for The Sopranos and The

West Wing.

The alternative is to approximate matrix factorisation from the existing values using optimi-

sation techniques found across machine learning, such as Stochastic Gradient Descent (SGD).

This method was first described independently of recommendation in this context as part of the

literature on missing value analysis - methods of estimating values from an incomplete matrix

[6].

A ratings matrix R with dimensions m×n and rank k can be described exactly as the product

of factors U (an m×k matrix) and V (a k×n matrix):

(2.24) R =UV T

In this formulation, U contains the k basis vectors for the column space of R. For the ratings

matrix, the i the row of U , ūi, is the user factor. Similarly, V contains the k basis vectors for the

row space of R and the jth column of V , v̄ j, is the item factor.

While factorisation methods aim to calculate U and V exactly, this is not possible for incom-

plete matrices. However, even for a sparse matrix, U and V can be estimated such that:

(2.25) R ≈UV T

For any k. Furthermore, it may be advantageous to choose k as lower than the actual rank

of the matrix because noise in the similarities increase the rank of the matrix, and accounting

for this increases the time and space complexity of calculating U and V without necessarily

improving recommendations. Note that the result of this factorisation is that any single rating

r i, j can be estimated from the product of its factors in U and V :

(2.26) r i, j ≈ ūi · v̄ j

Note the difference between this method and the memory-based filtering described in Section

2.4.1.1: although estimating U and V can be a complex operation, it is done as part of the

49

CHAPTER 2. BACKGROUND

preprocessing step. From then on, estimating any rating is guaranteed to be O(1), and estimating

the ratings for all items for any user scales linearly with complexity O(m) for m items.

In order to approximate the matrices of factors U and V using machine learning, we define a

process where the error J is minimised in the objective function:

(2.27) J = 1
2
||R−UV T ||2

Where || · ||2 symbolises the sum of the squares of the matrix entries. The objective is then

to minimise the error J and thus compute representative matrices of factors U and V Because

there are unknown values in R, J cannot be calculated directly through this formula. It must

therefore be redefined in terms of the entries of R that are known. Defining S as:

(2.28) S = {(i, j) : r i, j is known}

Then values r i, j of R can be approximated by:

(2.29) r̂ i, j =
s∑

k=1
ui,s ·v j,s

Then the error e i, j for the estimation of an entry in R by the factorisation is given by:

(2.30) e i, j = r̂ i, j − r i, j

Of course, the error is only calculable for known values of R. The objective function in equation

2.27 can therefore be modified to:

(2.31) J = 1
2

∑
(i, j)∈S

e2
i, j

The process for minimising J is known as gradient descent. U and V are initialised to random

values, the error is calculated, and then small steps are taken down the gradient of the objective

function to drive the error towards its minimum value. In order to calculate the adjustments to

the values of U and V that reduce the error, we take partial derivatives of J, which determines

the gradient of the objective function with respect to ui,q and v j,q.

(2.32)

dJ
dui,q

= ∑
j:(i, j)∈S

(r i, j −
k∑

s=1
ui,s ·v j,s)(−v j,q)

= ∑
j:(i, j)∈S

(e i, j)(−v j,q)

50

2.4. COLLABORATIVE FILTERING

(2.33)

dJ
dvi,q

= ∑
j:(i, j)∈S

(r i, j −
k∑

s=1
ui,s ·v j,s)(−u j,q)

= ∑
j:(i, j)∈S

(e i, j)(−u j,q)

The process Stochastic Gradient Descent (SGD) uses the derivative of the error function

directly to make updates to individual components of U and V to move them closer to an accurate

estimation of R. It uses a step size α to moderate the size of the change, generally a small

value relative to the size of the scores in R because larger steps are more likely to overshoot the

minimum. The update formulae, derived from equations 2.32 and 2.33 respectively, are:

(2.34) ui,q ← ui,q +α · e i, j ·v j,q∀q ∈ {1...k}

(2.35) vi,q ← vi,q +α · e i, j ·u j,q∀q ∈ {1...k}

U and V are initialised to random values, and then the known values of R are repeatedly

cycled through and the above updates applied in order to drive the estimations r̂ i, j of values of

R closer to their actual values, and therefore determine matrices of factors that can be used to

effectively estimate the unknown values.

2.4.1.3 Collaborative Filtering for User-Item Recommender Systems

Collaborative filtering has been used as part of recommender systems since the term was coined

in 1992 [50]. Over this time, there have been a number of significant advances in the field.

These have covered both memory-based and model-based collaborative filtering. This subsection

briefly describes the state-of-the-art in collaborative filtering. The depth of research in user-item

collaborative filtering is also useful as a point of comparison with reciprocal recommendation.

A number of improvements have been made to memory-based methods of collaborative

filtering, which are still popular due to the relative simplicity of implementation. For example,

Herlocker et al. use a neighbourhood model that uses concepts such as trust to weight similarity

coefficients [56]. There are a number of proposed solutions for clustering in neighbourhood models

that help to solve the inherent complexity in scaling the [103, 127].

Latent factor models for conventional recommender systems have been frequently and thor-

oughly investigated in the literature, and have been extensively studied. Koren, Bell and Volinsky

provide an overview of the various modern methods of computing latent factor models [23]. Matrix

factorization techniques such as Singular Value Decomposition (SVD) can be used to extract

vectors that describe the user-item matrix from similarities between user interactions, and simi-

lar items being interacted with. Mathematically, these techniques can only be used on complete

51

CHAPTER 2. BACKGROUND

matrices. However, it is unrealistic to assume there is complete information about every user’s

opinion on every item. Previous works used various methods to estimate the missing values in

the user-item matrix (e.g. [125]), but modern methods initialize latent factor vectors with random

values from a distribution, and then they learn the correct values via optimisation techniques

such as gradient descent [4, 73, 106]), as described in Section 2.4.1.2. Latent factor models have

been relatively successful, and competitions such as the Netflix Prize have demonstrated that

on conventional recommender systems, they are superior to nearest neighbour implementations

[22].

A number of different machine learning technologies have been used to create models for

recommendation. Models based on random forests are popular for their simple implementation,

and often achieve strong results [9, 159]. Approaches based on neural networks are also pervasive

[161], and used across various industries such as video [38] and app recommendation [34]. In

particular, Restricted Boltzmann Machines have been popular as a method for creating latent

factor models using neural networks [123].

2.4.2 Collaborative Filtering for Reciprocal Recommendation

Reference Year Field Recommendation Method
Krzywicki et al. [75] 2010 Dating Memory-based nearest neighbour
Xia et al. [150, 151] 2015 Dating Memory-based nearest neighbour
Al-Zeyadi et al. [12] 2017 Dating Graph-based collaborative filtering
Kleinerman et al. [70] 2018 Dating Memory-based with AdaBoost classi-

fier weighting
Vitale et al. [144] 2018 Dating Collaborative filtering-based cluster-

ing with performance guarantees
Neve et al. [94] 2019 Dating Memory-based nearest neighbour

testing aggregation operators
Neve et al. [96] 2019 Dating Model-based latent factor
Ramanathan et al. [116] 2020 Dating Model-based latent factor

Table 2.5: Collaborative Filtering Reciprocal Recommender Systems

Thus far, collaborative filtering trends in reciprocal recommendation have not been dissim-

ilar to those in conventional user-item recommendation, which is to say, they have generally

outperformed their content-based counterparts. This is not surprising: collaborative filtering is

able to bypass the often very complex data on social services to make recommendations based on

similarities.

The earliest collaborative filtering algorithm was RCF [150]. This is a neighbourhood-based

method tested on data from an online dating service. RCF is commonly used as a baseline and is

discussed in detail as a case study in Section 2.4.2.1 so the discussion is omitted here.

52

2.4. COLLABORATIVE FILTERING

Kleinerman, Rosenfeld, Ricci & Kraus designed Reciprocal Weighted Score (RWS): an RRS

based primarily on RCF, but using a model-based approach to take user popularity into proper

consideration [70]. The solution proposed in RWS consists of finding for each user x a weight

αx which represents the influence of that user on successful interactions. If the user’s own

preference score being high implies a successful interaction, that user has a higher importance,

whereas if their partner’s preference determines most interactions, they are assigned lower

importance. Although RWS did not outperform RCF in the appeal of the recommendations to the

users, RWS was demonstrated to outperform baseline RCF in terms of reciprocal precision and

recall, indicating that the recommendations, while not as appealing as the original ones, were an

improvement in terms of their satisfaction to both parties.

Compared to the detail of the literature on model-based user-item recommender systems,

there have been few model-based RRSs. Neve et al. [96] is the first example, which is described

in detail in Chapter 3. Ramanathan et al. [116] designed a recommender based on this for a

different dating service, and were able to replicate the results.

2.4.2.1 Collaborative Filtering Case Study: RCF

Reciprocal Collaborative Filtering (RCF), a collaborative filtering based algorithm, was able to

significantly improve on RECON's results [150]. RCF also calculates scores for multiple users,

but unlike RECON, it uses a nearest-neighbor collaborative filtering approach, where user a's

likelihood to like user b is estimated from their similarity to other users who liked user b. RCF's

evaluation proved the algorithm to significantly outperform RECON.

RCF is commonly used as a baseline for testing collaborative filtering-based RRSs on small

datasets (e.g. [70], [69]). It is a nearest neighbour-based collaborative filtering algorithm that

retrieves nearest neighbours based on other users who have liked the user in question. For

example, to calculate the likelihood that a user a will like a user b, RCF calculates the similarity

between a and other users n who have previously liked b. A high degree of similarity implies

that a will probably like b, and vice-versa. The similarity between users a and n, based on the

well-known Jaccard Coefficient, is defined as:

(2.36) Similaritya,n = IFroma ∩ IFromn

IFroma ∪ IFromn

Where

(2.37) IFroma = {b : b has received a Like from a}

(2.38) ITob = {a : a has sent a Like to b}

53

CHAPTER 2. BACKGROUND

In the following algorithm, let a be the current user. Then:

(2.39) Candidates = {b : b is a possible recommendation for a}

In the online dating domain, this may be the entire set of opposite-sex users, or there may

be restrictions (for instance, opposite-sex users within a certain geographical distance from the

current user). Recs is the output of the algorithm, a set of pairs such that:

(2.40) Recs = {(b, reciprocalScorea,b)}

Where reciprocalScorea,b ∈ [0,1] is the aggregation of two unidirectional preference scores

between current user a and recommendation candidate b.

The full algorithm is described in Algorithm 1. Note that the normalising factor in lines 11

and 12 is necessary because the number of neighbours of a will depend on the number of users

who have liked b, and will therefore vary from user to user.

Algorithm 1 RCF Algorithm for target user a
1: Recs ←;
2: for all b ∈ Candidates do
3: scorea,b ← 0
4: scoreb,a ← 0
5: for all n ∈ ITob do
6: scorea,b ← scorea,b +Similaritya,n
7: end for
8: for all n ∈ IToa do
9: scoreb,a ← scoreb,a +Similarityb,n

10: end for
11: scorea,b ← scorea,b

|ITob|
12: scoreb,a ← scoreb,a

|IToa|
13: reciprocalScorea,b ← Agg(scorea,b, scoreb,a)
14: Recs ← Recs+ (b, reciprocalScorea,b)
15: end for
16: return Recs

The complexity of RCF depends on the computation of the similarity of user a with the n

users who have liked user b. If all users have an average of k interactions with other users, the

process will require approximately nk computations. However, if by chance the n users have

significantly more than an average number of interactions, the computation could take much

longer than this, which is deeply undesirable in an online service.

54

2.5. HYBRID FILTERING

2.5 Hybrid Filtering

Hybrid methods of recommendation combine one or more recommendation methods in order

to make a recommendation. In the literature, the most common use of hybrid filtering is to

describe the combination of content-based and collaborative filtering to make recommendations

[20, 29]. However, it can also refer to any combination of methods, including combining model-

and memory-based collaborative filtering [117] and systems combining types of recommendation

other than content-based and collaborative filtering, such as knowledge-based filtering [28].

Designers of hybrid systems are particularly keen to overcome the weaknesses of the two

families of recommender systems. In the case of collaborative filtering, the cold-start problem

[76, 129] can be overcome through content-based elements. In the case of content-based filtering,

filter bubbles [100] can be broken by introducing collaborative filtering elements.

2.5.1 Hybrid Recommendation

Burke [29] describes a number of different methods of combining different recommender system

techniques into a single hybrid system. This thesis uses his terminology to describe the different

types of hybrid system.

Weighted Hybrid Recommender Systems combine two or more recommender systems

together by assigning a weight to each of the two systems, and treating the predicted score as a

weighted average of the two results. This has the advantage of being simple to implement. The

weights could be fixed, or dynamic based on the accuracy of the algorithm under different weights

[108].

Switching Hybrid Reccommender Systems makes recommendations from one recom-

mender system depending on the user and the item, chosen based on some criterion. The most

common way to do this is based on some measure of confidence: if a primary system cannot

make recommendations with sufficiently high scores, the secondary (or even tertiary) system

is used and may be able to generate recommendations with higher confidence. For example,

[136] switches based on the extent to which each technique can accurately estimate a user’s

current ratings, which is potentially a good predictor for that technique’s capacity for making new

accurate recommendations. Switching systems can potentially overcome the weaknesses of each

individual technique used in situations, but introduce more complexity than weighted systems

because the criteria for switching must be decided, and must be demonstrably more accurate

than using either individual system, which is often difficult to demonstrate in real settings.

Mixed Hybrid Systems present recommendations from more than one recommender system

together in a list for the user to decide from. Instead of choosing the effective technique from the

data, this places the burden on the user to pick the better recommendations for themselves [37].

However, mixed hybrid systems do not inherently solve the problem of how to rank recommenda-

tions from different sources, and depending on the context, some users may only view the first

55

CHAPTER 2. BACKGROUND

few items in their recommendation list. A heuristic from switched or weighted hybrid systems

must be used to decide which recommendations come first in this case.

Cascading Hybrid Systems use one system to generate an initial list of candidate recom-

mendations, and then a second system to narrow down or rank this list. As with other hybrid

systems, the intention is to address the weaknesses in two different techniques to create an

optimal list of recommendations [77].

2.5.2 Hybrid Reciprocal Recommendation

Reference Year Field Hybridisation
Akehurst et al. [11] [10] 2011 Dating CB/CF Cascading
Zhang et al. [160] 2016 Education CB/CF Weighted
Qu et al. [115] 2018 Dating CB/CF Weighted
Neve et al. [97] 2019 Social CB/CF Weighted

Table 2.6: Content-Based Reciprocal Recommender Systems

Compared with the other techniques, there have been relatively few contributions to the field

of hybrid reciprocal recommendation. This is mainly because RRS is still a relatively small field

compared to user-item recommendation, and a deeper knowledge of both collaborative filtering

and content-based filtering is required to determine which is more generally effective and how

best to combine them.

The earliest hybrid approach was by Akehurst et al. [10, 11], with the design of CCR (content-

collaborative recommender). CCR used an original form of nearest neighbour collaborative

filtering as part of its reciprocal recommendation. It defines interaction groups for a user x based

on the users whom they have liked and the users who have liked them. It also defines a distance

metric between users based on their similarity in terms of content-based attributes such as age

and location, under the assumption that similar users have similar preferences. The hybrid

reciprocal recommender uses a cascading approach to calculate the final recommendation, with

collaborative filtering refining initial lists generated by the content-based approach.

The most recent contribution to the literature by Neve et al. [97] uses a weighted combination

of a semantic similarity-based content-based filtering method with latent factor collaborative

filtering to make recommendations. This is discussed in more detail in Chapter 4.

2.6 Peripheral Topics

This section reviews other techniques for reciprocal recommmendation that do not fit into the

umbrellas of content-based, collaborative or hybrid filtering. It also covers areas that are relevant

to the discussion of reciprocal recommendation, including related fields such as Multistakeholder

Recommendation and Social Network Recommendation.

56

2.6. PERIPHERAL TOPICS

2.6.1 Other Methods of Reciprocal Recommendation

Although most reciprocal recommender systems adapt techniques from collaborative filtering

or content-based filtering, some adapt other methods of matching people together from areas of

computer science besides user-item recommendation. This section briefly explores research that

uses these techniques.

The most common of these methods are solutions to the Stable Matching problem. In the

Stable Matching problem, n men and n women have ranked each other in order of preference.

The problem is solved by n pairs of men and women, such that there exists no pair that would

rather have each other than any of the existing pairs.

In 2013, Yin et al. implemented the Gale-Shapley algorithm [47] as part of an RRS algorithm

[156] to match users with social event organisers. The Gale-Shapley algorithm works as follows:

1. Each of the n men proposes to their highest rated woman. Each woman accepts the proposal

from their highest rated man, and these pairs are considered provisional.

2. Each of the remaining men who are not part of the set of provisional pairs then repeats the

process, proposing to any of the women including those in provisional pairs.

3. The algorithm terminates when every man and woman is part of a pair.

While this algorithm does find optimal pairs and is guaranteed O(n2), the challenge in using

it for reciprocal recommendation is that no service includes ratings from every member to every

potential match; indeed, the ratings matrix is generally sparse. Yin et al.’s method uses a content-

based utility function based on a cosine similarity between a user’s preferences and an event’s

attributes, and incorporates unidirectional social factors such as preference of the user for events

that include their friends to estimate unidirectional preferences for each user and event.

Xia et al. developed a reciprocal recommender, WE-Rec based on Walrasian Equilibrium [149].

The Walrasian Equilibrium is a concept from economic systems where the objective is to meet

preferences of buyers and sellers equally in such a way that equilibrium is maintained. Xia et al.

accomplish this by defining a utility function based on the similarity between user profiles and

using this to generate recommendation lists between users based on the output from the utility

function.

2.6.2 Multistakeholder Recommendation

A Multistakeholder Recommender System is any recommender system that takes into account

the preferences of multiple parties when generating recommendations. Abdollahpouri et al. [1]

define a Stakeholder in this setting as "any group or individual that can affect, or is affected by,

the delivery of recommendations to users". Reciprocal recommendation is therefore a subtype

of multistakeholder recommendation, with two parties who are equally affected. This section

57

CHAPTER 2. BACKGROUND

provides a brief background of the concepts in multistakeholder recommendation, as some of

these concepts are relevant to reciprocal recommender system design.

Multistakeholder recommender systems were originally designed for e-commerce services.

The field defines Consumers, who are viewing the recommendations provided by the system, and

also Producers, who are providing the recommended objects. While traditional recommender

systems focus entirely on optimising the experience for the consumer, producers often have their

own objectives.

Multistakeholder recommendation generally becomes reciprocal recommendation when it

consists of two parties whose objectives are aligned. For example, in an online dating setting,

the objective is to match two people who are looking for each other. However, there are several

other types of multistakeholder recommendation problems, each of which have different common

approaches used to solve them.

The most common of these is Value-Aware Recommendation. While standard recommender

systems aim to maximise value for consumers, value-aware recommenders also take into account

the value of a recommendation for the producer. For example, Nguyen et al. [99] design a mul-

tistakeholder recommender system for hotel recommendation from third parties. The service

receives a different commission depending on the hotel, so the system aims to optimise recom-

mendation based on both users’ preferences and commission. In the general case, this is often

done by training a system to maximise the values of two optimization functions [145], one which

represents the best case recommendation for the consumer and another which maximises profits

for the producer.

A second example of multistakeholder recommendation is Fairness-Aware Recommendation.

Because most recommender systems are trained on existing datasets, they are likely to adopt

biases inherent in these datasets [30]. These biases might be reflected on the consumer side as,

for example, a difference in recommendations based on age or gender. They might also cause

problems for producers, for instance by recommending certain musicians significantly more than

others. Although fairness is in the interests of everyone using the system, it represents a different

optimisation function to that of standard recommender systems, and is therefore considered a

separate stakeholder.

2.7 Summary

This chapter began by introducing machine learning fundamentals, including various methods of

training that are commonly used in recommender systems research, such as neural networks

and random forest models, with examples of cases where they have been used in this field. This

section in particular focused on how these methods are used for extracting features from complex

data, which is commonly required for content-based filtering.

Subsequent sections in this chapter covered the three subdivisions of recommendation:

58

2.7. SUMMARY

content-based filtering, collaborative filtering and hybrid filtering. For each type, its respective

section described basic theory, a brief review of the technique in user-item recommendation and a

more thorough review of the most important developments in reciprocal recommendation.

The final section described peripheral techniques for reciprocal recommendation, including

the stable matching problem and multistakeholder recommendation.

The following three chapters will cover the original contributions made to the three fields of

content-based, collaborative and hybrid filtering respectively over the course of this PhD.

59

C
H

A
P

T
E

R

3
COLLABORATIVE FILTERING

This chapter describes contributions made to Collaborative Filtering. As discussed in

Chapter 2, this is recommendation based on correlations between user preference histories

without analysing the context. It first describes aggregation strategies for combining two

unidirectional preference scores into a single bidirectional preference relation. This is important

for CF, as all current techniques use two symmetrical models to calculate preference of two users

for each other before combining them. It then describes LFRR, a novel CF technique for RRS

based on latent factor models.

=======

3.1 Introduction

As described in Chapter 2, collaborative filtering algorithms make predictions about user prefer-

ences based on correlations in the data. If a user a liked users x, y and z and a user b liked x and

y, a collaborative filtering algorithm might recommend z to b based on b’s correlation with a.

Collaborative filtering algorithms are broadly divided into two categories: memory-based and

model-based systems. Memory-based systems are generally based on nearest-neighbour algo-

rithms, where in order to make recommendations for Alice, her most similar users are calculated

in real time based on a similarity metric such as the Pearson Correlation Coefficient. Model-based

systems base their similarity computation on a pre-trained model, often a latent factor model,

which abstracts the complexity of a large number of comparison into latent attributes of items,

and users’ preferences for each of these attributes.

Prior to the work described in this thesis, collaborative filtering work on RRSs used memory-

based methods for making recommendations. While this produces strong results on smaller

61

CHAPTER 3. COLLABORATIVE FILTERING

datasets, computations take unreasonable times on larger datasets, and would not therefore

be practical to implement on mainstream dating and social services. This chapter introduces

a reciprocal recommender system based on latent factor models and evaluates it against the

current state-of-the-art memory-based collaborative filtering method.

Collaborative filtering reciprocal recommender systems generate two unidirectional prefer-

ence scores and then aggregate them into a single reciprocal score. In the literature, this is done

with the harmonic mean, but the use of the harmonic mean is not justified in the papers in which

it is used. This chapter presents several alternative aggregation functions, and the evaluation

demonstrates the importance of the choice of function in this context.

3.2 Background

This section briefly reviews the literature relevant collaborative filtering reciprocal recommenda-

tion and the systems described in this chapter. For a more in-depth literature review of all topics

and papers surrounding this area, see Chapter 2.

3.2.1 Collaborative Filtering

Collaborative filtering has been very successful in recommender system design. Neighbourhood

methods have been able to make recommendations with a high degree of accuracy, and have seen

significant development, both in accuracy and in efficiency [127, 128]. However, model-based

methods have in general been significantly more successful [22, 39], and this chapter focuses on

these.

There are a number of different ways of developing models for collaborative filtering [5]. These

incorporate various machine learning technologies such as random forests [9] and neural networks

[34]. In particular, latent factor models have received significant attention, and developed in a

number of papers as solutions to a variety of recommendation problems [4, 126].

3.2.2 Collaborative Filtering for Reciprocal Recommendation

As a strategy for reciprocal recommendation, collaborative filtering proceeded content-based

filtering. The earliest collaborative filtering RRS in the literature is RCF [150], which is a nearest-

neighbour algorithm using similarity comparisons to proximate users to make predictions about

preferences.

Following the publication of Xia et al.’s [150] paper on RCF, a number of other algorithms

were developed in a similar vein, often using RCF as a basis. For example, Kleinerman et al.

[69] developed an extension to RCF that used an AdaBoost classifier to ensure fairness, and

demonstrated that enforced fairness improved reciprocity on an online dating service.

More recently, following the advances described in this chapter, latent factor model-based

algorithms have been more popular in reciprocal recommendation. As described in Chapter

62

3.3. AGGREGATION STRATEGIES FOR COLLABORATIVE FILTERING

2, latent factor models use matrix factorisation to extract latent attributes of items and user

preferences for those attributes. For example, Ramanathan et al. [116] developed a latent factor

model-based algorithm for reciprocal recommendation in online dating.

3.3 Aggregation Strategies for Collaborative Filtering

RRSs in the literature apply an aggregation process to two unidirectional preference scores that

indicates how likely two users are to like or match with each other. The most common strategy

is to calculate two unidirectional preference scores representing how much two users are to

like each other based on conventional recommender system technology, and then they combine

both scores into one (e.g. [113], [150]). Since RECON [113], the first RRS in the literature, all

subsequent systems have used the harmonic mean to combine these two scores. The harmonic

mean is described by the formula:

(3.1) H = 2x1x2

x1 + x2

The choice to use the harmonic mean is assumed to have been arbitrary, as there is no explanation

justifying this choice in the existing RRS literature.

RCF [150], the first collaborative filtering RRS, which is often used as a benchmark for new

algorithms, is used as a baseline to test the aggregation operators. RCF, like other RRSs, calculates

two preference scores and combines them using the harmonic mean. The novel contribution in this

study consists of exploring a number of alternative aggregation functions to the harmonic mean

for combining two preference scores into a single one in RRSs. Specifically, three Pythagorean

Means: the harmonic, arithmetic and geometric means. An aggregation function with mixed

behaviour is also considered, namely the uninorm [154]. This exploration is important because

combining the two preference scores plays a crucial role in the reciprocal recommendation process,

thereby differentiating it from a conventional recommender system. Even in a situation where

there is no information about the two users beyond their preference scores, the way in which

preference scores are combined could have a profound impact on the recommendations produced.

For example, on an online dating service, it is not ideal for very strong preferences in one

direction to compensate for weak preferences in the other direction, as the result would be a

recommendation that could not lead to a match. In order to examine the results in different

settings, these aggregation functions are tested on a dataset from a popular online dating service.

There was a significant difference in the effectiveness of different aggregation functions.

Based on this, RRS algorithms designed in future that rely on combining two unidirectional

preference scores should rely on evidence-based decision about the aggregation function they use

to combine preference scores.

63

CHAPTER 3. COLLABORATIVE FILTERING

3.3.1 Aggregation Functions

The arithmetic mean, geometric mean, and harmonic mean make up the classical means. All

three of these have been widely used in various fields, including statistics and machine learning.

Of these three, only the harmonic mean has been used for aggregating unidirectional preference

scores in reciprocal recommender systems. Without loss of generality, this investigation is limited

to aggregation operators in the unit interval, as all preference scores occur in this interval.

The arithmetic mean for two values x1 and x2 ∈ [0,1] is defined as

(3.2) M(x1, x2)= x1 + x2

2

The arithmetic mean is the most commonly used averaging function. The general arithmetic

mean is not a robust statistic and greatly influenced by outliers when averaging a large number

of results. However, the arithmetic mean of two values will coincide exactly with the middle of

the two values. This means that it may be more appropriate in certain applications of RRSs, as it

accurately expresses the two users’ preferences for each other without being biased towards the

higher or lower score.

The geometric mean for two values is defined as

(3.3) G(x1, x2)=p
x1x2

The geometric mean is commonly used in business and finance, to calculate averages in

situations where percentages accumulate over time, such as portfolio growth rates. In the case

of two values, the smaller value exerts a greater influence over the recommendation. This is a

desirable trait for RRSs: if one of the preference scores is too low, that user is likely to reject the

recommendation, making it useless, even if the other party’s score is extremely high.

The harmonic mean for two values is defined as

(3.4) H(x1, x2)= 2x1x2

x1 + x2

The harmonic mean is the smallest of the three means and, similar to the geometric mean,

more significantly influenced by the smaller of the two values than by the larger. The harmonic

mean is the only aggregation function that has been used in RRSs in the past.

The uninorm is also a potentially useful aggregation operator for RRSs. Uninorms are a

generalisation of the t-norm and t-conorm classes of aggregation operator. A t-norm is a mapping

T : [0,1]× [0,1] → [0,1]. A t-norm is associative, symmetric and has a neutral element of 1.

Conversely, a t-conorm is a mapping S : [0,1]× [0,1] → [0,1] exhibiting similar properties as

t-norms but having a neutral element of 0. Uninorms [154] are similar to this definition, with

64

3.3. AGGREGATION STRATEGIES FOR COLLABORATIVE FILTERING

the difference that the neutral element can lie anywhere in the interval]0,1[. The cross ratio

uninorm is used as a representative example of this family of functions [16], defined as

(3.5) U(x1, x2)= x1x2

x1x2 + (1− x1)(1− x2)

Uninorms exhibit the self-reinforcement property. This means that 1) two low values are

aggregated to produce a lower result 2) two high values are aggregated to produce a higher result.

Even more so than the classical means, the result of this is that two relatively high bidirectional

scores are more likely to be aggregated to a high reciprocal score than a very high score is to

compensate for a low score. Intuitively, this is desirable behaviour for a reciprocal recommender

system: a positive match is more likely to occur where both users have a moderate preference for

each other than in the case of only one extremely strong unidirectional preference.

3.3.2 Methodology

3.3.2.1 RRS Implementation

RCF [150] is implemented as the base algorithm for testing aggregation functions in the computa-

tion of reciprocal preference scores. As described in Chapter 2, RCF calculates preference scores

between user a and user b. The preference of user a for user b is calculated as the similarity

between the behaviour of a and other users who have interacted positively with user b. The

similarity between users a and n is defined as:

(3.6) Similaritya,n = IFroma ∩ IFromn

IFroma ∪ IFromn

Where

(3.7) IFroma = {b : b has received a Like from a}

This similarity measure, normalised across users, can be used to determine if a user a is

similar to other users who have shown interest in user b, and therefore whether user a is likely

to have a preference for b or not. The full algorithm is outlined below, and this is used to test the

aggregation functions. Note that below, besides the above formulae, a normalising factor ITo is

also introduced, defined as:

(3.8) IToa = {b : b has Liked a}

The baseline RCF algorithm is outlined in pseudocode below.

In the above algorithm, the Agg function represents the aggregation function used to combine

the preference relations from a to b and vice versa into a single reciprocal score.

65

CHAPTER 3. COLLABORATIVE FILTERING

Algorithm 2 RCF Recommender System
1: Recs ←;
2: for all a,b ∈ Candidates do
3: scorea,b ← 0
4: scoreb,a ← 0
5: for all n ∈ ITob do
6: scorea,b ← scorea,b +Similaritya,n
7: end for
8: for all n ∈ IToa do
9: scoreb,a ← scoreb,a +Similarityb,n

10: end for
11: scorea,b ← scorea,b

|ITob|
12: scoreb,a ← scoreb,a

|IToa|
13: reciprocalScorea,b ← Agg(scorea,b, scoreb,a)
14: Recs ← Recs+ (b, reciprocalScorea,b)
15: end for
16: return Recs

3.3.2.2 Aggregation Function Implementation

Four aggregation functions have been implemented as part of Algorithm 2, line 13: 1) the

arithmetic mean, 2) the geometric mean, 3) the harmonic mean and 4) the uninorm described in

equation 3.5.

3.3.3 Evaluation

In this section, the method and metrics used to evaluate the recommender system with various

aggregation functions and the results of the evaluation are outlined.

3.3.3.1 Experimental Setup

In order to test the algorithm, data was sampled from one month of activity. There are two

reasons for this choice. Firstly, many users are not active on the site for long periods of time, and

there are fewer connections between users who are active several months ago and those who are

currently active. Secondly, users often change their preferences over time, and using only recent

data is therefore likely to make the most satisfactory recommendations.

In addition to narrowing down the data to one month, there were three limitations placed on

the data used in the evaluation:

1. Users who have sent at least 10 Likes, to prevent the cold-start problem [76].

2. Users living in Tokyo or its suburbs, which are an active hub of users, and they can easily

meet each other in person without geographical limitations.

66

3.3. AGGREGATION STRATEGIES FOR COLLABORATIVE FILTERING

0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

Arithmetic Mean
Geometric Mean
Harmonic Mean

Cross-Ratio Uninorm

Figure 3.1: ROC curve obtained for each aggregation function considered in the RRS model.

3. Users between 18 and 30 years of age, for the same reason: these users make up the vast

majority of active users.

The first of these is because RCF, like many collaborative filtering algorithms, suffers from the

cold-start problem. There are no published effective solutions for the cold-start problem with

RCF.

3.3.3.2 Results

The arithmetic mean in general led to high recall and relatively low precision compared to the

other metrics. This is not surprising: the arithmetic mean’s value lies in the middle of the two

preference scores, and is therefore as likely to filter out positive results as it is to recommend

negative results. The geometric mean performed in many respects very similarly to the arithmetic

mean.

The best F1 score as found by varying the threshold for recommendation and its associated

precision and recall are shown in Table 3.1. The harmonic mean and uninorm both generally

maintained a higher precision than the other two classical means. However, the harmonic mean’s

F1 score was diminished by a relatively low recall, while the uninorm maintained a high precision

with a similar recall to the geometric and arithmetic means.

In RRSs, precision is particularly important: it is much more important that all the recom-

mendations are good than the fact of finding all the recommendations [21]. It is unlikely that a

user will have time to look at all possible recommendations, but likely that a user will quickly lose

trust in a system that is producing recommendations she is not interested in. Although the best

precision of the arithmetic and geometric means is marginally higher than the harmonic mean’s,

67

CHAPTER 3. COLLABORATIVE FILTERING

Algorithm Best Precision Best Recall Best F1 Score
Arithmetic Mean 0.86 0.79 0.802
Geometric Mean 0.851 0.785 0.787
Harmonic Mean 0.835 0.699 0.736
Uninorm 0.955 0.762 0.847

Table 3.1: Best results obtained by varying the thresholds for different aggregation functions

in general, the harmonic mean’s precision was more consistently high across all thresholds, whilst

the uninorm’s was much higher.

Of the three classical means, the arithmetic mean has the highest recall, and was therefore

able to retrieve the largest number of total correct recommendations. However, the uninorm

significantly outperformed the three classical means in F1 Score and Precision, and therefore

both retrieves correct rather than incorrect recommendations, and provides the best balance

between precision and recall.

3.4 Latent Factor-Based Collaborative Filtering

Many modern recommender systems take advantage of Latent Factor (LF) models to make

recommendations with successful results (e.g. [4], [73]). LF algorithms use matrix factorization

to generate vectors of factors that describe correlations in the original preference matrix, thereby

condensing correlations between preferences into a much smaller number of factors. This often

results in better predictions on very large, sparse matrices, which is often the case in online

dating, where most users only indicate a preference for an unduly small number of other users.

To the extent of our knowledge, LF-based solutions have never been investigated and applied

to RRSs, in spite of the clear potential these models have as evidenced by their prevalence in

the landscape of traditional recommender systems. Therefore, how LF models can influence the

process of making effective reciprocal recommendations was an unaddressed research question

in the field.

To overcome the aforementioned limitations inherent in previous RRS solutions, a novel recip-

rocal recommender system based on latent factor models was developed. This approach requires

two latent factor models to be generated - one that determines the preference of individual male

users for female users, and one that determines the preference of individual female users for male

users. Many previous approaches used datasets of fewer than ten thousand instances [13, 101],

which is not representative of the size of many real-life applications for RRSs. This method is

effective on datasets containing hundreds of thousands of users and millions of instances. The

aggregation functions evaluated in the previous section are used to combine the two unidirec-

tional preference scores into a single reciprocal score and investigate their effect on the resulting

recommendations.

68

3.4. LATENT FACTOR-BASED COLLABORATIVE FILTERING

3.4.1 Methodology

In this section, LFRR, a novel reciprocal recommender system approach based on latent factor

models, is described. In order to account for the bidirectional nature of reciprocal recommendation,

two latent factor models are trained; one to indicate male users' preferences for female users,

and one to indicate female users' preferences for male users. These two preference metrics are

subsequently combined using aggregation operators to indicate which are likely to be a positive

match, and therefore which recommendations to display.

LFRR is designed for use with online dating, and in particular, it has been evaluated for its

use on a popular online dating platform. Users must send each other a Like before they are able

to communicate with each other by messages. Much of the message data is ambiguous, as users

often quickly exchange contact details and move their communications off the service. However,

users who succeed in achieving a large number of Matches are more likely to subsequently find a

relationship. The objective is therefore to maximise the number of Matches as a proxy for helping

the largest possible number of users to succeed.

3.4.1.1 Latent Factor Model for Reciprocal Recommendation

Machine learning-driven latent factor models initialize latent factor vectors to random values

from a distribution, and then aim to minimise the error on the known ratings. Specifically, the like-

lihood of user a liking user b is calculated by the dot product between user a’s feature vector pua

and user b’s feature vector qub . Using the training set of known ratings R = (rua,ub)rows×columns,

the error can be calculated with regularization parameter λ.

(3.9) min
q,p

∑
(ua,ub)∈R

(ruaub − qT
ub

pua)2 +λ(||qub ||2 +||pua ||2)

It can then be minimised by gradient descent. Because the dataset contains sparse, explicit

data, stochastic gradient descent was used for the minimisation. This tends to perform better

on explicit data than the other common method, Alternating Least Squares, which tends to give

better results with dense, implicit data [5]. Stochastic gradient descent calculates the error for

each individual datapoint.

(3.10) euaub = ruaub − qT
ub

pua

It then modifies the relevant feature vectors in the negative direction of the gradient proportional

to the learning rate, γ

(3.11) qub ← qub +γ(euaub pua −λqub)

(3.12) pua ← pua +γ(euaub qub −λpua)

69

CHAPTER 3. COLLABORATIVE FILTERING

Figure 3.2: LFRR Visualisation

The datapoint order is randomised, and this process is repeated for a number of epochs until the

feature vectors are stable. They can then be used to make predictions about how likely user a is

to like user b by the dot product of their feature vectors.

Given matrices for a trained female-male preference latent factor model U1 and V1, and the

same matrices vice-versa for male-female preferences U2 and V2, let the vector representing the

row for a user a in matrix U1 be denoted by U1,a. Then the prediction algorithm for LFRR is

described in Algorithm 3. (The other variables follow the same conventions as in Algorithm 1.)

As is evident from the algorithm description, computing a reciprocal score requires only a

single dot product, and is therefore guaranteed to be linear time, regardless of the number of

interactions from that particular user.

3.4.2 Evaluation

In this section, the dataset and the experiments performed and the metrics used to evaluate

them are described. The results of these experiments are displayed alongside a comparison of the

evaluations of RCF and LFRR with four different aggregation functions.

3.4.2.1 Experimental Setup

The data for the evaluation was provided by a popular online dating service, surpassing 10M

users at the time of writing. As described in Section 1, users express preference for each other by

sending a Like. Users send a total of approximately 9 million Likes per week.

70

3.4. LATENT FACTOR-BASED COLLABORATIVE FILTERING

Algorithm 3 LFRR Predictions for two users a and b

INPUT: Trained feature matrices U1, U2, V1, V2

1: Recs ←;
2: for all a,b ∈ Candidates do
3: if a is female then
4: scorea,b ←U1,a ·V T

2,b
5: scoreb,a ←U2,b ·V T

1,a
6: else
7: scorea,b ←U2,a ·V T

1,b
8: scoreb,a ←U1,b ·V T

2,a
9: end if

10: reciprocalScorea,b ← Agg(scorea,b, scoreb,a)
11: Recs ← Recs+ (b, reciprocalScorea,b)
12: end for
13: return Recs

Most datasets that have been used to test collaborative filtering-based reciprocal recommender

systems in the past have been relatively small in comparison, comprising only a few thousand

interactions at most. To the best of our knowledge, there is no example in the literature of a

reciprocal recommender system being tested on a dataset of the size of the this dataset.

Data was sampled from varying time periods, from one day to 3 months of interactions.

Previous marketing analysis of user data indicates that the vast majority of users either find

a relationship or cease using the site during this time, and that long-term users often change

their preferences. 3 months was therefore the longest period of time useful for generating

recommendations for data in the online dating field.

There are also several other limitations on the data selected for the experiments, which are

outlined below:

• Users who live in Tokyo and the surrounding areas. These users represent a significant

majority of users.

• Users between 18 and 30 years of age, for the same reason as above. Users outside this age

range are outliers in the user base.

• Users who have sent at least 10 Likes.

Limitation 3 is because both LFRR and RCF suffer from the Cold Start Problem [76]. There

are currently no effective solutions to the Cold Start Problem for RCF. The data is therefore

limited to users with enough data to make effective recommendations using both algorithms.

Further information about the dataset used and exclusions can be found in Appendix A.

71

CHAPTER 3. COLLABORATIVE FILTERING

3.4.2.2 Efficiency Evaluation

The standard evaluation metrics for effectiveness are used to evaluate LFRR. In this case, an

efficiency evaluation was also conducted, and the metrics used to evaluate the efficiency of the

algorithm are described here.

To the best of our knowledge, all RRSs in the literature work by calculating a reciprocal

preference score between pairs of users (e.g. [113]). They generate recommendations by calculating

reciprocal preference scores between a user a and every candidate user x, ordering users in

descending order of score, and then taking the top N users as recommendations. There are

therefore two important metrics to consider where efficiency is concerned:

1. The time taken to calculate a single reciprocal preference score between two users

2. The time taken to generate a list of N recommendations by calculating the reciprocal

preference scores between a given user A and every other user in the dataset

These two metrics are considered separately, because it is easy to imagine situations where

an RRS which could perform (1) efficiently might still be useful (for example, by displaying to the

active user the likelihood that another user might be a good match), even in the absence of the

ability to perform (2) in reasonable time.

A significant difference between RCF and LFRR is that LFRR requires training of the latent

factor matrices U and V , whereas RCF does not rely on any pre-training. The training times for

LFRR are also listed. These results are presented with the caveat that training times generally

do not significantly affect the usefulness of the model unless training takes more than a few

hours.

Further information about validation procedures and details of hyperparameters can be found

in Appendix B.

3.4.2.3 Effectiveness Results

The ROC curves are based on one week of data. Figure 3.3 displays results from various aggrega-

tion functions used to aggregate results from the RCF algorithm. Figure 3.4 shows results from

the same aggregation functions used on the LFRR algorithm.

In the case of the RCF algorithm, as is evident from the area under the ROC curve, the

HM significantly outperforms the AM and GM. More interestingly, the cross-ratio uninorm

outperforms the state-of-the-art RCF based on harmonic mean. This is consistent with the

hypothesis that, because the HM and uninorm penalise situations where the two aggregation

inputs differ strongly from each other, they are likely to perform better in the online dating

domain, where two relatively high scores are more likely to result in a match than a very high

and very low score.

72

3.4. LATENT FACTOR-BASED COLLABORATIVE FILTERING

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
Po

si
ti

ve
R

at
e

Arithmetic Mean
Geometric Mean
Harmonic Mean

Cross-Ratio Uninorm

Figure 3.3: ROC curve obtained for each aggregation function considered in the RCF model.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
Po

si
ti

ve
R

at
e

Arithmetic Mean
Geometric Mean
Harmonic Mean

Cross-Ratio Uninorm

Figure 3.4: ROC curve obtained for each aggregation function considered in the LFRR model.

The difference between the performance of the aggregation functions is less evident on the

LFRR model, where the AM, GM and HM are much closer together. The uninorm performance

is significantly different. The shape of the cross-ratio uninorm on the LFRR algorithm can be

explained by the mixed behaviour of uninorm functions. The threshold passing the neutral

element of the aggregation function causes it to move from averaging behaviour to disjunctive

behaviour, and can cause a sharp increase in the number datapoints classified as positive.

The best F1 scores with their corresponding precision and recall from each aggregation

function are displayed in table 3.2 for both RCF and LFRR. Based on the best F1 score, the

harmonic mean consistently gives high precision, which is ideal for recommender systems in

online dating: users are more likely to trust a system that gives them a high proportion of very

good matches. However, in the case of RCF, the cross-ratio uninorm gives both a higher precision

73

CHAPTER 3. COLLABORATIVE FILTERING

Algorithm Precision Recall Best F1 Score
RCF (Arithmetic Mean) 0.58 0.86 0.69
RCF (Geometric Mean) 0.55 0.90 0.68
RCF (Harmonic Mean) 0.83 0.84 0.84
RCF (Uninorm) 0.84 0.90 0.87
LFRR (Arithmetic Mean) 0.81 0.92 0.87
LFRR (Geometric Mean) 0.83 0.86 0.85
LFRR (Harmonic Mean) 0.86 0.85 0.86
LFRR (Uninorm) 0.54 0.98 0.70

Table 3.2: Results based on best F1 score from each aggregation function tested applied to RCF
and LFRR

and higher F1 score. The offline evaluation shows that compared to RCF, LFRR is more consistent

across different aggregation functions. However, using the optimal aggregation function for each

of algorithm (the cross-ratio uninorm in the case of RCF and the harmonic mean in the case of

LFRR), there is no significant difference between the performance of the two algorithms based on

offline evaluation. However, the evaluation does demonstrate a significant difference between the

different aggregation functions for each algorithm. In the domain of online dating, depending

on the algorithm used, the harmonic mean consistently gives the best performance. However, in

situations where optimising recall is desirable (such as a social network where recommending a

large number of possible friends might not diminish trust in the system), the arithmetic mean

might be desirable.

3.4.2.4 Efficiency Results

A collaborative filtering-based reciprocal recommender system’s running time has never been

measured on dataset with a large number of users. Two aspects for both the RCF and LFRR

algorithms were measured: the time taken to calculate a reciprocal preference score for a single

pair of users, averaged over 100 pairs of users, and the time taken to generate a recommendation

list by calculating the scores for all candidate users and ordering them in descending order.

Because LFRR requires a training step, the training time on the same datasets is also displayed,

with the caveat that a long training time doesn’t have a significant impact on the algorithm’s

usefulness as compared to the time taken to generate recommendations. The size of the dataset

is measured based on the number of interactions, which is the factor that has the highest impact

on the time taken to generate recommendations and to train LFRR. To generate the datasets, an

equal number of male and female users were sampled from the same dataset used to measure

the effectiveness of the algorithms, with the restrictions detailed in section 4.1.

For these tests, a Google Cloud AI Platform 1 server was provisioned. The identification code

for the machine used is n1-highcpu-16. The server is currently listed as a legacy type, but at the

1https://cloud.google.com/ai-platform/docs/technical-overview

74

3.4. LATENT FACTOR-BASED COLLABORATIVE FILTERING

time of testing, this server was provisioned with 120GB of memory, 16 virtual CPUs and four

NVIDIA Tesla K80 GPUs.

Size RCF Score RCF List LRFF Score LFRR List
103 0.003 1.75 1×10−5 0.0001
104 0.005 13.7 1×10−5 0.001
105 0.008 163 1×10−5 0.025
106 0.09 > 1800 1×10−5 0.63
107 0.5 > 1800 1×10−5 2.0

Table 3.3: Time (seconds) to calculate a user-user score, and to generate recommendations, from
a dataset of N interactions

Table 3.3 shows the time taken to generate recommendations on various dataset sizes. Where

recommendations are generally expected by users in real time, times to generate recommenda-

tions of over 30 minutes (1800 seconds) are not practical, and hence recorded as >1800.

RCF struggles to generate recommendations in real time for even datasets containing very

small numbers of interactions. On a dataset containing a million interactions (a realistic number

for a very small dating service), the algorithm took over thirty minutes to produce a list of

recommendations for a single user. However, the scaling of RCF is such that even a parallel

implementation would not make the algorithm feasible for a large dating service with millions of

interactions per week.

LRFF remains able to generate recommendations in real time with a serial implementation

for datasets of up to ten million interactions. However, as the time taken to generate a single

reciprocal preference score is constant, calculating a large number of reciprocal scores would be

easy to parallelise, and generating recommendations in real time for datasets with hundreds of

millions of interactions would therefore be feasible.

Size LFRR Training Times
103 0.74
104 2.8
105 23.2
106 229
107 2332

Table 3.4: Training time in seconds for LRFF over 10 iterations of gradient descent, from a
dataset of N interactions

The training times of the feature matrices for LFRR are displayed in Table 3.4. A dataset

with a hundred million interactions (the monthly volume of an extremely popular service) takes

a few hours to train.

75

CHAPTER 3. COLLABORATIVE FILTERING

3.5 Summary

In this chapter, a novel algorithm LFRR was designed, which applies latent factor models to

reciprocal recommendation. It was evaluated against current baseline for reciprocal collaborative

filtering, RCF. The effectiveness of LFRR is similar to RCF based on offline evaluations. Both

algorithms were also tested on a larger dataset than has previously been used for reciprocal

recommendation. LFRR has considerably better efficiency, and is therefore a more realistic

algorithm for generating reciprocal recommendations in real time on a service with a large

number of interactions.

Previous reciprocal recommender systems have used only the harmonic mean. This chapter

presented an analysis of four functions for aggregating preference scores. Although the harmonic

mean was the most consistent aggregation function across both RCF and LFRR, the cross-

ratio uninorm function gave marginally better performance in the case of RCF. The choice of

aggregation function therefore has a significant impact on the effectiveness of the model, and

future research in this field should consider the testing of various aggregation strategies to find

which one fits best with the algorithm and data in question.

LFRR was successful at applying latent factor models to reciprocal recommendation. However,

more advanced modelling techniques are available, and models based on deep learning have

been particularly successful in the field of user-item recommender systems [34]. These results

might be improved upon in future by applying these models either to the current structure of two

unidirectional models or to predicting matches directly.

76

C
H

A
P

T
E

R

4
HYBRID FILTERING

Hybrid filtering describes any algorithm that makes recommendations by combining

methods from different areas. These algorithms often aim either to improve the results

of existing collaborative filtering algorithms by adding in content-based elements, or to

address the weaknesses of collaborative filtering such as the cold-start problem by introducing a

content-based or knowledge-based element to early recommendations. There are very few hybrid

reciprocal recommender systems. In this chapter, a novel hybrid system is presented, and its

efficacy is demonstrated on data from a popular social network.

=======

4.1 Introduction

Hybrid recommender systems describes the class of recommender systems that incorporates

multiple algorithms from different fields of recommendation in order to improve on the results of

any single algorithm. While the term can in theory describe any combination of two methods, it

is most commonly used to refer to systems that have a content-based and a collaborative filtering

component.

Prior to the work conducted for this thesis, there were no RRSs in the literature that combined

collaborative and content-based results. This chapter describes a hybrid RRS designed for a

social service for recipe sharing. This represents a novel contribution to the field of reciprocal

recommendation.

The collaborative filtering part of this system is a latent factor model-based approach. The

content-based system is a novel similarity metric based on Word2Vec that uses sentence em-

beddings of recipe titles to make recommendations based on similarity to previously preferred

77

CHAPTER 4. HYBRID FILTERING

recipes. The system is evaluated and it is demonstrated that the hybrid system outperforms its

individual components.

4.2 Background

This section briefly reviews the literature relevant to hybrid RRSs and the systems described in

this chapter. For a more in-depth literature review of all topics and papers surrounding this area,

see Chapter 2.

4.2.1 Hybrid Filtering

Hybrid filtering in recommender systems describes algorithms that combine multiple different

sub-types of recommender system in order to improve on the results of any individual system

[29]. Often this means a combination of collaborative and content-based methods, although other

less used subtypes such as knowledge based systems are sometimes included.

Burke defines terminology for hybrid systems based on the method of combining them.

Different methods are generally used to overcome the weaknesses of individual systems [29]

depending on the system. For example, a switching hybrid system might be used to change

the result from a content-based to a collaborative filtering-based prediction depending on the

estimated accuracy of each for a particular user [136].

There are a few examples of hybrid reciprocal recommender systems in the literature. The

earliest of these was designed by Akehurst et al. [11], which used nearest neighbour-style

collaborative filtering in combination with content-based attributes to make recommendations.

4.3 Hybrid Filtering for Social Networks

In Reciprocal Recommender Systems (RRSs), users are recommended to each other, therefore

unlike classical RS where preference relations are unidirectional (user-to-item), in RRS preference

relations among pairs of users need to be considered. RRSs are most often used in online dating

websites [112] [150], where explicit indicators of positive and negative preference are gathered

from users. However, they are noticeably having emergent applications in areas such as recruiting

[132] and social networks [53].

Despite ongoing RRS primarily focus their application on online dating, different algorithms

may be effective on different types of online services for connecting users. For instance, a

fundamental characteristic in online dating websites is that they often have two distinct classes

of user - male and female - whereas social websites such as Twitter and Facebook have only

a single class of user where any one user can be recommended to any other. There is a clear

shortfall of research on single-class RRSs as of now. Moreover, the rise of skill sharing and social

platforms such as Meetup.com, in which contents published and shared among users play an

78

4.3. HYBRID FILTERING FOR SOCIAL NETWORKS

important role, raises the need for new or extended RRS models that accommodate user-user

recommendations in these scenarios. Extant RRS research in general lags a long way behind

traditional RS research, with broad areas such as hybrid RRSs still completely unexplored in a

reciprocal context.

To address the aforesaid challenges, a novel Hybrid RRS (HRRS) is described, for recommend-

ing users to connect with each other socially in content/skill sharing platforms where: (i) unlike

most online dating services, there exists a single class of users and (ii) both user-to-item and

user-to-user preference information coexist. A model was developed that employs a CF-based

RRS algorithm based on latent factor models recently proposed in [4], and combines it with clas-

sical RS principles relying on users’ preferences towards content. For this, a novel method that

exploits free text content information using word embeddings is also introduced, for calculating

similarities between users predicated on their implicit preferences towards content. The results

of using the proposed HRRS model are evaluated on Cookpad, a popular recipe sharing website

in countries such as Japan, Taiwan and Indonesia.

The contributions of this model are fourfold:

1. The first hybrid RRS framework and model in the literature, combining reciprocal CF with

principles from classical CF and CB. Importantly, many item-to-user RS services use hybrid

techniques to produce better and more robust recommendations, but these techniques have

not been yet explored in the field of reciprocal recommendation.

2. This system is also the first RRS model in the literature that operates on a single class of

users, i.e. recommending users to each other within the same class, unlike e.g. opposite-sex

online dating.

3. A novel similarity metric based on word embeddings modeled after free text information

associated to content shared and/or liked by users.

4. A preliminary offline evaluation that includes an experimental study on real data, with a

real time implementation of the algorithm.

It has been demonstrated that standard RS metrics such as precision and recall based on

cross-validation are not always representative of the real effectiveness of RRS.

4.3.1 Hybrid Single-Class Reciprocal Recommendation

This section firstly introduces a novel HRRS framework. It then describes the proposed HRRS

algorithm, characterised by:

1. Incorporating principles from classical item recommendation in the process of recommend-

ing users to each other. Despite the numerous hybrid CF-CB models devised in the literature

79

CHAPTER 4. HYBRID FILTERING

for item-to-user recommendation, this is the first hybrid model of its kind in a user-to-user

setting.

2. Calculating reciprocal preferences among pairs of users who belong to the same class. This

is a notable difference from most existing RRS algorithms that rely on predicting matching

scores on pairs of users belonging to two classes, e.g. male and female in an online dating

domain.

A novel framework for Hybrid RRS or HRRS, where both inter-user preferences and user-to-

content preferences coexist, is formulated as follows:

• There exist a set of users U in the system, with a,b ∈U denoting any two users. A framework

was designed where, unlike opposite sex online dating, all users belong to the same class

and therefore any two users in U can be potentially recommended to each other.

• There is a set of content items X . In skills sharing platforms, items ra ∈ X are associated

to a user a who published them, hence preferences towards such content can be taken as

an indicator of potential preference from one user to another.

• There exist indicators of user-user preference Pre f (a → b), e.g. likes or follows towards

users.

• There exist indicators of user-item preference Pre f (a → rb), e.g. liked on content posted by

other users.

• The HRRS recommendation problem consists in recommending users b to a target user a

taking both types of preference indicators, Pre f (a → b) and Pre f (a → rb), into considera-

tion.

Figure 4.1 shows the general pipeline followed by the model to predict the level of matching

between two users a and b, consisting of three main stages: (i) item-to-user based matching or

non-reciprocal matching, (ii) reciprocal CF matching, and (iii) aggregation of item-to-user and

reciprocal predicted matching scores. This model also introduces in (i) a novel extension of the

Jaccard index formula to calculate pairwise similarities between users’ preferences on content

shared among users, predicated on word embeddings associated with content descriptions.

4.3.2 Item-to-User (Non-reciprocal) Matching

This component of the model considers users’ preferences towards content published by other

users and then pairwise user similarities are calculated based on content liked by both users.

Without loss of generality, in the application domain of the Web skill-sharing platform considered

in this study, the basic unit of content posted by a user a ∈U is a recipe ra ∈ R, Therefore, the aim

is to assign a higher matching to pairs of users whose preferences on content items, i.e. recipes,

80

4.3. HYBRID FILTERING FOR SOCIAL NETWORKS

Figure 4.1: General scheme of the HRRS Model

are similar. Preference-based similarities among users are known to be challenging to calculate in

domains where only implicit rating information (e.g. liked or seen items) are available. A classical

solution for this is to identify recipes commonly liked by two users a and b, and use the Jaccard

Index to calculate their similarity:

Ra ∩Rb

Ra ∪Rb

with Ra,Rb ⊂ R the subsets of recipe items liked by a and b, respectively. This presents however

an important limitation in skillsharing platforms where many instances of content published

by different users can be highly similar to each other, because the Jaccard index only detects

co-occurrences of same items in any two users’ preferences. Consider for instance that user a liked

four types of risotto recipes, and user b liked another four risotto recipes different from those

liked by a. If Ra and Rb contain only these risotto recipes for each user, their Jaccard similarity

would be zero (no risotto recipes in common). Users who have liked similar recipes but none of

the same recipes would be identified as being dissimilar to each other, which is undesirable in

a content-based system. A modified form of Jaccard similarity is used to account for similarity

between non-identical content items that users may have liked. A non-identical content similarity

measure is integrated into a user-user similarity metric in terms of their preferences towards

content.

In order to quantify recipes and thus calculate their similarity, Word2Vec is used [89].

Word2Vec is a series of models trained on shallow neural networks that produce word embed-

dings such that words with similar meanings are represented by vectors with a short Euclidean

distance between them. The training is based on proximity between words in large document

corpuses such as Wikipedia [120]. Many pre-trained word embeddings are available, and for this

project the Google News Vectors1 were used, which contain 300-dimensional vectors representing

a dictionary of 3 billion words, and have been tried and tested in a number of previous projects

1https://code.google.com/archive/p/word2vec/

81

CHAPTER 4. HYBRID FILTERING

[83]. The Jaccard Index is then modified as follows. An adjustment term is introduced, to smooth

the (typically pessimistic) similarity degree obtained by the classic Jaccard Index.

(4.1)
|Ra ∩Rb|+λ

|Ra ∪Rb|+µ

where,

(4.2) λ= ∑
ra∈Ra−Rb

∑
rb∈Rb−Ra

δ(ra, rb)

(4.3) µ= |Ra −Rb| · |Rb −Ra|

and λ is a sum over soft (non-strict) similarities δ(ra, rb) between non-identical pairs of recipes

ra, rb found in Ra or Rb, respectively, but not in both. µ is the total number of such recipe

pairs. Let |ra| be the number of vector representations of words associated to recipe ra (obtained

for instance by applying Word2Vec). Then, by looking at pairs of word vectors in ra and rb, a

similarity degree is calculated between these two recipes as follows:

(4.4) δ(ra, rb)=
|ra|∑
l=1

|rb|∑
k=l+1

sim(wl ,wk)

assuming we chose ra and rb such that |ra| ≤ |rb|. Here, wl ∈ ra and wk ∈ rb are vector representa-

tions of words present in both recipes, e.g. ingredients in common, and sim is a vector similarity

metric between both vectors.

4.3.2.1 Reciprocal Matching

RRS approaches normally rely on indicators of preference between users. In the case of the

Cookpad skillsharing platform, preference indicator data consist of Follows. Users can follow

other users in order to be notified of their new recipe content whenever they post it. The

data also contains a number of indirect preference indicators, such as Bookmarks (users can

bookmark others’ recipes to find them easily in future) and Cooksnaps (when a user makes

another user’s recipe, they can post their results along with a short review). Follows F(a,b) and

Bookmarks B(a,b) were used to construct a unidirectional preference score that represents a user

a’s preference for a user b, P(a,b), as follows:

(4.5) P(a,b)= F(a,b)+∑
B(a,b)

With this, we construct a two-dimensional square preference matrix representing the preference

of every user for every other user, and use this as the core of the reciprocal matching part.

The reciprocal matching process relies on two indicators of preference associated with each

user a:

82

4.3. HYBRID FILTERING FOR SOCIAL NETWORKS

• Followed users by a.

• Users b 6= a whose associated content has been liked by a.

Let Um×N and Vm×N be two matrices. Each row in U , denoted ua = (ua1 ua2 . . . uaN) contains N

preference latent factors associated with user a, which represent what a likes. Each row in V ,

denoted va = (va1 va2 . . . vaN) contains N attribute latent factors associated with user a, which

represents the properties of a. Both matrices have been obtained by applying a Stochastic Gradi-

ent Descent (SGD) algorithm to reduce the dimensionality of the original |U |× |U | matrices built

upon the aforesaid preference indicators. Calculating the preference or affinity level from user

a towards b, boils down to computing the similarity between a’s preferences and b’s attributes.

Concretely, a unidirectional preference score from a to b is determined by applying the vector

product, p(a → b)= ua ·vT
b . Conversely, the preference score from b to a is similarly determined as

p(b → a)= ub ·vT
a . Both unidiretional preference scores are combined into a reciprocal preference

score or matching score mCF (a,b) ∈ [0,1] using the harmonic mean operator [113, 150]:

(4.6) m(a,b)= 2 p(a→b) p(b→a)
p(a→b)+ p(b→a)

The harmonic mean operator has been typically used in previous user-to-user recommendation

approaches to calculate reciprocal preference scores (as described in Chapter 3), due to its

tendency to generate a lower aggregation output when none of the inputs are high enough,

compared to other classical mean operators. This is convenient in reciprocal recommendation

domains where a match between two users should be identified only when both users have

potential preference towards each other to some extent.

4.3.2.2 Aggregation of User Matchings

The outputs of the non-reciprocal and reciprocal matching processes are finally aggregated into

an overall matching between a pair of users a and b. Without loss of generality, in this work a

weighted average is used for this aggregation (within the scope of the experiments equal weights

are considered). Notwithstanding, a recent study on the effect of using other averaging and mixed

behavior aggregation operators in RRS can be accessed in [94].

4.3.3 Results and Discussion

The two components of the HRRS model were evaluated individually, and then evaluated the

hybrid model. For detailed discussions of the data used and the validation procedures, see

Appendices A and B respectively. The ROC curve for each of the three models is shown in Figure

4.2. The neutral 0-1 line is also given on the figure as a dashed black line for reference. As there

are no other examples of RRSs used in the context of a recipe sharing service, or on a single class

83

CHAPTER 4. HYBRID FILTERING

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
Po

si
ti

ve
R

at
e

Content-Based
Collaborative

Hybrid

Figure 4.2: ROC curve obtained for the content-based, collaborative and hybrid models.

of users, it was not appropriate to evaluate the system against other current RRS, which were

designed for online dating and not suitable for the aforementioned reasons.

The non-reciprocal algorithm where similarities among users are calculated upon user-content

preference information, performed relatively poorly by itself, only slightly better than random

filtering for some threshold setting. This was largely a result of a large number of false positives

which in turn leads to a lower precision and F1 score. As intuitively, users with similar terms

in their liked and created recipes would be more likely to like each other, this is attributed to

the offline testing procedure. As discussed, the data provided us with no negative preference

indicators among users, and so users who had not shown preference indicators towards each

other were used as as the negative test.

In contrast, the reciprocal algorithm where both directions of preference between users are

analysed, produced good results, with a positive ROC curve. The improvement seen in the hybrid

model that incorporates the (poorly performing by itself) non-reciprocal algorithm, in spite of its

neutral ROC curve, is not surprising. The reciprocal matching algorithm’s positive results are

able to be further refined by the non-reciprocal counterpart, with significantly dissimilar users in

terms of their created content being filtered out by the reciprocal process.

For reference, the F1 scores for each of the model versions is displayed Table 4.1. The highest

F1 score occurred at a threshold of 0.2. However, as is evident from the ROC curve, the precision

of the system is significantly higher at thresholds closer to 0.8. As RS approaches normally value

precision more highly than recall (users are more likely to trust a system with a few positive

recommendations), higher thresholds may be more beneficial to a live system.

Based on the experimental study conducted, the precision and recall of the proposed hybrid

approach is high enough to convince us that it will produce good recommendations for end users,

and that the hybrid system is more useful than either the non-reciprocal or the purely reciprocal

84

4.4. SUMMARY

Threshold Rec. F1 Score NonRec. F1 Score HRRS F1 Score
0 0.666 0.666 0.666
0.1 0.672 0.628 0.673
0.2 0.676 0.619 0.687
0.3 0.664 0.594 0.686
0.4 0.659 0.480 0.625
0.5 0.537 0.366 0.565
0.6 0.517 0.336 0.519
0.7 0.354 0.249 0.375
0.8 0.220 0.199 0.224
0.9 0.113 0.077 0.111
1.0 0 0 0

Table 4.1: Results obtained by varying the threshold for bidirectional preference score-based
recommendation

algorithm by itself. However, due to the lack of negative data for validation, and the complexity of

the recommendation domain in general, this should be considered as a promising yet preliminary

result only, and that further real time testing is required to determine the system’s effectiveness.

4.4 Summary

This chapter described a hybrid reciprocal recommender system for a social networking service

focused on skill sharing, and demonstrate its effectiveness on a representative dataset. The

algorithm used latent factor model-based collaborative filtering, combined with a novel similarity

metric for recipe titles based on word embeddings generated using Word2Vec.

The algorithm was evaluated through cross-validation, and it was shown that the hybrid

system was more effective than either the item-to-user based or the purely reciprocal collaborative

filtering systems by themselves. This work is novel in a number of ways, most significantly that

it is the first hybrid reciprocal recommender system, and the first RRS to operate on a single

class of users.

Although the system is able to produce recommendations for users, the effectiveness of HRRS

is not as high as the systems developed for online dating services in Chapters 3 and 5. Part of

this is due to the quantity of data available, and due to the lack of clear positive and negative

preference indicators as exist in online dating. However, there are a number of methods by

which the algorithms themselves might be improved in future works. More effective methods of

collaborative filtering might be applied to the collaborative filtering portion. Similarly, research on

transformers has shown the effectiveness of systems such as BERT [41] at producing meaningful

embeddings for text which might improve the content-based recommender.

85

C
H

A
P

T
E

R

5
CONTENT-BASED FILTERING

Content-based filtering, as outlined in earlier sections, establishes explicit or implicit

preferences for users, and makes recommendations based on the properties of items. This

chapter describes original contributions to collaborative filtering in reciprocal recommen-

dation. In particular, the focus is on using image data for reciprocal recommendation. Machine

learning techniques can be used to establish implicit preferences for images based on user prefer-

ence history, and use this to make recommendations. In addition to being a powerful predictor

for online dating, this technology has other potential applications such as for image-based social

networks.

=======

5.1 Introduction

As described in Chapter 2, content-based recommender systems make use of user preferences for

content to make recommendations. In user-item recommender systems, preference for content

generally means content provided by the service itself: for instance, on a movie recommendation

service, content might mean genre, specific actors, directors and so on. In reciprocal recommen-

dation, where the targets are other users themselves, content implies information provided by

the users themselves. In the context of online dating specifically, this content can commonly be

divided into three types: categorical data (such as age, height or pets), free text data (generally

a few paragraphs that the user writes about themselves) and photographs, usually of the user

themselves.

This chapter describes the development of two algorithms that use photographs to predict mu-

tual preference. The first, ImRec, is based on a Siamese network which determines whether, given

87

CHAPTER 5. CONTENT-BASED FILTERING

one previously preferred photograph as an anchor point, a user will like a different photograph.

The second, TIRR incorporates an LSTM to interpret results from the same Siamese network,

making predictions about the next preference based on a sequence of previous preferences.

ImRec, developed first and using a simpler structure, represents an advance of the field

of content-based reciprocal recommendation. It also performs better than the state-of-the-art

collaborative filtering solutions in cold start situations. TIRR performed better than any other

RRS algorithms on a large dataset from a popular online dating service, and represents an

advance of the field overall.

5.2 Background

This section briefly reviews the literature relevant to content-based reciprocal recommendation

and to the systems subsequently described in this chapter. For a more in-depth literature review

of all topics and papers surrounding this area, see Chapter 2.

5.2.1 Content-Based Reciprocal Recommender Systems

Content-based solutions are the most common form of RRSs in the literature. These originated

with RECON, developed by Pizzato et al. [113]. RECON uses categorical data to make recom-

mendations based on implicit user expressions of preferences. RECON showed promising results

during offline testing on a dataset from an online dating service.

Since RECON’s publication, a number of other content-based reciprocal recommender systems

have been developed that improve on the results from RECON. For example, Alanzi and Bain

[13] present a time-sensitive content-based RRS. This has also extended outside of online dating

into other fields such as recruitment. Almalis et al. [14] developed a content-based RRS based on

Minkowski distance for recruitment.

5.2.2 Machine Learning for Attractiveness

Prediction of attractiveness is a relatively new field in machine learning, with relatively little

research. In general, modern machine learning and especially CNNs have been shown to be very

adept at classifying images and extracting specific attributes [40]. A number of papers attempt to

predict specific attributes such as age and height from photographs [61]. More recently, a small

number of papers describe models that predict attractiveness in the absolute sense [153].

A more relevant concept for reciprocal recommendation is personal attractiveness, which

is the prediction of how attractive one user is to another user. Models that predict personal

attractiveness are much sparser in the literature. Two models based on using trained CNNs to

predict attractiveness on online dating services demonstrate promising results [63, 121], although

neither was adapted into a RRS.

88

5.3. SIAMESE NETWORK-BASED MODEL FOR IMAGE PREFERENCE

5.3 Siamese Network-based Model for Image Preference

Content-based RRSs in the literature have only been designed to work with categorical data.

RECON was trained on a service that did not include user image data. This type of service is

in the minority - most online dating services use images, and some very popular ones such as

Tinder1 encourage users to make initial decisions based entirely on images. There is informal

evidence that users on dating services overwhelmingly make decisions based on image data, even

when detailed text profiles are available2. In addition, recent social networks such as Instagram3

often focus on images rather than written or categorical content. As such, attractiveness of users,

generalised to attractiveness of images to individuals, could be used to improve social RRSs. As

attractiveness is subjective, this measure should account for the tastes of individual users, and

make recommendations based on specifically who is attractive to whom. The phrase "personal

attractiveness" is used to refer to the attractiveness of one person’s image to another person. The

whole image is potentially a trigger for attraction, and not only the person in the image’s physical

appearance.

To overcome the limitations of content-based RRSs that use only categorical data, an original

recommender system, ImRec was developed, which predicts preference of users x and y for each

other given their images and their history of positive and negative preferences. ImRec is based on

a Siamese Neural Network that predicts, given an image of a user already liked by x and an image

of y, whether x will like y. To the best of our knowledge, this is the first example in the literature

of a machine learning model successfully predicting personal attractiveness. The results from

this model are aggregated across the history of x and y’s preferences, to give two unidirectional

preference scores. These two scores are then aggregated into a single bidirectional preference

relation. Offline testing demonstrates that the model is capable of successfully differentiating

between positive and negative indicators of preference in this context, where the baseline

algorithm RECON was not able to.

This research was produced in collaboration with a popular Japanese online dating service.

Images on this service are mostly photographs, and are all manually checked to ensure that the

user and no other people are present in the photograph. The dataset is therefore of relatively

high quality.

5.3.1 Methodology

In this Chapter, a Siamese CNN is described [71] as a method of estimating a user’s x’s preference

for a user y’s image, based on x’s history of positive and negative preferences for images.

1https://tinder.com/
2https://www.gwern.net/docs/psychology/okcupid/weexperimentonhumanbeings.html
3https://www.instagram.com/

89

CHAPTER 5. CONTENT-BASED FILTERING

5.3.1.1 Problem Formulation

The online dating service currently only supports heterosexual relationships. It can therefore

be assumed that for a set of users of one gender X = {x1, x2, . . . , x|X |} there is a set of candidate

users for recommendation Y = {y1, y2, . . . , y|Y |}. A user may have an ordered history of preference

expressions for users of length n, for example, Sx = {Sxyi
t0

,Sxyj
t1

,yk
tm

, . . . ,Sxyl
tn

} where Sxyi
tm

∈ Y

represents the expression of positive or negative preference of user x for the user yi at time tm.

In our reciprocal system, our objective is to estimate Rx,y, the reciprocal preference score that

represents the projected degree of preference of two users for each other. Rx,y is a function of the

historical preferences of x and y as well as the two users themselves, and train a model to predict

it using all of this information:

(5.1) Rx,y = f (Sx,S y, x, y;θ)

Where θ represents the parameters of the model. Note that contrary to most previous

approaches to RRSs, our approach trains a single model to predict reciprocal preference using all

of the information, as opposed to combining the results of two models predicting unidirectional

preference. Also note that the reciprocal preference is symmetrical i.e. Rx,y = R y,x.

5.3.1.2 Network Structure

Siamese networks have been successful in various areas such as object recognition [143] and

tracking [25]. They are particularly apt at solving classification problems where the system

is required to adapt to new examples quickly, known as one-shot learning. In the case of a

classification problem, the network is trained with triplets broken into alternating pairs. The

first image in the triplet, ya is the anchor. The positive yp is from the same classification group as

the anchor, while the negative yn is from a different group. The labels are either 1 or 0 depending

on whether the inputs are (ya, yp) or (ya, yn) respectively.

The network structure is visualised in Figure 5.1. The symmetrical CNNs reduce the images

to a 128-dimensional vector. Note that the CNN trained to create the embedding is not visualised

for space concerns, but is represented in Table 5.1 instead. The final part of the network is then

trained on the difference between the embeddings. The network is trained using a loss function

that attempts to minimise the difference between the two images if they are ya and yp, and

maximise the difference if they are ya and yn. This generalises the network to differentiate

between images of different classes - in this case, to differentiate between an image which a user

x would Like and an image which a user x would Nope. This subsequently allows us to make

predictions about preference.

The specific structure of the network is described in Table 5.1. Because the face is likely to

be an important part of a user’s positive or negative reaction to other users, a number of layers

90

5.3. SIAMESE NETWORK-BASED MODEL FOR IMAGE PREFERENCE

Figure 5.1: Siamese network visualisation. Refer to Table 5.1 for the CNN architecture details.

Layer Size-in Size-out Kernel Param
input 100x100x3 0
conv1 100x100x3 100x100x3 7x7x3 444
maxpooling1 100x100x3 34x34x3 3x3
normalization1 34x34x3 34x34x3 12
conv2 34x34x3 34x34x64 3x3x64 1792
maxpooling2 12x12x64 12x12x64 3x3
normalization2 12x12x64 12x12x64 256
conv3 34x34x3 12x12x192 2x2x192 49344
maxpooling3 12x12x64 4x4x192 3x3
conv4 4x4x192 4x4x384 2x2x384 295296
maxpooling4 4x4x384 2x2x384 3x3
conv5 2x2x384 2x2x256 1x1x256 98560
conv6 2x2x256 2x2x256 3x3x256 590080
maxpooling5 2x2x256 1x1x256 3x3
flatten 1x1x256 256
dense1 256 256 65792
dense2 256 128 32896

Table 5.1: The structure of the CNN used as the symmetrical part of the network to create
embeddings

with small convolution kernels were used, which has been demonstrated to be effective in face

recognition and evaluation settings.

The network learns based on the difference between the outputs of the two symmetrical parts

of the network via a shared weight parameter W. We use W to map y1 and y2 to hy1 and hy2,

which are two points in a 128 dimensional space. We can then calculate the distance between

these two lower dimensional points as follows:

(5.2) DW (y1, y2)= |hy1 −hy2|

91

CHAPTER 5. CONTENT-BASED FILTERING

Siamese networks are often trained with Contrastive Loss. The Contrastive Loss function,

uses a margin m, and depending on the size of the margin, results in a high loss when the the

network’s prediction is wrong about two similar images.The Contrastive Loss function is defined

as:

(5.3) L(y1, y2)= (1−Y)
1
2

(DW (y1, y2))2 +Y
1
2

(max(0,m−DW (y1, y2))2

where Y is the binary indicator representing Like and Nope, DW (y1, y2) is the embedded distance

between two images and m is the margin.

In many situations where siamese networks are used, the objective is to distinguish between

distinct classes of items, and in this case a high error for similar objects in different classes is

appropriate. In the case of preferences, this is not necessarily appropriate, as preferences are not

necessarily categorical. Binary Cross-Entropy, defined in Equation 5.4, which does not punish

incorrect classifications of similar images, was a more effective loss function.

(5.4) L(y1, y2)=−(Y log(g(DW (y1, y2)))+ (1−Y) log(1− g(DW (y1, y2))))

where Y is the binary indicator representing Like and Nope, g is a Multi Layer Perceptron and

g(DW (y1, y2)) is the predicted probability of DW (y1, y2) resulting in a Like.

5.3.2 Recommendation Algorithm

In this section, the operation of the ImRec algorithm is described, incorporating the model

described in Section 3.2. The algorithm is visualised in Figure 5.2. Given two users x and y,

the algorithm has four steps to calculate a bidirectional preference relation that represents the

likelihood the two users will like each other.

In Step 1, the users previously Liked by users x and y are identified, and those users’ main

images are extracted. The number of images used for each user was capped to the 30 most recent.

This decision was made to maintain relevance.

In Step 2, the images from Step 1, in addition to the inputs of the candidate user, are used as

inputs to the appropriate siamese network. For instance, the case that x is a male user, y’s image

is used as the anchor (ya), and the images x has Liked (yp) are used as the positive samples

while the images that x has Noped (yn) are used as negative samples for the model trained on

male preferences for female user images. The output is a list of scores, one for each comparison

between x’s image and each (ya, yp) pair.

The output from Step 2 is a list of scores, and Step 3 aggregates these scores into a single

score. In order to do this, the scores are separated into 5 bins of equal size between 0.0 and 1.0,

and convert the bins to a distribution. This distribution is the input to a random forest. The

regressor was trained on a training set of 10000 samples independent of the training data for the

92

5.3. SIAMESE NETWORK-BASED MODEL FOR IMAGE PREFERENCE

Figure 5.2: ImRec visualisation

Siamese network. This slightly outperformed simpler methods such as the Pythagorean means,

and there was no difference between the random forest and a neural network.

In Step 4, the two unidirectional preference scores (representing x’s preference for y and y’s

preference for x) are aggregated into a single bidirectional preference score using the harmonic

mean. Our decision here is motivated by research indicating that the harmonic mean performs

well in RRS contexts [94], and also because of our desire to keep our research as consistent as

possible with our baseline, RECON, which also uses the harmonic mean.

The methods in this section are tailored to matching female and male users because of the

data available to us and because the algorithm is easier to visualise and explain with two distinct

classes of users. However, the algorithm could easily be adapted to users of any orientation by

creating a personalised preference model for each user with their Liked and Candidate users,

including only those for whom reciprocal interest is possible based on their own orientation.

5.3.3 Evaluation

This section describes the evaluation and results of ImRec. For details on the dataset used, see

Appendix A. For details on hyperparameters and validation procedures, see Appendix B.

93

CHAPTER 5. CONTENT-BASED FILTERING

5.3.3.1 Image Preference Model Results

In this section, the results of the image preference prediction model are described. This is the

siamese network described in Section 3.2 that represents Step 2 in Figure 5.2. To the best of our

knowledge, this model is the first of its kind: there are no other models that attempt to predict

personal attractiveness based on images. Because of this, the results for this model are presented

without a point of comparison.

Figure 5.3: ROC Curve for siamese network to predict image preferences.

The ROC curve, based on a test set of 20000 interactions from users not in the original

dataset, shows that the model is capable of successfully predicting user preference based on a

single image. Although the model is not always accurate in this prediction, the fact that users

often Like a relatively large number of other users means that this model can be used as a base

for predictions based on results from the model over a large number of interactions.

Figure 5.4: Pretrained Siamese Network Embeddings

94

5.3. SIAMESE NETWORK-BASED MODEL FOR IMAGE PREFERENCE

The output of the Siamese network is a 128-dimensional vector, which forms the input of the

RNN. It is therefore useful to visualise these embeddings. In order to do this, we use Uniform

Manifold Approximation and Projection for Dimensionality Reduction (UMAP) [87] to reduce

the 128-dimensional vectors to two-dimensional vectors for visualisation. This visualisation is

displayed in Figure 5.4.

In this visualisation, the black datapoints represent Noped images and the red datapoints

represent Liked images. It is clear from the visualisation that the embeddings are separable

to some extent. The anomalous black cluster in the top right of the image represents heavily

distorted or very poor quality images, or images misclassified by the face detection algorithm (i.e.

images that do not contain a face). These tend to be almost universally Noped.

5.3.3.2 Results for Content-Based Algorithms

In this subsection, we present the results for ImRec compared to the current state-of-the-art

content-based RRS, RECON.

Figure 5.5: ImRec and RECON ROC curves.

Figure 5.5 shows the ROC curve for ImRec versus our baseline of RECON. The reference

line is displayed as a dotted line. The graph was drawn using 1000 different thresholds between

0.0 and 1.0. ImRec generally has a positive and predictable curve, indicating that it is correctly

predicting indicators of preference based on the users’ images. On this dataset, our baseline

RECON performed poorly, often worse than the reference.

The main reason for RECON’s poor performance on this dataset in spite of a good performance

on its original test dataset is likely to be the lack of images in the dataset it was tested on. Pizzato

et al. state that RECON was designed for a dataset where, "The profile of a user is made of two

components: free text information and a pre-defined list of attributes, ..." [113]. In contrast, many

95

CHAPTER 5. CONTENT-BASED FILTERING

modern online dating services and social networks use images very prominently, and users are

often given an opportunity to make a positive or negative decision about another user based on

an image and no other information. In this situation, ImRec provides a clear advantage.

Algorithm Precision Recall Best F1 Score AUC
ImRec 0.59 0.91 0.71 0.65
RECON 0.59 0.64 0.61 0.51

Table 5.2: Results based on best F1 score for all relevant algorithms.

Table 5.2 shows the best F1 scores for the relevant algorithms, which was found by varying

the threshold. In this case, ImRec performs about 0.1 better than RECON. However, as is evident

from their respective ROC curves, it is much easier to improve precision in the case of ImRec

by increasing the threshold, whereas RECON performs much worse under these conditions on

our dataset. Precision is vital for trust in recommender systems, as users who are shown a large

proportion of recommendations that are not relevant to their interests are less likely to continue

using the system.

5.3.3.3 Cold-Start Results

In this subsection, we present the results for ImRec in cold-start situations against the current

state-of-the-art RRS, LFRR.

We hypothesised that ImRec would perform better than collaborative filtering algorithms in

cold-start situations. We tested ImRec against the current best in class collaborative filtering

algorithm, LFRR [96]. Using all available data, LFRR outperforms ImRec. However, with very

little data, correlations between user preferences provide less useful information about the user’s

preferences than the information in the content-based model.

We tested ImRec and LFRR on a set of 20000 users interactions (10000 Matches and 10000

Nopes). From these users, we restricted interaction data available to the algorithm in training to

a fixed number of interactions in order to simulate a new user. We make the assumption that

new users Like and Nope in equal quantities, which in general is true. We name the algorithms

trained on restricted data Algorithm K where K is the number of Likes and Nopes from the users

in the test set available in the training set. For example LFRR 1 is the LFRR algorithm tested

on a set of users whose training data consisted of one Like and one Nope; ImRec 3 is the ImRec

algorithm tested on a set of users whose training data consisted of three Likes and three Nopes.

Figure 5.6 shows the ROC curves for the ImRec and LFRR algorithms trained with restricted

data. The LFRR curve is very close to random choice when trained with only one expression of

preference, and improves quickly with more data. On the other hand, ImRec produces significantly

better results with very little data, and improves more slowly as more examples become available.

Table 5.3 shows the AUC for each of the algorithms trained with restricted data. It is clear

from this that with fewer than 5 positive and negative indicators of preference available, ImRec

outperforms LFRR, and the converse is true at 5 or more. The first day of a user’s interactions

96

5.3. SIAMESE NETWORK-BASED MODEL FOR IMAGE PREFERENCE

(a) ImRec curves.

(b) LFRR curves.

Figure 5.6: Curves for ImRec and LFRR for cold-start situations for various numbers of preference
indicators.

Algorithm 1 Indicator 3 Indicators 5 Indicators 7 Indicators
ImRec 0.613 0.625 0.633 0.639
LFRR 0.530 0.604 0.639 0.696

Table 5.3: AUC for ImRec and LFRR for different preference indicators.

on a dating service is often essential, with the user deciding whether to commit to the service

long term or give up based on their personal experience. As such, being able to make effective

recommendations at an early stage is extremely useful for an RRS.

Based on these results, there are a number of ways that ImRec could be used to improve on

the current best in class as part of a hybrid system. However, even the most simple method: a

switching hybrid system that uses ImRec for recommendations up to 5 positive and negative

interactions, is a clear and significant improvement.

97

CHAPTER 5. CONTENT-BASED FILTERING

5.4 Recurrent Neural Network-based Model for Image
Preference

In this section, a novel recommender system is described, Temporal Image-Based Reciprocal

Recommender (TIRR), that uses a Recurrent Neural Network (RNN) to interpret a user’s history

of preferences for images, and make predictions about their future preferences in order to make

recommendations. This is a significant improvement on the only image-based RRS, ImRec[92]

described in the previous section, in the sense that it outperforms both ImRec (previously the

state of the art in content-based reciprocal recommendation) and also the current state of the art

collaborative filtering solutions.

In addition to the advantages in terms of its improvement in the ROC curve on cross-

validation, TIRR is also an advance of the field in the sense that it provides a unified system that

predicts matches directly, as opposed to two separate predictions of unidirectional preferences

followed by an aggregation. There is some doubt as how to combine two unidirectional scores

into a single bidirectional score in a way that is fully representative of two users’ bidirectional

preference for each other; TIRR solves this by predicting the bidirectional relation end to end.

The system was tested using a popular online dating service. We used 200000 users and

approximately 800000 expressions of preference combined split across train and test sets.

Figure 5.7: TIRR: the architecture to predict matches using an LSTM to interpret historical
preference data on user photographs.

The Siamese network described above, when trained on unidirectional preference, is an

effective model. In this section, we describe the RNN we use to interpret the user history based

on the results of the Siamese network.

The output of the Siamese network is a point in 128-dimensional space that represents the

preference of a user x for an image yk based on comparison with the anchor image ya. Based

on initial experimental work, we chose an LSTM-based RNN architecture to interpret the time

98

5.4. RECURRENT NEURAL NETWORK-BASED MODEL FOR IMAGE PREFERENCE

series of images. The forget gate of the LSTM is particularly intuitive in this case. For a state st

at time t, a forget gate described by f t, a write gate i t and a candidate write s̃t derived from the

input and the previous state, the next state is described by the equation:

(5.5) st = f t ¯ st−1 + i t ¯ s̃t

We might intuitively expect that preferences expressed by users would change over time, and

the forget behaviour of the LSTM allows us to model this, with the input for the state st of the

LSTM modelling the preferences of user x being the user Sx
t , and the final input at s|Sx|+1 being

the user y whom we wish to estimate x’s preference for.

The LSTM is visualised in Figure 5.7. Because users have variable length preference histories,

we fill the histories of users with shorter histories with dummy images and use a masking layer

to filter them. The LSTM and subsequent dense neural network form a representation in 256-

dimensional space of the user’s preference as a time series.

Layer Size-in Size-out Kernel Param
input 128x15 0
LSTM 128x15 128 128 128
dense1 128 256 1 128
concat 128x2 256 1 256
dense2 256 128 1 256
output 128 1 1 128

Table 5.4: The layers of TIRR following the mapping of images into 128-dimensional space by the
pre-trained Siamese network

Specifically, the network consists of an input layer, which accepts a maximum of 15 outputs

from Siamese networks in 256-dimensional space concatenated together. Experiments determined

that more than this did not significantly alter the performance of the network. The layers are

described in Table 5.4. If a user has fewer preferences expressed than this, the earlier images

are filled with zeroes, and the network learns to interpret this as dummy data. Following the

LSTM, the network consists of a single dense layer of 128 neurons, and then a dropout layer with

a dropout rate of 0.4. The network was trained with an Adam optimiser with a learning rate of

0.0001.

5.4.1 Training and Match Prediction

This section describes training the network to predict matches between two users. As described

in Section 5.3.1.1, our objective is to differentiate between interactions consisting of bidirec-

tional expressions of preference, Matches, and unidirectional expressions of negative preference,

Dislikes.

The full training process is visualised in Figure 5.8. Our experiments determined that the

network trained extremely slowly when trained in its full form from an initial randomised state,

99

CHAPTER 5. CONTENT-BASED FILTERING

profileslikes dislikes

preprocess
images

pretrain
siamese
network

matches

profiles

preprocess
images

train
LSTM

network

evaluate
TIRR

test matches

Figure 5.8: The process by which TIRR is trained. Three independent datasets used represented
by different colours.

and we therefore pre-trained the Siamese network segment of the network using one dataset,

shown in green. The subsequent training of the full system on matches was done using a separate

dataset, shown in red. The final evaluation was done using a third dataset, shown in blue. In

addition, Neve et al. demonstrated that the Siamese Network training was more effective when

two networks were trained separately on male and female data [92]. As the service providing our

data currently only supports heterosexual dating, this split does not decrease the usefulness of

the application in this case.

Training for the Siamese networks were based on 500000 triplets (ya, yp, yn) sampled from

200000 users split evenly over male and female images. Images were cropped and centered on

the faces of users before training. Other methods of preprocessing such as affine transformations,

which have been shown to improve the predictive power of other networks [81] did not have any

impact on performance. The Siamese networks were trained to predict unidirectional preferences

i.e. yp was an image x had Liked (but not necessarily with reciprocity) and yn was an image x

had Disliked.

Following convergence of the Siamese network, the LSTM network was trained based on the

preference histories of 100000 users to predict Matches and Like-Dislike Tuples. This dataset

was separate from the dataset used to train the Siamese network. Histories were capped at one

year, because of concerns that changes to the service’s design and search algorithm over time

might have an effect on user preferences. They were also capped to a maximum of 15 preferences,

100

5.4. RECURRENT NEURAL NETWORK-BASED MODEL FOR IMAGE PREFERENCE

because initial experiments showed that longer sequences did not improve accuracy, and because

some outlier users express thousands of preferences, which results in an unreasonable increase

in training and prediction times.

Finally, the LSTM was tested on a separate dataset of 20000 Matches and Like-Dislike Tuples.

There was no overlap in preference expression between the three datasets. There was overlap

between the users contained in these datasets, but as in a real-world situation the system would

be trained based on users on the service and subsequently used to make predictions for those

users in addition to new users, testing in this way is valid and representative.

The following subsections describe the results for TIRR. For details on the dataset used, see

Appendix A. For details on hyperparameters and validation procedures, see Appendix B.

5.4.2 TIRR vs Content-Based Algorithms

As described in Section 1.2, recommender systems are divided into content-based algorithms and

collaborative filtering algorithms.

Figure 5.9: Content Based Algorithm ROC Curves demonstrating the significant improvement
in AUC with TIRR.

Figure 5.9 displays a comparison of TIRR with other content-based algorithms. As described

in Section 2.3.6, RECON [113] is a an algorithm that identifies a user’s implicit preferences for

categorical data, and ImRec [92] is an algorithm that uses images to make predictions without

the RNN-based component of TIRR, instead using a Random Forest and aggregation function.

RECON struggled to generate effective recommendations on our dataset. As RECON was

also evaluated on a private dataset, without comparing the datasets directly, it is difficult to

establish why this is, but one possibility is that modern dating services place a higher emphasis

on visual content than services did ten years ago, at the time RECON was developed. ImRec

performs better than RECON, but performs significantly worse than our proposed method TIRR.

The key difference between TIRR and ImRec is the RNN-based process that allows TIRR to

101

CHAPTER 5. CONTENT-BASED FILTERING

interpret historical and time-series data in order to make predictions, whereas ImRec treats user

preferences in a global way, with no ability to capture individual users preferences.

Algorithm F1 Score Precision Recall AUC
RECON 0.61 0.56 0.68 0.51
ImRec 0.71 0.60 0.88 0.65
TIRR 0.87 0.86 0.88 0.91

Table 5.5: Results based on best F1 score for content-based algorithms. Here we can see that the
proposed method TIRR significantly outperforms the other approaches.

The AUC and maximum F1 score for the three algorithms is described in Table 5.5. The

scores are based on the threshold that gave the best F1 score in the training set, used in the test

set. We consider that this significant improvement of our proposed method TIRR derives from

the ability of our algorithm to interpret a user’s history of preferences for images over time, and

take account of a user’s potentially shifting preferences, whereas Imrec provides a global model

across all users without distinguishing more than one preference per user at a time, and RECON

doesn’t make use of images at all.

The table also lists the precision and recall at the points where the best F1 score was recorded.

While F1 is an excellent measure of overall performance of an algorithm, the individual precision

and recall numbers and their balance are particularly important in RS research because precision

tends to influence the trust users have in the RS, which in turn affects their use of it [55]. It is

noteworthy that while ImRec was relatively successful at predicting which image a user would

like, its precision was relatively low in comparison with other algorithms, whereas TIRR has

very high precision, and is therefore more likely to be trusted and used.

5.4.3 TIRR vs Collaborative Filtering

In addition to comparing TIRR to other content-based RRSs, tests were also run comparing it to

the current best-in-class collaborative filtering algorithms, RCF and LFRR.

LFRR is a collaborative filtering algorithm based on latent factor models trained by stochastic

gradient descent, and RCF is a neighbourhood-based collaborative filtering algorithm. TIRR

outperformed both of these algorithms on our test dataset, although by a slimmer margin than

its lead on current content-based filtering algorithms. Nonetheless, this represents a significant

advancement in the field of reciprocal recommendation, as in services where images prominently

used, our algorithm is likely to be more effective than current collaborative filtering methods.

Algorithm F1 Score Precision Recall AUC
LFRR 0.86 0.86 0.85 0.90
TIRR 0.87 0.86 0.88 0.91

Table 5.6: Results based on best F1 score for the TIRR and LFRR algorithms. Here we can see
that the content-based TIRR improves upon the collaborative filtering-based LFRR.

102

5.5. SUMMARY

Figure 5.10: ROC Curves showing the performance of the content-based TIRR against the current
state of the art collaborative filtering algorithm LFRR.

Table 5.6 lists the peak performance metrics for the two algorithms. In addition to the higher

F1 score, TIRR also has a comparable balance of precision and recall to LFRR.

5.5 Summary

In this section, a novel model that predicts user preference for image-based attractiveness

was developed. There are a small number of models in the literature that predict general

attractiveness [61, 153], but none that predict personal preference. Based on the large scale

evaluation on real world data, that this model successfully differentiates between positive and

negative preferences.

Using this model, a novel recommender system, ImRec, that uses scores from our model

to predict unidirectional, and subsequently bidirectional preferences. ImRec outperforms the

previous best in class content-based recommender system, RECON, which made predictions based

on categorical data. The success of ImRec over RECON establishes the importance of images in

online dating as compared to text-based information - a subject that would subsequently benefit

from an in-depth analysis. It also outperforms the state of the art collaborative filtering RRSs in

the case where very little data is available, and therefore helps to solve the cold start problem.

A second algorithm, TIRR, was then developed to interpret user preference history using

only photographs using an LSTM and make predictions about future preferences for reciprocal

recommendation. This can effectively be used as a predictor for the probability of mutual prefer-

ence between two users, and therefore forms the basis for an effective recommender system. This

algorithm outperforms state of the art reciprocal recommender systems in offline tests using a

large dataset from a dating service with real users.

This research demonstrates the value of including historical preference in reciprocal recom-

103

CHAPTER 5. CONTENT-BASED FILTERING

mendation. Previous research has demonstrated the value of using RNNs to interpret sequences

of preferences in user-item recommendation, but this is the first time it has been used in recipro-

cal recommendation. The improvement over a similar algorithm that does not use sequences of

data shows the value of this approach.

Finally, the model itself represents a significant advance in the field of content-based recipro-

cal recommendation. The model’s success allows us to draw interesting conclusions about the

significance of photographs in online dating, given their strong predictive power in this dataset.

It also provides interesting insight into the potential power of content-based algorithms in online

dating: while in many fields, they are outperformed by collaborative filtering, the algorithm

presented in this paper performs better on evaluation metrics than the current state-of-the-art

collaborative filtering algorithm.

Although the results for TIRR in particular are promising within the field of RRSs, it has

been demonstrated that recommender systems often do not maintain their offline performance in

online settings [21], and so further research is needed to ensure that this performance translates

to effective recommendations in online settings. In addition, it is a little counter-intuitive that

content-based algorithms outperform collaborative filtering algorithms in this field given that

collaborative filtering algorithms significantly outperform content-based filtering algorithms in

user-item recommendation [163]. It is possible that TIRR would be outperformed by modern

collaborative filtering techniques as applied to reciprocal recommendation.

104

C
H

A
P

T
E

R

6
CONCLUSIONS

This thesis has described a variety of contributions to the field of Reciprocal Recommender

Systems, including hybrid, content-based and collaborative filtering systems. Each of

these individual contributions represents a significant advancement of the field. This

final chapter begins with a brief summary of the methods and the results of the algorithms

described in each chapter. The original contributions that each of these chapters represents

are then summarised. Finally, the themes that tie these individual contributions together are

outlined.

6.1 Summary of Results

In this section, the results from algorithms developed for the three main types of filtering: content-

based, collaborative and hybrid filtering are summarised. Figures and tables are reproduced from

their respective chapters to illustrate the effectiveness of the methods used in each case.

6.1.1 Collaborative Filtering Results

Prior to the work conducted in this thesis, collaborative filtering algorithms in reciprocal recom-

mendation were memory-based algorithms that calculated recommendations in real time, such as

RCF [150]. These algorithms struggle to make predictions in reasonable time on larger datasets

because of this. In Chapter 3, a novel collaborative filtering algorithm LFRR [96] was proposed

based on latent factor models. Calculating a latent factor model based on correlations between

positive and negative preference expressions allows predictions to be made much more efficiently

in real time.

105

CHAPTER 6. CONCLUSIONS

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
Po

si
ti

ve
R

at
e

Arithmetic Mean
Geometric Mean
Harmonic Mean

Cross-Ratio Uninorm

Figure 6.1: ROC curve obtained for each aggregation function considered in the RCF model.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
Po

si
ti

ve
R

at
e

Arithmetic Mean
Geometric Mean
Harmonic Mean

Cross-Ratio Uninorm

Figure 6.2: ROC curve obtained for each aggregation function considered in the LFRR model.

LFRR was evaluated against RCF, which was the previous best in class for collaborative

filtering RRSs. In terms of the ROC curve and the best F1 Score, LFRR and RCF had similar

performance. However, LFRR performed significantly better where time efficiency was concerned.

As shown in Table 6.1, RCF failed to generate predictions in any reasonable time for datasets

over 105 users, whereas the model-based method LFRR was able to generate predictions efficiently

up to 107, which was the largest amount of test data available.

Collaborative filtering methods for reciprocal recommendation involve generating two sepa-

rate scores and then combining them into one. Traditionally, this was done with the harmonic

mean. Chapter 3 also described experiments based on varying the aggregation function, and

the effects this had on the results. Changing the aggregation function did significantly alter the

predictive power of the algorithm, and the most effective aggregation function depended on the

106

6.1. SUMMARY OF RESULTS

Size RCF Score RCF List LRFF Score LFRR List
103 0.003 1.75 1×10−5 0.0001
104 0.005 13.7 1×10−5 0.001
105 0.008 163 1×10−5 0.025
106 0.09 > 1800 1×10−5 0.63
107 0.5 > 1800 1×10−5 2.0

Table 6.1: Time (seconds) to calculate a user-user score, and to generate recommendations, from
a dataset of N interactions

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
Po

si
ti

ve
R

at
e

Content-Based
Collaborative

Hybrid

Figure 6.3: ROC curve obtained for the content-based, collaborative and hybrid models.

algorithm used.

6.1.2 Hybrid Filtering Results

Chapter 4 described a novel hybrid algorithm for use on social networks [97]. The algorithm was

based on using a combination of latent factor-based collaborative filtering and text embeddings

from Word2Vec to recommend recipe creators to users to follow and interact with, based on

previous successful interactions.

The hybrid variant of the algorithm was based on aggregating predicted preference scores

from each of the two individual algorithms. It was more successful than either the individual

algorithms, one of which was LFRR, which was the previous state of the art.

6.1.3 Content-Based Results

In Chapter 5, a Siamese network was trained to differentiate between two images: a Liked

image by one user, and a Disliked image by the same user, using a third image as the anchor.

This network was able to differentiate between these two classes. This can be visualised: a

representative sample of images was used as an input to the network, and the final dense layer

107

CHAPTER 6. CONCLUSIONS

of neurons before the output treated as an embedding in 128-dimensional space. Using UMAP

[87], these results were mapped into two dimensions, which is visualised below.

Figure 6.4: Siamese Network Embeddings

From this Siamese Network, a novel algorithm ImRec [92] was proposed, and initially con-

structed using a Random Forest to predict whether a user A would like another user B based on

outputs from the Siamese network comparing A’s previously Liked photos with B’s photo. This

algorithm outperformed previous content-based algorithms such as RECON[113].

Figure 6.5: ImRec and RECON ROC curves.

However, ImRec only outperformed the state-of-the-art collaborative filtering algorithms in

cases where there were only a few points of data for an individual user. While this is useful

in cold-start situations, most users on a dating service do have more than five expressions of

preference.

Building upon the same Siamese Network, a second algorithm was developed, TIRR [93].

TIRR considered preference history over time using an LSTM to interpret sequences of preference.

TIRR did not predict two unidirectional preferences that were then aggregated as is common in

108

6.2. SUMMARY OF ORIGINAL CONTRIBUTIONS

RRS algorithms, but instead predicted matches directly based on two users’ past sequences of

preferences for photos.

Figure 6.6: ROC Curves showing the performance of the content-based TIRR against the current
state of the art collaborative filtering algorithm LFRR.

TIRR improved on not only the previous results from ImRec as shown in Figure 6.6 (and

therefore the state of the art in content-based filtering) but also the state-of-the-art in collabo-

rative filtering algorithms, LFRR. These algorithms demonstrate the importance of images in

RRSs for online dating, and also the importance of interpreting historical data as sequences using

RNNs in making accurate predictions in these environments.

6.2 Summary of Original Contributions

This chapter outlines the specific original contributions made to the field of reciprocal recom-

mender systems by this thesis. This is organised by content-based, collaborative and hybrid

reciprocal recommender systems.

6.2.1 Collaborative Filtering Contributions

The previous state of the art in collaborative filtering reciprocal recommendation was nearest

neighbour-based approaches. These were memory-based methods that calculated recommenda-

tions in real time. These methods do not perform optimally on larger datasets, as the amount

of time required to generate a recommendation grows polynomially with the size of the dataset.

In addition, the harmonic mean was used almost exclusively for aggregation of unidirecional

preferences, without justification.

In Chapter 3, an algorithm LFRR was introduced. This algorithm represented an advance of

the field in several ways:

109

CHAPTER 6. CONCLUSIONS

1. LFRR represents the first application of latent factor models to reciprocal recommendation.

Latent factor models have proved to be extremely effective in user-item recommendation,

and LFRR demonstrates that they show a similar level of effectiveness in reciprocal

recommendation.

2. LFRR is shown to be of similar effectiveness to the state of the art nearest neighbour

methods, but much more efficient. LFRR is a model-based approach, and can generate

recommendations at O(1) complexity, meaning that it can be used to predict scores in

datasets of arbitrary size.

3. While other methods in the literature have been tested on online dating service datasets of

relatively smaller sizes, LFRR was tested on a dataset containing hundreds of thousands of

users.

In addition, Chapter 3 examined the aggregation functions used to combine two unidirectional

preferences into a single bidirectional preference. The precedent of using the harmonic mean was

established by RECON without justification, and was subsequently used in many other RRSs.

The original contributions made by this section are as follows:

1. Four aggregation functions were tested: the arithmetic, harmonic and geometric means

and the cross-ratio uninorm. This is the first time that aggregation functions besides the

harmonic mean were applied to preference aggregation in reciprocal recommender systems.

2. It was demonstrated through evaluation on datasets using multiple algorithms that not

only does the choice of aggregation function significantly impact on the results of the RRS

algorithm, but that the choice of aggregation function might depend on the algorithm in

question.

6.2.2 Hybrid Contributions

In the recommender system literature, a hybrid system is commonly used to describe one that

combines the results of content-based and collaborative filtering algorithms to improve on the

results that either one of those could produce. In this sense, prior to this thesis, there were no

examples of hybrid reciprocal recommender systems in the literature.

Chapter 4 described an algorithm HRRS which combines content-based and collaborative

filtering to make recommendations on a social network. The original contributions made by this

algorithm are as follows:

1. HRRS represents the first hybrid RRS model in the literature, in the sense that it combines

content-based and collaborative filtering to produce an algorithm that outperforms either

method individually. In particular, the system outperforms standard collaborative filterings

very significantly in cold start situations.

110

6.2. SUMMARY OF ORIGINAL CONTRIBUTIONS

2. This one of very few RRS algorithm developed to operate on a single class of users. Other

RRS algorithms in the literature work on online dating services, where users can be clearly

divided into two classes, often male and female. HRRS operates on a social network which

has only one class of users.

3. The content-based part of HRRS introduces a novel similarity metric based on word embed-

dings generated with Word2Vec. This metric is able to accurately predict user preference for

recipes and improves the algorithm when used in combination with collaborative filtering.

6.2.3 Content-Based Contributions

Prior to the work conducted in this thesis, content-based filtering in reciprocal recommendation

was based on using categorical data such as age, location and hobbies to make recommendations.

The results from these algorithms indicated that they are effective on some datasets.

In Chapter 5, two algorithms were described that improved on these results. ImRec, described

in Section 5.3, used a Siamese Network to differentiate between Liked and Disliked images of

people. The original contributions made to the field by this algorithm are as follows:

1. It provides a model based on a Siamese Network that predicts personal attractiveness using

image data. This is the first model to predict attractiveness from photos, and potentially

has a variety of applications in other social networks based on images.

2. The RRS based on this Siamese Network, ImRec, was the first content-based reciprocal

recommender system to use unstructured data such as photos (as opposed to categorical

data) to make predictions. Previous recommender systems had relied on categorical data to

make predictions, largely ignoring freetext and photo data, which intuitively seems like it

would have greater predictive power.

3. ImRec was demonstrated through tests on data from an online dating service to outperform

the state of the art content-based RRSs, and demonstrated to outperform the state of the art

collaborative filtering algorithms in cold start situations. This represents an advance of the

field of content-based RRSs, which were previously inferior in every respect to collaborative

filtering RRSs.

TIRR, described in Section 5.4, is an algorithm based on a recurrent neural network that uses

the results from the Siamese Network designed as part of ImRec, interpreted as a time sequence

through an LSTM. The original contributions made by this work are as follows:

1. TIRR is the first RRS to make recommendations based on historical sequences of data.

This is an important advance, as people’s preferences often change over time, and TIRR

demonstrates that this change can be modelled using LSTMs or similar structures.

111

CHAPTER 6. CONCLUSIONS

2. Most other RRSs in the literature predict two unidirectional preferences and then aggregate

them; TIRR is an end-to-end algorithm that predicts the probability of a match directly.

This makes it unique in the RRS literature currently, and demonstrates that a separate

aggregation step is not always necessary.

3. TIRR outperforms not only other content-based algorithms, but also collaborative filtering

RRSs, making it the state of the art in the context of the literature at the time of writing. It

was able to successfully predict matches with a best F1 score of 0.87.

This thesis therefore represents a significant advance in the field of content-based reciprocal

recommendation.

6.3 Themes

There are a number of themes that tie together the original contributions outlined in Section 6.2.

This section describes these themes with examples from the chapters in this thesis.

The main theme of this thesis has been modernising reciprocal recommender systems. Before

the work done in this thesis, many RRS algorithms were based on outdated technology relative to

the techniques being used in user-item recommender systems and in modern machine learning in

general. The state-of-the-art in content-based reciprocal recommendation was based on preference

estimation for categorical data, and the state-of-the-art in collaborative filtering was based on

nearest-neighbour algorithms. The algorithms described in this thesis use modern techniques

such as LSTMs and Siamese networks, latent factor models and word embeddings to bring the

results for reciprocal recommendation closer to the state of the art in user-item recommendation.

In addition to improving on the recommendation part of reciprocal recommender systems, this

thesis also focuses on improving the reciprocal element, which is what makes RRSs unique. Prior

to the work done in this thesis, reciprocal recommendation almost exclusively generated two

unidirectional preferences and aggregated them with the harmonic mean. This thesis explored a

number of alternative methods of doing this, including testing alternative aggregation functions

across different algorithms, and predicting the likelihood of a match directly through a CNN.

In general, prior to the work done in this thesis, reciprocal recommender systems were

often evaluated in their respective papers on relatively small datasets consisting of hundreds

or thousands of users. This thesis evaluates not only current algorithms but also the previous

state of the art algorithms on much larger datasets, consisting of tens or hundreds of thousands

of users from a popular modern online dating service. This gives a more representative example

of how these algorithms might perform if implemented into a live service.

A final major theme of this thesis is moving complexity from memory-based computations into

models. Most former state-of-the-art algorithms used memory-based methods such as nearest-

neighbour methods to compute recommendations in real time. With large datasets, these methods

112

6.4. ANSWERS TO RESEARCH QUESTIONS

often do not scale. The algorithms described in this thesis all have a model-based component,

and the complexity of a large dataset is abstracted into the model during a training phase. This

means that recommendations can be made very quickly in real time even on large datasets.

6.4 Answers to Research Questions

Section 1.3 introduced numbered research questions that this thesis would aim to address. This

section clarifies the answers provided to each of these research questions throughout this thesis.

6.4.1 Can the current state of the art for reciprocal recommender systems
be improved upon?

This questions is addressed throughout this thesis, but especially in Chapters 3, 4 and 5, where

algorithms are demonstrated that outperform the previous state of the art for reciprocal recom-

mendation. All algorithms were tested against and outperformed existing baseline algorithms,

some such as TIRR described in Chapter 5 by very significant margins.

6.4.2 What are the most effective methods for reciprocal recommendation,
and how does this contrast with the most effective methods for
conventional recommendation?

The most effective methods developed as part of this thesis were the content-based methods

described in Chapter 5, and esepcially TIRR, which uses historical image data to make predictions

about user preferences. However, certain techniques which are particularly effective in user-item

recommender systems such as deep learning-based collaborative filtering recommender systems

were not explored as part of this research. It is therefore difficult to draw a definitive conclusion

about the overall effectiveness of content-based and collaborative algorithms across RRSs in

general.

6.4.3 Can models based on unstructured data such as photos be used to
improve on current content-based RRSs?

Chapter 5 described algorithms that predict reciprocal user preference based on images. These

models were able to estimate binary preference in terms of Likes and Nopes with a high degree off

accuracy, and outperformed baselines such as RECON. The answer to this research question is

therefore that unstructured data can be used to improve on current content-based RRSs. There is

still scope to demonstrate the effectiveness of other types of unstructured data, such as freetext,

on RRS evaluation metrics.

113

CHAPTER 6. CONCLUSIONS

6.4.4 Can content-based RRSs be used to improve on the results of
collaborative filtering RRSs in cold start situations?

Experiments done in Chapter 5 show that content-based algorithms can outperform collaborative

filtering algorithms in cold-start situations. While these experiments represent the current state

of the art in reciprocal recommendation, more advanced collaborative filtering algorithms would

have to be employed to provide conclusive answers to this research question.

6.4.5 Is historical data a useful predictor of reciprocal preference in RNNs?

The algorithm TIRR presented in Chapter 5, which was designed using an RNN to capture

historical preference data, gave significantly better results in terms of evaluation metrics than a

similar network that incorporated a Siamese Network with the same architecture, but did not

consider the relationship between historical preferences. Historical data is therefore demonstrably

a useful predictor of reciprocal preferences in the RRS field.

6.4.6 Can modern techniques such as latent factor models be effectively
adapted to reciprocal recommender systems?

This research question is answered in Chapter 3. An algorithm based on latent factor models,

LFRR, was successfully applied to reciprocal recommendation, and demonstrated outperform the

baseline algorithm RCF.

6.4.7 Can the efficiency of reciprocal recommender systems be improved
over and above what’s possible with current models?

Efficiency tests were performed on LFRR using Google Cloud Platform, and it was demonstrated

to be significantly more efficient than existing neighbourhood-based methods. This was especially

apparent when the number of users was greater than one million, where the neighbourhood

method failed to generate a recommendation list even after 30 minutes.

6.4.8 Does the aggregation function applied have a significant impact on the
effectiveness of the recommender system?

Experiments with four aggregation functions - the Arithmetic Mean, Geometric Mean, Harmonic

Mean and Cross-Ratio Uninorm - demonstrated that aggregation functions do have an impact on

the evaluation metrics of RRSs. In particular, the harmonic mean was consistently effective, but

effectiveness of the function differed depending on the algorithm used. More research is needed

to discover exactly what influences the success of different functions in different situations.

114

6.5. FURTHER WORK

6.4.9 Can hybrid systems be used to improve on the results of content-based
and collaborative filtering in reciprocal recommender systems?

As shown in Chapter 4, hybrid systems can be used to improve on the results of individual RRSs.

A hybrid system designed with a content-based component and a reciprocal collaborative filtering

component outperformed latent factor model-based collaborative filtering. The answer to this

research question is therefore also that hybrid systems can be used to improve on the results of

individual systems.

6.5 Further Work

This section describes potential future work and other interesting directions that potentially

emerge from the research in this thesis. First, future work related to each of the individual areas

is described. Finally, general areas for future research in the RRS field are outlined.

6.5.1 Content-Based Filtering

Chapter 5 described algorithms related to content-based filtering with a focus on images as

predictors of mutual preference in online dating services. The algorithms presented in the section

used images to successfully predict mutual preference, but there is significant scope for breaking

down these models to determine why they are successful. Embeddings generated by intermediate

layers of the networks used might shed light on specific elements of photos that cause users to

feel preference for them, and these embeddings might also be usefully clustered to show specific

groups of users who like each other.

Neural networks and in particular machine learning based on facial recognition is notorious

for learning biases in the data, especially racial biases [32]. It is not impossible that the networks

described in Chapter 5 have a similar problem. This was difficult to test with the data that was

available, as an extremely high percentage of the faces in this dataset are Japanese, but it would

be interesting to investigate bias and methods for reducing this bias in these algorithms using a

more diverse dataset.

6.5.2 Collaborative Filtering

Chapter 3 focused on the development of LFRR, an algorithm using latent factor models to make

reciprocal recommendations. This algorithm used baseline methods for learning a latent factor

representation to establish the usefulness of this technique in the reciprocal recommendation

field, but a number of more advanced techniques are available. Latent factor models based on

deep learning [34] and graph neural networks [157] have been particularly effective in terms of

evaluation metrics in offline testing, and as social networks can be modelled as graphs, the latter

might be a particularly interesting solution for reciprocal recommender systems.

115

CHAPTER 6. CONCLUSIONS

This chapter also included an exploration of the effects of various aggregation functions

on reciprocal recommendation. While the results from LFRR demonstrated that the choice

of aggregation function had an impact on the evaluation metrics of the algorithm, further

research across multiple datasets is needed to determine exactly what should guide the choice of

aggregation function in a given situation.

6.5.3 Hybrid Filtering

Chapter 4 described a hybrid filtering algorithm that used unstructured text data and the LFRR

collaborative filtering algorithm to make reciprocal recommendations. This was successful, but

there is scope for further investigations of hybrid reciprocal recommender systems. This could

include the use of more advanced collaborative or content-based filtering solutions (such as the

TIRR algorithm described in Chapter 5), or other methods of combining hybrid algorithms, such

as a switching algorithm which emphasises content-based filtering during cold-start periods.

6.5.4 General

All the algorithms in this thesis were evaluated using offline testing. This is a normal method

of evaluation in the recommender systems domain, as online testing is often costly, and im-

plementing algorithms into real services takes significant time and effort. However, research

suggests that offline tests may not always be representative of recommender system effectiveness

in real services [21]. Some research has already been conducted by private companies using the

algorithms described in this thesis. Engineers at Tapple1, a popular online dating service, found

LFRR produced positive results on their service and published their results [116]. However, there

is further scope for evaluating all of the algorithms in this thesis in online environments, and

measuring their performance in these cases.

This thesis used binary indicators of preference for both training and evaluation. In particular,

the algorithms related to online dating used Likes and Nopes as their primary indicators of posi-

tive and negative preference. While this is sufficient for establishing successful or unsuccessful

recommendations and a common way to evaluate RRSs, user interactions are more complicated

than this, and also include searches, profile views, exchanges of messages and eventually offline

meetings. User objectives also vary significantly, with some users looking for more serious rela-

tionships than others. Future RRSs might usefully look to include more different aspects of user

interactions in developing and evaluating models.

6.6 Summary

This thesis covered a broad variety of contributions to reciprocal recommender systems research.

Starting from the introduction of what recommender systems and reciprocal recommender
1https://tapple.me/

116

6.6. SUMMARY

systems are in Chapter 1, they were then classified into three main types: content-based, col-

laborative filtering and hybrid systems. Chapter 2 described a machine learning base for the

technologies used in recommender systems, and then outlined the progress of the field of both

standard user-item recommender systems and reciprocal systems.

Chapters 5, 3 and 4 described original contributions in content-based, collaborative and hybrid

systems respectively. These contributions advance the field of reciprocal recommendation, both

by adapting modern technologies from conventional recommmender systems and by specifically

adapting original techniques from machine learning to design algorithms that outperform the

existing state-of-the-art in all three areas.

This thesis is important because prior to this work having been done, there had been very

little research into reciprocal recommendation using modern algorithms and techniques. This

work significantly improves on previous work, and incorporates a number of original techniques

specific to reciprocal systems.

Reciprocal recommendation is an extremely useful field. It is academically interesting because

the inherent additional complexity over and above user-item recommender systems requires

creative algorithmic solutions. It is also highly valuable from a societal standpoint, because

increasingly friendships and romantic connections are being formed online. This has been

especially poignant over two of the three years during which the work in this thesis was conducted,

where a global pandemic significantly limited real-world social contact for many people. Effective

reciprocal recommendation is a tool which can facilitate these relationships, and the author hopes

that the work contained in this thesis represents not only a contribution to its academic field, but

also to human relationships worldwide.

117

A
P

P
E

N
D

I
X

A
DATA

Throughout this thesis, the primary data source was a popular online dating service in

Japan. In Chapter 4, data from a recipe sharing service was used instead. This appendix

describes the datasets used during the thesis in each chapter, and explains why decisions

were made with regard to data curation and any preprocessing that was done.

A.1 Online Dating Dataset

The primary dataset used for algorithms in Chapter 3 and Chapter 5 was provided by a popular

Japanese online dating service. This section describes the form that this data was received in, as

well as preprocessing work that was done on the data so that it could be used in training and

evaluating algorithms.

A.1.1 Service Description

The online dating service which provided the data for the experiments described in this thesis is

primarily based in Japan, with branches in Korea and Taiwan. For this paper, our experimental

study focuses on the Japanese service, where the vast majority of users are. By default, the

service displays users of a similar age and living in a similar area to the active user. Users can

search for other users using attributes such as body type and smoker or non-smoker. The dataset

used for our experimental evaluation contained only interactions between members of opposite

genders, and this assumption was used in designing all algorithms.

After searching, users can view other users' profiles, which have both selectable attributes

such as age and income, and a free text introduction. Users can also provide pictures of themselves.

When a user finds another user they want to communicate with, they can send a Like. The

119

APPENDIX A. DATA

receiving user sees a notification, and can choose to either return the Like or send a Nope,

indicating that they are not interested. Once two users have Liked each other, they can exchange

messages and arrange to meet. This process is visualised in Figure A.1.

Figure A.1: The usage flow for the online dating service

The service therefore has various indicators of preference that are saved to a database. In

increasing strength of interest: 1) viewing a profile; 2) sending a Like; 3) sending an initial

message; 4) a message exchange; 5) arranging to meet. In most previous studies on reciprocal

recommender systems, there was no system of Likes and messages were used as an indicator of

preference, with a reply being used as a indicator of mutual preference. There are two reasons

why a Like might be a more useful preference indicator for recommender system design. Firstly,

Likes have a binary value - it was either sent or not. A message may have positive, strongly

positive or even negative value, and extracting this value from free text might be a challenging

task. Secondly, a Like and a response takes only the effort required to press the button, whereas

users may wish to express preference by sending or replying to a message but decide they don’t

have the time.

Note that the number of Likes a user can send is limited by their subscription level, which also

adds to the overall sparse nature of the user-user data. It is not possible for users to negatively

impact the recommender system by sending Likes indiscriminately to users they have no interest

in.

The service from which the data was taken has several million users, and send several million

Likes and Nopes every week. Most datasets that have been used to test collaborative filtering-

based reciprocal recommender systems in the past have been relatively small in comparison,

comprising only a few thousand interactions at most. To the best of our knowledge, there is no

example in the literature of a reciprocal recommender system being tested on a dataset of the

size of this dataset. This represents a novel contribution to the field but also a novel challenge:

users are widely distributed over geographical areas, and also have varying motivations for using

the service. Some users create profiles with the intent of recruiting users into dubious schemes

or selling products to them. Data curation was therefore an important part of training a useful

model.

The following list outlines the users that were excluded from the test data for all models, as

well as the reasons for those exclusions.

• Users who live outside Tokyo were excluded from the dataset. Existing heuristics on the

service ensure that users are much more likely to see users who are geographically near

them. These heuristics skew the distribution of Likes, which would impact any models

120

A.1. ONLINE DATING DATASET

trained using this data. The majority of users on the service live in Tokyo, so this restriction

does not significantly reduce the quantity of data available.

• Users who had not confirmed their identity through uploading a photo of an accepted ID

card were excluded from the dataset. Users cannot exchange messages until they have

done this, and users who fail to do this are much more likely to be either very new users

with no data, or people using the service for reasons besides online dating.

• Users who were marked by the customer service team as being dubious or banned from

the service were excluded for similar reasons: their interactions are not likely to be repre-

sentative of users who are using the service for its intended purpose, and would therefore

negatively affect the model.

• Users who had not published any photos were excluded. Users with no photos are statis-

tically extremely unlikely to send or receive many Likes, and often leave the service very

quickly, making them a subgroup who would skew the accuracy of the final model for active

users.

• Users who had voluntarily deactivated their profiles were excluded from the dataset, as

they are considered to no longer consent to the use of their data for research.

The following sections discuss specific data collection and curation methods for the algorithms

discussed in the main chapters of the thesis.

A.1.2 Data Curation for Collaborative Filtering

This section describes the data used for the collaborative filtering algorithm LFRR from Chapter

3. Users were excluded from the data based on the criteria above, and based on two additional

criteria:

• Users who had expressed fewer than ten indicators of preference were excluded. Collabora-

tive filtering without any hybrid elements tends to perform more reliably on users with

more data, and this algorithm was not intended to represent a solution to the Cold-Start

Problem.

• Data was restricted to the past three months. Experiments found that using data from

before this point reduced the effectiveness of both LFRR and RCF, possibly because of a

change in the service’s user interface, or because of drift in user preferences over time.

The data used for training and testing LFRR was in the form of a table with three columns:

user_a_id, user_b_id and preference, with an example of this shown in Table A.1. These three

columns represent an expression of preference from a user a to a user b, where the preference is

either 1.0 for positive preference and 0.0 for negative preference.

121

APPENDIX A. DATA

user_a_id user_b_id preference
1 2 1.0
1 3 1.0
2 3 0.0
3 1 1.0

Table A.1: Example dataframe for collaborative filtering training and testing.

Datasets of varying sizes up to 107 were used during the experiment; however, training for

the algorithms in Chapter 3 were done with 20000 users and approximately 280000 expressions

of preference, because the algorithm used as a baseline (RCF) had training times that were

infeasible past this point.

A.1.3 Data Curation for Content-Based Filtering

This section describes the data used for the content-based filtering algorithms ImRec and TIRR

in Chapter 5. In addition to the users excluded based on the criteria listed in Section A.1.1, the

following users were excluded from the data for content-based filtering models:

• Users who had not posted a photo containing their face were excluded. Face detection using

the OpenFace1 library was used to determine which photos contained faces. The machine

learning models were designed to determine reciprocal attractiveness of people to each

other, and while other commonly used photos (such as of landscapes and food) might also

play a part in determining attractiveness, experiments showed that including them reduced

the evaluation metrics of the models.

• Users whose photos were not published or were removed due to infringement of the service’s

rules were not included. Importantly, the service rules do not permit showing the faces

of users besides the owner of the profile, and require users to blur or block these faces

themselves, so photos were guaranteed to contain the target user and no others. (Service

rules also forbid lewd photos or unlawful photos such as those that infringe copyright.)

Before training of models commenced, the photos themselves were also preprocessed to make

them more uniform. This was done through the following process, using Python libraries from

OpenFace [18] and ScikitLearn [109]:

1. Photos were cropped such that the borders of the photo surrounded the detected face. The

cropping was done such that all the borders of the face were included in the photo, including

hair and neck.

1https://cmusatyalab.github.io/openface/

122

A.1. ONLINE DATING DATASET

2. Photos were re-sized to be 100x100. This allowed for model training to happen in reasonable

time with standardised sizes (where it was much slower with larger photos for very little

increase in evaluation metrics).

3. Faces were affine transformed to 2 dimensions. This normalisation process has been shown

to increase the accuracy of facial recognition systems [33].

anchor positive negative
1 2 3
2 5 3
3 1 2

Table A.2: Example dataframe for training a Siamese network.

Training of the content-based algorithms was done with two dataframes. The first was a

dataframe of tuples, which is the common method of training Siamese Networks, containing an

anchor (user who is expressing preferences), positive (user for whom the anchor has expressed a

positive preference) and negative (user for whom the anchor has expressed a negative preference).

An example of this dataframe is shown in Table A.2. A second dataframe mapped user IDs to

their profile images.

A.1.4 Dataset Characteristics and Limitations

A significant advantage of the online dating dataset described in this section is that it was very

large, with over 10 million users sending on average over 9 million indicators of preference every

week at the time of testing these algorithms. This means that there is a lot of data available

for training and testing machine learning models. This also gave a relative freedom to exclude

dubious users from the data on the criteria described above, and still retain enough data to

effectively train and test a variety of models effectively.

Unlike many online dating services, which are often heavily numerically skewed towards

users of one gender, the dataset used in this thesis was well balanced, with a similar number of

male and female users. This is a significant advantage in training, as it means that the evaluation

metrics are not negatively affected by the sparsity of the data for one gender.

The main limitation of this dataset is that it lacked records of intermediate stages of pref-

erence besides binary Likes and Nopes. While these are the main methods that users use to

communicate their preference to each other, and a necessary step before they can exchange

messages, there are a number of intermediate stages, such as viewing each other on search

pages and viewing profiles, and a number of subsequent stages such as exchanging messages and

agreeing to meet. For various technological and ethical reasons, it was not possible to capture

all of these intermediate stages, which could potentially have been used either as intermediate

predictors of preference between 0.0 and 1.0, or as input to a new model.

123

APPENDIX A. DATA

Users also have a limited number of Likes per month before they are required to purchase

more. The decision of whether or not to use a Like might be influenced or prevented by the

number of Likes a user has remaining that month.

A.2 Recipe Sharing Dataset

The dataset used for the hybrid algorithm in Chapter 4 was a dataset from a recipe sharing

service. This section describes that dataset, its characteristics and limitations.

A.2.1 Service Description

This data was provided by the international recipe sharing website Cookpad Inc., based in Japan
2. On Cookpad, users share recipes with titles, pictures and textual information describing the

ingredients and descriptions of those recipes. Other users can demonstrate their results when

making those recipes via "Cooksnaps", which are mini reviews of the recipes with a picture of

their own results.

Users have a number of ways for indicating preference for each other on the site. They can

Follow each other, where the follower is notified of the followee’s public actions. They can also

bookmark other users’ recipes (an implicit indicator of preference used in the non-reciprocal part

of the HRSS approach) and send messages to each other. Users and recipes share very little

information about themselves in quantifiable form - for instance, users do not give their age,

nationality or explicit preferences such as ratings on other users’ recipes, therefore only implicit

preferences are used. However, the recipes shared and bookmarked by users in the form of a title,

list of ingredients and steps for making the dish, provide a wealth of freetext information about

the users taste.

Cookpad’s data is quite different to, and in many ways more complex than, the data from a

dating service, where users often have a list of attributes and demonstrate clear, direct preferences.

However, this data is more representative of many general social networks - including skillsharing

platforms - than online dating sites in two ways:

1. The data includes only a single class of users who have to be matched with each other.

Dating site data is generally divided into two distinct classifications (male and female), and

to the best of our knowledge, no research work has been done on RRSs for single sex dating

as of yet.

2. Most of the attribute data for users is unstructured freetext data, as opposed to well

structured datasets that have been used in existing RRS models.

2https://cookpad.com/

124

A.2. RECIPE SHARING DATASET

A.2.2 Data Curation for Hybrid Filtering

The hybrid filtering model developed in Chapter 4 was built up of two parts that were initially

trained individually: the collaborative filtering model and the content-based filtering model.

A.2.2.1 Collaborative Filtering Data

user_a_id user_b_id preference
1 2 4.0
1 3 3.0
2 3 0.0
3 1 2.0

Table A.3: Example dataframe for hybrid collaborative filtering algorithm.

As described in its respective chapter, the collaborative filtering data for the hybrid algorithm

was built from Follows(a,b) (whether or not user a follows user b) and Bookamarks(a,b) (the

number of times user a had bookmarked recipes by user b). Using data from these two tables, a

dataframe was constructed with a preference score between user a and user b as shown in Table

A.3.

A.2.2.2 Content-Based Filtering Data

recipe_id vector
1 [1,6,2]
2 [1,4,5]
3 [4,2,3]

Table A.4: Example vector representations of recipes.

The data for content-based filtering used Word2Vec to calculate vectors that represented

the contents of recipes based on their title and descriptions. These vectors were considered

representations of those recipes in a dataframe similar to the example shown in Table A.4.

As described in Chapter 4, these vectors and user preferences for recipes were used to

calculate user preferences for each other based on shared interest in recipes.

A.2.3 Dataset Characteristics and Limitations

Data for 5300 users and 45000 recipes was received from Cookpad, which was enough to train

useful models and provide a baseline for reciprocal recommendation based on hybrid filtering

using this novel method. Using more data would have meant going back to a time when users

were fewer and the data was less relevant due to changes in the service. However, it would be

interesting to test this model on a significantly larger dataset and examine whether this would

allow higher performance on evaluation metrics.

125

APPENDIX A. DATA

Due to privacy concerns, user IDs were hashed and no identifying information was included as

part of the dataset. However, user profile data is significant to reciprocal recommendation, and if

identifying information such as geographical location were able to be used, this might potentially

have been useful in the design of the content-based part of the hybrid filtering algorithm.

126

A
P

P
E

N
D

I
X

B
EXPERIMENTAL PROCEDURES

Chapters 3, 4 and 5 described model training and experiments that allowed conclusions

to be drawn about those models. This appendix goes into more detail about the training

and experiments such that they can be more easily reproduced and validated by readers,

including validation methods, hyperparameters used and reasons for their choice.

B.1 LFRR

LFRR, as described in Chapter 3, is a collaborative filtering algorithm based on training a latent

factor model. The model is trained using Stochastic Gradient Descent. The equations for this are

covered in its chapter. The hyperparameters for LFRR are as follows:

1. γ is the learning rate. The objective of SGD is to minimise the error function by computing

its gradient and taking steps down it. The learning rate determines the size of these

steps. A larger learning rate means that the system may train more quickly, but increases

the likelihood of overshooting the minimum with too large steps. SGD will converge to a

minimum, but this may not be the global minimum, and other methods are often required

to find the optimal solution.

2. λ is the regularisation parameter. Regularisation is used to reduce the chance of the model

overfitting to the dataset (fitting excessively to outliers that do not represent the dataset

as a whole), by penalising increasing complexity in models. A very complex model is more

likely to have overfitted to the training data, and regularisation helps to prevent this.

3. k is the number of latent factors which becomes the size of the vectors in U and V . A small

number of latent factors means discarding more information, and therefore potentially

127

APPENDIX B. EXPERIMENTAL PROCEDURES

reducing the accuracy of recommendations. A large number of latent factors increases

the space complexity of the model, and increases the time required to make individual

recommendations. It is therefore important to balance the number of latent factors such

that it is the smallest it can be without significantly reducing the accuracy of the model.

4. Finally, the number of iterations represents how many times the model is trained on the

dataset. With each training iteration, the error decreases by a smaller amount until the

minimum is reached and minor fluctuations are seen instead of decreases, so generally

iterations are continued until this point is reached.

K-Fold Cross Validation was used to select hyperparameters. In K-fold cross validation, the

data is split into groups. Each group is alternately used as the validation group, with the model

trained on the remaining groups. This process is repeated until each group has been used as

the validation set. The error of the model is then calculated as the average of the errors across

the individual models. K-fold cross validation helps to avoid overfitting hyperparameters to a

particular training set. In LFRR, 10 fold were used during cross-validation.

Ranges for hyperparameters were initially determined by a manual search, training the

model using cross validation to determine reasonable ranges for them. Tuning was then done

by grid search, with ranges of hyperparameters chosen to find the combination of values that

gave the best results. The following values for hyperparameters were used to generate the final

results:

• γ= 0.01

• λ= 0.2

• k = 5

• iterations = 30

The graphs in Chapter 3 were generated through a separate test dataset which was not used

as part of the validation process.

B.2 HRRS

HRRS, described in Chapter 4, is a hybrid filtering algorithm based on a combination of a latent

factor model and a Word2Vec model used to predict mutual preference.

The latent factor model was built using the same process as LFRR, so the parameters and

the method for refining them is the same as described in Section B.1. The parameters chosen for

HRRS by this method were slightly different to LFRR, and are listed below:

• γ= 0.01

128

B.3. IMREC

• λ= 0.3

• k = 3

• iterations = 30

In addition to the latent factor model, a content-based score was also generated using a

Word2Vec model. This model was trained on the Google News 300 dataset1. This is a standard

method for training Word2Vec models, so no particular parameter tuning was needed in this case.

The results of the two models in HRRS were combined using an arithmetic mean function.

Informal testing was done with harmonic and geometric means, but the arithmetic mean appeared

to yield the highest accuracy on the test dataset.

B.3 ImRec

ImRec, described in Chapter 5, is a content-based RRS based on a Siamese Network that, given

an anchor image which was liked by a user, predicts preference for a second image. The design of

the network itself was arrived at experimentally. Initial designs of ImRec used a convolutional

neural network to predict attractiveness of for individual users using examples of previously

Liked and Noped users. Insufficient data per user meant that this approach gave relatively low

accuracy even for very active users. Unsupervised learning using an autoencoder followed by

clustering embeddings, aiming to predict preference for clusters, also did not produce satisfactory

results, as users formed a uniform spread and clusters were not predictive of preference. The

Siamese Network architecture was tested because of its strong predictive power for one-shot

learning (making predictions based on very little data) and its success with facial recognition,

and initial informal experiments demonstrated its effectiveness.

Several resources were used as part of preprocessing the images before training the network.

A face detector was applied to photos to determine which ones contained faces, and the locations

of those faces for centering. This was done with the Python dlib package, and pretrained CNN

weights downloaded from the Internet2. Faces were flattened using landmarks from the Python

dlib face detector, which implements Kazemi et al.’s method [66], with 68-point annotations based

on the iBUG 300-W dataset3.

The structure of the CNN used as the symmetrical part of the Siamese Network was based on

the commonly used face recognition architecture Deep Face [105], with a slightly reduced number

of layers, as the complexity of this network meant that it was too slow to train with the quantity

of data that was available. The layers within the network as well as the final convolutional layers

were adjusted based on initial RMSE results from K-fold cross validation, which was performed

1https://huggingface.co/fse/word2vec-google-news-300
2http://arunponnusamy.com/files/mmod_human_face_detector.dat
3https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/

129

APPENDIX B. EXPERIMENTAL PROCEDURES

with five folds. Most experimentation was done manually and based on results from network

structures in papers with similar research, because limitations on the hardware available and

training times of over an hour meant that exhaustive grid searches over the network structure

were not practical. The network was trained over 30 epochs while tuning hyperparameters, and

200 epochs for the final model.

ImRec uses a random forest model to combine results from a user’s previously Liked and

Noped images in chronological order with a new potential image in order to predict mutual

preference. The random forest model uses default parameters except for the number of trees,

which was chosen as 64 based on results from K-fold cross validation with 10 folds. The random

forest model was trained using a separate dataset from the set used to train the Siamese Network.

Final testing for the results presented in the chapter was done with a third dataset.

B.4 TIRR

TIRR, described in Chapter 5, is a model for predicting mutual preference based on the positive

and negative preferences for photos of those users over time. It uses the Siamese Network from

ImRec as a base, with the results from this model over time fed to an LSTM.

The initial Siamese network and its associated preprocessing is the same as the one used

in ImRec, and the testing and data is therefore the same as described in Section B.3. The

Siamese Network component of TIRR was pre-trained and tested using the same data structure

(although due to time passing between the development of the two algorithms, a fresh dataset

was downloaded and processed).

The LSTM used was the default implementation from Tensorflow, with dropout of 0.5, which

improved performance on cross-validation. Following pre-training of the Siamese Network on

data from 100000 users, the entire network was subsequently trained on data from a further

10000 users for 50 epochs, with cross-validation performed with five folds.

130

BIBLIOGRAPHY

[1] H. ABDOLLAHPOURI, G. ADOMAVICIUS, R. BURKE, I. GUY, D. JANNACH, T. KAMISHIMA,

J. KRASNODEBSKI, AND L. PIZZATO, Multistakeholder recommendation: Survey and

research directions, User Modeling and User-Adapted Interaction, 30 (2020), pp. 127—-

158.

[2] G. ADOMAVICIUS AND A. TUZHILIN, Toward the next generation of recommender systems: a

survey of the state-of-the-art and possible extensions, IEEE Transactions on Knowledge

and Data Engineering, 17 (2005), pp. 734–749.

[3] G. ADOMAVICIUS AND A. TUZHILIN, Context-aware recommender systems, Recommender

Systems Handbook, (2010).

[4] D. AGARWAL AND B.-C. CHEN, Regression-based latent factor models, in Proceedings of

the 15th ACM SIGKDD international conference on Knowledge discovery and data

mining, KDD ’09, New York, NY, 2009, ACM, pp. 19–28.

[5] C. AGGARWAL, Recommender Systems: The Textbook, Springer, London, England, 1st ed.,

2016.

[6] C. C. AGGARWAL AND S. PARTHASARATHY, Mining massively incomplete data sets by

conceptual reconstruction, in Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining, KDD ’01, New York, NY, 2001,

ACM, pp. 227–232.

[7] E. AHMED, M. JONES, AND T. MARKS, An improved deep learning architecture for person

re-identification, in Proceedings of the 2015 Conference on Computer Vision and Pattern

Recognition, CVPR 2015, IEEE, 2015, pp. 3908–3916.

[8] J.-W. AHN, P. BRUSILOVSKY, J. GRADY, D. HE, AND S. SYN, Open user profiles for adaptive

news systems: Help or harm?, in Proceedings of the 16th International Conference on

World Wide Web, WWW 2007, New York, NY, 2007, ACM, pp. 11–20.

[9] A. AJESH, J. NAIR, AND P. S. JIJIN, A random forest approach for rating-based recom-

mender system, in Proceedings of the 2016 International Conference on Advances in

131

BIBLIOGRAPHY

Computing, Communications and Informatics, ICACCI 2016, IEEE, 2016, pp. 1293–

1297.

[10] J. AKEHURST, A probabilistic reciprocal recommender with temporal dynamics, in PhD

Thesis, 2011.

[11] J. AKEHURST, I. KOPRINSKA, K. YACEF, L. PIZZATO, J. KAY, AND T. REJ, Ccr — a content-

collaborative reciprocal recommender for online dating, in Twenty-Second International

Joint Conference on Artificial Intelligence, 2011.

[12] M. AL-ZEYADI, F. COENEN, AND A. LISITSA, User-to-user recommendation using the

concept of movement patterns: A study using a dating social network, SCITEPRESS -

Science and Technology Publications, (2017).

[13] A. ALANZI AND M. BAIN, A people-to-people content-based reciprocal recommender using

hidden markov models, in Proceedings of the 7th ACM conference on Recommender

systems, RecSys ’13, New York, NY, 2013, ACM, pp. 303–306.

[14] N. D. ALMALIS, G. A. TSIHRINTZIS, AND N. KARAGIANNIS, A content based approach

for recommending personnel for job positions, in Proceedings of the 5th International

Conference on Information, Intelligence, Systems and Applications, IISA 2014, Orlando,

FL, USA, 2014, IEEE.

[15] D. ANAND AND K. BHARADWAJ, Utilizing various sparsity measures for enhancing accuracy

of collaborative recommender systems based on local and global similarities, Expert

Systems with Applications, 38 (2011), pp. 5101–5109.

[16] O. APPEL, F. CHICLANA, J. CARTER, AND H. FUJITA, Cross-ratio uninorms as an effective

aggregation mechanism in sentiment analysis, Knowledge-Based Systems, 124 (2017),

pp. 16–22.

[17] M. BALABANOVIC AND Y. SHOHAM, Combining content-based and collaborative recom-

mendation, in Communications of the ACM, ACM 1997, New York, NY, 1997, ACM.

[18] T. BALTRUSAITIS, A. ZADEH, Y. C. LIM, AND L.-P. MORENCY, Openface 2.0: Facial

behavior analysis toolkit, in 2018 13th IEEE international conference on automatic

face & gesture recognition (FG 2018), IEEE, 2018, pp. 59–66.

[19] T. BANSAL, D. BELANGER, AND A. MCCALLUM, Ask the gru: Multi-task learning for deep

text recommendations, in Proceedings of the 10th ACM Conference on Recommender

Systems, Recsys 2016, New York, NY, 2016, ACM, pp. 107–114.

[20] J. BASILICO AND T. HOFMANN, Unifying collaborative and content-based filtering, in

Proceedings of the twenty-first international conference on Machine learning, ICML

’04, New York, NY, 2004, ACM, pp. 09–09.

132

BIBLIOGRAPHY

[21] J. BEEL, M. GENZMEHR, S. LANGER, A. NÜRNBERGER, AND B. GIPP, A comparative

analysis of offline and online evaluations and discussion of research paper recommender

system evaluation, in Proceedings of the International Workshop on Reproducibility

and Replication in Recommender Systems Evaluation, RecSys ’13, New York, NY, 2013,

ACM, pp. 7–14.

[22] R. BELL AND Y. KOREN, Lessons from the netflix prize challenge, ACM SIGKDD Explo-

rations Newsletter - Special issue on visual analytics, 9 (2007), pp. 75–79.

[23] R. BELL, Y. KOREN, AND C. VOLINSKY, Matrix factorization techniques for recommender

systems, Computer, 42 (2009), pp. 30–37.

[24] J. BENESTY, J. CHEN, Y. HUANG, AND I. COHEN, Pearson correlation coefficient, Noise

Reduction in Speech Processing, 2 (2009), pp. 1–4.

[25] L. BERTINETTO, J. VALMADRE, J. HENRIQUES, A. VEDALDI, AND P. TORR, Fully-

convolutional siamese networks for object tracking, in Proceedings of the 2016 European

Conference on Computer Vision, ECCV 2016, Springer, 2016, pp. 850–865.

[26] D. BILLSUS, M. PAZZANI, AND J. CHEN, A learning agent for wireless news access, in

Proceedings of the International Conference on Intelligent User Interfaces, ICIU 2002,

2002, pp. 33–36.

[27] J. BREESE, D. HECKERMAN, AND C. KADIE, Empirical analysis of predictive algorithms

for collaborative filtering, in Proceedings of the Fourteenth conference on Uncertainty in

artificial intelligence, UAI ’98, San Francisco, CA, 1998, Morgan Kaufmann Publishers

Inc., pp. 24–26.

[28] R. BURKE, Integrating knowledge-based and collaborative-filtering recommender systems,

in In proceedings of Artificial Intelligence for Electronic Commerce: Papers from the

AAAI Workshop, AAAI ’99, 1999, pp. 69–72.

[29] , Hybrid recommender systems: Survey and experiments, User Modeling and User-

Adapted Interaction, 12 (2002), pp. 331–370.

[30] , Multisided fairness for recommendation, Arxiv.org, (2017).

[31] P. CAMPOS, F. DÍEZ, AND I. CANTADOR, Time-aware recommender systems: A compre-

hensive survey and analysis of existing evaluation protocols, User Modeling and User-

Adapted Interaction, 24 (2013), pp. 67–119.

[32] J. G. CAVAZOS, P. J. PHILLIPS, C. D. CASTILLO, AND A. J. O’TOOLE, Accuracy compari-

son across face recognition algorithms: Where are we on measuring race bias?, IEEE

Transactions on Biometrics, Behavior, and Identity Science, 3 (2021).

133

BIBLIOGRAPHY

[33] X. CHAI, S. SHAN, AND W. GAO, Pose normalization for robust face recognition based on

statistical affine transformation, in Fourth International Conference on Information,

Communications and Signal Processing, ICS 2003, IEEE, 2003.

[34] H.-T. CHENG, L. KOC, J. HARMSEN, T. SHAKED, T. CHANDRA, H. ARADHYE, G. ANDER-

SON, G. CORRADO, W. CHAI, M. ISPIR, R. ANIL, Z. HAQUE, L. HONG, V. JAIN, X. LIU,

AND H. SHAH, Wide and deep learning for recommender systems, in Proceedings of the

1st Workshop on Deep Learning for Recommender Systems, DLRS 2016, New York, NY,

2016, ACM, pp. 7–10.

[35] Y. H. CHO, J. K. KIMB, AND S. H. KIM, A personalized recommender system based on web

usage mining and decision tree induction, Expert Systems with Applications, 23 (2002),

pp. 329–342.

[36] K. CHOI, G. FAZEKAS, M. SANDLER, AND K. CHO, Convolutional recurrent neural net-

works for music classification, in Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing, ICASSP 2017, Montreal, QC, Canada, 2017,

IEEE.

[37] P. COTTER AND B. SMYTH, Ptv: Intelligent personalized tv guides, Twelfth Conference on

Innovative Applications of Artificial Intelligence, (2000).

[38] P. COVINGTON, J. ADAMS, AND E. SARGIN, Deep neural networks for youtube recommen-

dations, in Proceedings of the 10th ACM Conference on Recommender Systems, Recsys

’16, New York, NY, 2016, ACM, pp. 191–198.

[39] P. CREMONESI, Y. KOREN, AND R. TURRIN, Performance of recommender algorithms on

top-n recommendation tasks, in Proceedings of the fourth ACM conference on Recom-

mender systems, RecSys ’10, New York, NY, 2010, ACM, pp. 39–46.

[40] J. DENG, W. DONG, R. SOCHER, L.-J. LI, K. LI, AND L. FEI-FEI, Imagenet: A large-scale

hierarchical image database, in Proceedings of the 2009 IEEE Conference on Computer

Vision and Pattern Recognition, CCVPR 2009, Miami, FL, 2009, IEEE, pp. 248–255.

[41] J. DEVLIN, M.-W. CHANG, K. LEE, AND K. TOUTANOVA, Bert: Pre-training of deep

bidirectional transformers for language understanding, arXiv, (2019).

[42] Y. DING, Y. ZHANG, L. LI, W. XU, AND H. WANG, A reciprocal recommender system

for graduates’ recruitment, in International Conference on Information Technology in

Medicine and Education, ITME 2016, New York, NY, 2016, IEEE.

[43] E. EZIN, I. PALOMARES, AND J. NEVE, Group decision making with collaborative-filtering

‘in the loop’: interaction-based preference and trust elicitation, in 2019 IEEE Interna-

134

BIBLIOGRAPHY

tional Conference on Systems, Man and Cybernetics, IEEE SMC 2019, New York, NY,

2019, IEEE.

[44] Y.-Y. FAN, S. LIU, B. LI, Z. GUO, A. SAMAL, J. WAN, AND S. Z. LI, Label distribution-

based facial attractiveness computation by deep residual learning, IEEE Transactions

on Multimedia, 20 (2018), pp. 2196–2208.

[45] M.-L. FEN, Choosing online partners in the virtual world: How online partners’ character-

istics affect online dating, ProQuest Dissertations Publishing, (2005).

[46] Y. FREUND AND R. SCHAPIRE, A decision-theoretic generalization of on-line learning

and an application to boosting, Journal of Computer and System Sciences, 55 (1997),

pp. 119–139.

[47] D. GALE AND L. SHAPLEY, College admissions and the stability of marriage, Am. Math.

Monthly, 69 (1962).

[48] R. GARCIA AND X. AMATRIAIN, Weighted content based methods for recommending con-

nections in online social networks, in Proceedings of the fourth ACM conference on

Recommender systems, RecSys 2010, New York, NY, 2010, ACM, pp. 68–71.

[49] M. GE, C. DELGADO-BATTENFELD, AND D. JANNACH, Beyond accuracy: evaluating

recommender systems by coverage and serendipity, in Proceedings of the fourth ACM

conference on Recommender systems, RecSys ’10, New York, NY, 2010, ACM, pp. 257–

260.

[50] D. GOLDBERG, D. A. NICHOLS, B. OKI, AND D. B. TERRY, Using collaborative filtering to

weave an information tapestry, Communications of the ACM, 35 (1992), pp. 61–70.

[51] S. HA, Digital content recommender on the internet, IEEE Intelligent Systems, 21 (2006),

pp. 70–77.

[52] H. A. M. HASSAN, G. SANSONETTI, F. GASPARETTI, A. MICARELLI, AND J. BEEL, Bert,

elmo, use and infersent sentence encoders: The panacea for research-paper recommenda-

tion?, in Proceedings of the 13th ACM Conference on Recommender Systems, RecSys

2019, New York, NY, 2019, ACM.

[53] J. HE AND W. CHU, A social network-based recommender system (snrs), Data Mining for

Social Network Data, 12 (2010), pp. 47–74.

[54] K. HE, X. ZHANG, S. REN, AND J. SUN, Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification, in Proceedings of the IEEE International

Conference on Computer Vision, ICCV 2015, Montreal, QC, Canada, 2015, IEEE,

pp. 1026–1034.

135

BIBLIOGRAPHY

[55] J. HERLOCKER, J. A. KONSTAN, L. TERVEEN, AND J. RIEDL, Evaluating collaborative

filtering recommender systems, ACM Transactions on Information Systems, 22 (2004).

[56] J. L. HERLOCKER, J. A. KONSTAN, A. BORCHERS, AND J. RIEDL, An algorithmic frame-

work for performing collaborative filtering, in Proceedings of the 22nd Annual Interna-

tional ACM SIGIR Conference on Research and Development in Information Retrieval,

SIGIR ’99, New York, NY, 1999, ACM, pp. 230—-237.

[57] T. K. HO, Random decision forests, in Proceedings of 3rd International Conference on

Document Analysis and Recognition, CDAR 1995, Montreal, QC, Canada, 1995, IEEE.

[58] S. HOCHREITER, The vanishing gradient problem during learning recurrent neural nets

and problem solutions, International Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems, 6 (1998), pp. 107–116.

[59] S. HOCHREITER AND J. SCHMIDHUBER, Long short-term memory, Neural Computation, 9

(1997), pp. 1735—-1780.

[60] W. HONG, S. ZHENG, H. WANG, AND J. SHI, A job recommender system based on user

clustering, Journal of Computers, 8 (2013), pp. 1960–1967.

[61] R. JAHANDIDEH, A. T. TARGHI, AND M. TAHMASBI, Physical attribute prediction using

deep residual neural networks, arXiv, (2018).

[62] J.BOBADILLA, F.ORTEGA, A.HERNANDO, , AND A.GUTIÉRREZ, Recommender systems

survey, Knowledge-Based Systems, 46 (2013), pp. 109–132.

[63] C. F. JEKEL AND R. T. HAFTKA, Classifying online dating profiles on tinder using facenet

facial embeddings, Arxiv.org, (2018).

[64] M. KAMINSKAS AND D. BRIDGE, Diversity, serendipity, novelty, and coverage: A survey

and empirical analysis of beyond-accuracy objectives in recommender systems, ACM

Transactions on Interactive Intelligent Systems, 7 (2016).

[65] M. KARIMIA, D. JANNACHB, AND M. JUGOVACC, News recommender systems – survey and

roads ahead, Information Processing & Management, 54 (2018), pp. 1203–1227.

[66] V. KAZEMI AND J. SULLIVAN, One millisecond face alignment with an ensemble of regres-

sion trees, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR

2014, IEEE, 2014.

[67] D. KHATTAR, V. KUMAR, V. VARMA, AND M. GUPTA, Weave&rec: A word embedding based

3-d convolutional network for news recommendation, in Proceedings of the 27th ACM

International Conference on Information and Knowledge Management, CIKM 2018,

New York, NY, 2018, ACM, pp. 1855–1858.

136

BIBLIOGRAPHY

[68] J. KIM, B. LEE, M. SHAW, H. CHANG, AND W. NELSON, Application of decision-tree in-

duction techniques to personalized advertisements on internet storefronts, International

Journal of Electronic Commerce, 5 (2001), pp. 45–62.

[69] A. KLEINERMAN, A. ROSENFELD, AND S. KRAUS, Providing explanations for recommen-

dations in reciprocal environments, in Proceedings of the 12th ACM Conference on

Recommender Systems, RecSys ’18, New York, NY, 2018, ACM, pp. 22–30.

[70] A. KLEINERMAN, A. ROSENFELD, F. RICCI, AND S. KRAUS, Optimally balancing receiver

and recommended users’ importance in reciprocal recommender systems, in Proceedings

of the 12th ACM Conference on Recommender Systems, RecSys ’18, New York, NY,

2018, ACM, pp. 131–139.

[71] G. KOCH, R. ZEMEL, AND R. SALAKHUTDINOV, Siamese neural networks for one-shot

image recognition, in Proceedings of the 2015 ICML Deep Learning workshop, ICML,

2015.

[72] I. KOPRINSKA AND K. YACEF, People-to-people reciprocal recommenders, Recommender

Systems Handbook, (2015), pp. 556–578.

[73] Y. KOREN, Factorization meets the neighborhood: a multifaceted collaborative filtering

model, in Proceedings of the 14th ACM SIGKDD international conference on Knowledge

discovery and data mining, KDD ’08, New York, NY, 2008, ACM, pp. 426–434.

[74] A. KRIZHEVSKY, I. SUTSKEVER, AND G. E. HINTON, Imagenet classification with deep

convolutional neural networks, Communications of the ACM, 60 (2017).

[75] A. KRZYWICKI, W. WOBCKE, X. CAI, A. MAHIDADIA, M. BAIN, P. COMPTON, AND Y. S.

KIM, Interaction-based collaborative filtering methods for recommendation in online

dating, in Proceedings of the International Conference on Web Information Systems

Engineering, WISE 2010, Springer, 2010, pp. 342–356.

[76] X. N. LAM, T. VU, T. D. LE, AND A. D. DUONG, Addressing cold-start problem in recom-

mendation systems, in Proceedings of the 2nd international conference on Ubiquitous

information management and communication, ICUIMC ’08, New York, NY, 2008, ACM,

pp. 208–211.

[77] A. LAMPROPOULOS, P. LAMPROPOULOU, AND G. TSIHRINTZIS, A cascade-hybrid music

recommender system for mobile services based on musical genre classification and

personality diagnosis, Multimedia Tools and Applications, 59 (2012), pp. 241–258.

[78] K. LANG, Newsweeder: Learning to filter netnews, in Proceedings 12th International

Conference on Machine Learning„ ICML 1995, 1995, pp. 331–339.

137

BIBLIOGRAPHY

[79] Y. LECUN, L. BOTTOU, Y. BENGIO, AND P. HAFFNER, Gradient-based learning applied to

document recognition, Proceedings of the IEEE, 86 (1998), pp. 2278–2324.

[80] C. LEI, D. LIU, W. LI, Z.-J. ZHA, AND H. LI, Comparative deep learning of hybrid

representations for image recommendations, in The IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2016, IEEE, 2016, pp. 2545–2553.

[81] Y. LEWENBERG, Y. BACHRACH, S. SHANKAR, AND A. CRIMINISI, Predicting personal

traits from facial images using convolutional neural networks augmented with facial

landmark information, in Proceedings of the Thirtieth AAAI Conference on Artificial

Intelligence, AAAI 2016, AAAI, 2016, pp. 4365–4366.

[82] J. LIN, K. SUGIYAMA, M.-Y. KAN, AND T.-S. CHUA, Addressing cold-start in app recom-

mendation: latent user models constructed from twitter followers, in Proceedings of the

36th international ACM SIGIR conference on Research and development in information

retrieval, SIGIR ’13, New York, NY, 2013, ACM, pp. 283–292.

[83] W. LING, C. DYER, A. W. BLACK, AND I. TRANCOSO, Two/too simple adaptations of

word2vec for syntax problems, in Proceedings of the 2015 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, NAACL ’15, Denver, Colorado, 2015, Association for Computational

Linguistics, pp. 1299–1304.

[84] Q. LIU, S. WU, AND L. WANG, Deepstyle: Learning user preferences for visual recommen-

dation, in Proceedings of the 40th International ACM SIGIR Conference on Research

and Development in Information Retrieval, SIGIR 2017, New York, NY, 2017, ACM,

pp. 841–844.

[85] G. M. LUNARDI, Representing the filter bubble: Towards a model to diversification in

news, in Proceedings of the 23rd international conference on Advances in Conceptual

Modeling, EC 2019, Springer, 2019, pp. 239–246.

[86] G. MACHADO, L. GUILHERME, M. MACHADOB, V. M. JOSÉ, AND P. DE OLIVEIRA, A

metric for filter bubble measurement in recommender algorithms considering the news

domain, Applied Soft Computing, 97 (2020).

[87] L. MCINNES, J. HEALY, AND J. MELVILLE, Umap: Uniform manifold approximation and

projection for dimension reduction, Arxiv.org, (2018).

[88] P. J. MCPARLANE, Y. MOSHFEGHI, AND J. M. JOSE, Nobody comes here anymore, it’s

too crowded; predicting image popularity on flickr, in Proceedings of International

Conference on Multimedia Retrieval, ICMR 2014, ACM, 2014, pp. 385–391.

138

BIBLIOGRAPHY

[89] T. MIKOLOV, K. CHEN, G. S. CORRADO, AND J. DEAN, Efficient estimation of word

representations in vector space, ICLR, 0 (2013), p. 0.

[90] D. MISHKIN, N. SERGIEVSKIY, AND J. MATAS, Systematic evaluation of convolution neural

network advances on the imagenet, Computer Vision and Image Understanding, 161

(2017), pp. 11–19.

[91] R. J. MOONEY AND L. ROY, Content-based book recommending using learning for text

categorization, in Proceedings of the fifth ACM conference on Digital libraries, DL 2000,

New York, NY, 2000, ACM, pp. 195–204.

[92] J. NEVE AND R. MCCONVILLE, Imrec: Learning reciprocal preferences using images, in

Proceedings of the Fourteenth ACM Conference on Recommender Systems, Recsys

’2020, New York, NY, 2020, ACM, pp. 170–179.

[93] , Photos are all you need for reciprocal recommendation in online dating, Arxiv.org,

(2021).

[94] J. NEVE AND I. PALOMARES, Aggregation strategies in user-to-user reciprocal recommender

systems, in Proceedings of the 2018 IEEE International Conference on Systems, Man

and Cybernetics, IEEE SMC 2018, New York, NY, 2018, IEEE, pp. 2299–2304.

[95] , Arikui - a dubious user detection system for online dating in japan, in 2018 IEEE In-

ternational Conference on Systems, Man, and Cybernetics, IEEE SMC 2018, Miyazaki,

Japan, 2018, IEEE, pp. 853–871.

[96] , Latent factor models and aggregation operators for collaborative filtering in reciprocal

recommender systems, in Proceedings of the 13th ACM Conference on Recommender

Systems, RecSys ’19, New York, NY, 2019, ACM.

[97] , Hybrid reciprocal recommender systems: Integrating item-to-user principles in recip-

rocal recommendation, in 4th International Workshop on Mining Actionable Insights

from Social Networks, WebConf 2020, 2020.

[98] J. NGIAM, A. KHOSLA, M. KIM, J. NAM, H. LEE, AND A. Y. NG, Multimodal deep learning,

in Proceedings of the International Conference on Machine Learning, ICML 2011, 2011.

[99] P. NGUYEN, J. DINES, AND J. KRASNODEBSKI, A multi-objective learning to re-rank

approach to optimize online marketplaces for multiple stakeholders, Arxiv.org, (2017).

[100] T. T. NGUYEN, P. HUI, F. M. HARPER, L. TERVEEN, AND J. A. KONSTAN, Exploring the

filter bubble: the effect of using recommender systems on content diversity, in Proceedings

of the 23rd international conference on World wide web, WWW 2014, Orlando, FL, USA,

2014, IEEE, pp. 677–686.

139

BIBLIOGRAPHY

[101] O. OTAKORE AND C. UGWU, Online matchmaking using collaborative filtering and recipro-

cal recommender systems, The International Journal of Engineering and Science (IJES),

7 (2018), pp. 07–21.

[102] O. OZGOBEK, J. GULLA, AND R. ERDUR, A survey on challenges and methods in news rec-

ommendation, in Proceedings of the 10th International Conference on Web Information

Systems and Technologies, WEBIST 2014, New York, NY, 2014, ACM, pp. 278–285.

[103] M. O’CONNOR AND J. HERLOCKER, Clustering items for collaborative filtering, in Proceed-

ings of the ACM SIGIR Workshop on Recommender Systems, SIGIR 1999, New York,

NY, 1999, ACM.

[104] I. PALOMARES, J. NEVE, C. PORCEL, L. PIZZATO, I. GUY, AND E. HERRERA-VIEDMA,

Reciprocal recommender systems: Analysis of state-of-art literature, challenges and

opportunities towards social recommendation, Information Fusion, 69 (2021), pp. 103–

127.

[105] O. PARKHI, A. VEDALDI, AND A. ZISSERMAN, Deep face recognition, Proceedings of the

British Machine Vision, 1 (2015), p. 6.

[106] A. PATEREK, Improving regularized singular value decomposition for collaborative filtering,

in Proceedings of KDD cup and workshop, KDD ’07, New York, NY, 2007, ACM.

[107] M. PAZZANI, A framework for collaborative, content-based and demographic filtering,

Artificial Intelligence Review, 13 (1999), pp. 393–408.

[108] M. PAZZANI, A framework for collaborative, content-based and demographic filtering,

Artificial Intelligence Review, 13 (1999), pp. 393–408.

[109] F. PEDREGOSA, G. VAROQUAUX, A. GRAMFORT, V. MICHEL, B. THIRION, O. GRISEL,

M. BLONDEL, P. PRETTENHOFER, R. WEISS, V. DUBOURG, ET AL., Scikit-learn:

Machine learning in python, the Journal of machine Learning research, 12 (2011),

pp. 2825–2830.

[110] M. E. PETERS, M. NEUMANN, M. IYYER, M. GARDNER, C. CLARK, K. LEE, AND

L. ZETTLEMOYER, Deep contextualized word representations, arXiv, (2018).

[111] L. PIZZATO, T. CHUNG, T. REJ, I. KOPRINSKA, K. YACEF, AND J. KAY, Learning user

preferences in online dating, Technical Report 656, Univeristy of Sydney, (2010).

[112] L. PIZZATO, T. REJ, J. AKEHURST, I. KOPRINSKA, K. YACEF, AND J. KAY, Recommending

people to people: the nature of reciprocal recommenders with a case study in online

dating, User Model User-Adap Inter, 23 (2013), pp. 447–488.

140

BIBLIOGRAPHY

[113] L. PIZZATO, T. REJ, T. CHUNG, I. KOPRINSKA, AND J. KAY, Recon: a reciprocal recom-

mender for online dating, in Proceedings of the fourth ACM conference on Recommender

systems, RecSys ’10, New York, NY, 2010, ACM, pp. 207–214.

[114] S. PRABHAKAR, G. SPANAKIS, AND O. ZAIANE, Reciprocal recommender system for learners

in massive open online courses (moocs), in International Conference on Web-Based

Learning, ICWL 2017, New York, NY, 2017, Springer, pp. 157–167.

[115] Y. QU, H. LIU, Y. DU, AND Z. WU, Reciprocal ranking: A hybrid ranking algorithm for

reciprocal recommendation, in 15th Pacific Rim International Conference on Artificial

Intelligence, Nanjing, China, 2018.

[116] R. RAMANATHAN, N. SHINADA, AND S. PALANIAPPAN, Building a reciprocal recommen-

dation system at scale from scratch: Learnings from one of japan’s prominent dating

applications, in Proceedings of the fourteenth ACM Conference on Recommender Sys-

tems, Recsys 2020, New York, NY, 2020, ACM, pp. 566–567.

[117] A. M. RASHID, S. K. LAM, G. KARYPIS, AND J. RIEDL., Clustknn: a highly scalable hybrid

model-& memory-based cf algorithm, in WebKDD-06, KDD Workshop on Web Mining

and Web Usage Analysis, KDD ’06, 2006.

[118] C. V. RIJSBERGEN, Foundation of evaluation, Journal of Documentation, (1974).

[119] M. RODRIGUEZ-GARCIA, R. VALENCIA-GARCIA, R. PALACIOS, AND J. GOMEZ-BERBIS,

Blinddate recommender: A context-aware ontology-based dating recommendation plat-

form, Journal of Information Science, 45 (2019), pp. 573–591.

[120] X. RONG, word2vec parameter learning explained, axIv, 0 (2011).

[121] R. ROTHE, R. TIMOFTE, AND L. V. GOOL, Some like it hot - visual guidance for preference

prediction, in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2016, Orlando, FL, USA, 2016, IEEE, pp. 5553–5561.

[122] S. SAFAVIAN AND D. LANDGREBE, A survey of decision tree classifier methodology, IEEE

Transactions on Systems, Man, and Cybernetics, 21 (1991), pp. 660–674.

[123] R. SALAKHUTDINOV, A. MNIH, AND G. HINTON, Restricted boltzmann machines for

collaborative filtering, in Proceedings of the 24th international conference on Machine

learning, ICML ’07, New York, NY, 2007, ACM, pp. 791–798.

[124] B. SARWAR, G. KARYPIS, J. KONSTAN, AND J. RIEDL, Application of dimensionality

reduction in recommender system - a case study, Technical Report - University of

Minnesota, (2000).

141

BIBLIOGRAPHY

[125] , Application of dimensionality reduction in recommender system - a case study, in

Workshop on Web Mining for e-Commerce: Challenges and Opportunities, WebKDD

’00, New York, NY, 2000, ACM.

[126] B. SARWAR AND J. RIEDL, Item-based collaborative filtering recommendation algorithms,

in Proceedings of the 10th International World Wide Web Conference, WWW ’01, New

York, NY, 2001, ACM, pp. 285–295.

[127] B. M. SARWAR, G. KARYPIS, J. KONSTAN, , AND J. RIEDL, Recommender systems for large-

scale e-commerce: Scalable neighborhood formation using clustering, in Proceedings of

the fifth international conference on computer and information technology, 2002.

[128] A. SCHCLAR, A. TSIKINOVSKY, L. ROKACH, A. MEISELS, AND L. ANTWARG, Ensemble

methods for improving the performance of neighborhood-based collaborative filtering, in

Proceedings of the third ACM conference on Recommender systems, ACM Recsys ’09,

New York, NY, 2009, ACM, pp. 261—-264.

[129] A. I. SCHEIN, A. POPESCUL, L. H. UNGAR, AND D. M. PENNOCK, Methods and metrics

for cold-start recommendations, in Proceedings of the 25th annual international ACM

SIGIR conference on Research and development in information retrieval, SIGIR ’02,

New York, NY, 2002, ACM, pp. 253–260.

[130] U. SHARDANAND AND P. MAES, Social information filtering: Algorithms for automating

‘word of mouth, Human Factors in Computing Systems, (1995).

[131] B. SHETH AND P. MAES, Evolving agents for personalized information filtering, in Pro-

ceedings of 9th IEEE Conference on Artificial Intelligence for Applications, AIA 2002,

Orlando, FL, USA, 2002, IEEE, pp. 345–352.

[132] Z. SITING, H. WENXING, Z. NING, AND Y. FAN, Job recommender systems: A survey, in

Proceedings of the 7th International Conference on Computer Science & Education,

ICCSE ’12, Melbourne, VIC, Australia, 2012, IEEE, pp. 920–924.

[133] B. SMYTH AND P. MCCLAVE, Similarity vs. diversity, in Proceedings of the International

Conference on Case-Based Reasoning, ICCBR 2001, Springer, 2001, pp. 347–361.

[134] L. STAFFORD AND J. R. RESKE, Idealization and communication in long-distance premari-

tal relationships, Family Relations, 39 (1990), pp. 274–279.

[135] P. SYMEONIDIS, A. NANOPOULOS, A. PAPADOPOULOS, AND Y. MANOLOPOULOS, Collabo-

rative recommender systems: Combining effectiveness and efficiency, Expert Systems

with Applications, 34 (2008), pp. 2995–3013.

142

BIBLIOGRAPHY

[136] T. TRAN AND R. COHEN, Hybrid recommender systems for electronic commerce, Knowledge-

Based Electronic Markets, AAAI Press, (2000).

[137] E. TSOUROUGIANNI AND N. AMPAZIS, Recommending who to follow on twitter based on

tweet contents and social connections, Social Networking, 2 (2013), pp. 165–173.

[138] K. TU, B. F. RIBEIRO, D. W. JENSEN, D. F. TOWSLEY, B. LIU, H. JIANG, AND X. WANG,

Online dating recommendations: matching markets and learning preferences, in Pro-

ceedings of the 23rd International Conference on World Wide Web, WWW 2014, New

York, NY, 2014, ACM, pp. 787–792.

[139] B. TWARDOWSKI, Modelling contextual information in session-aware recommender systems

with neural networks, in Proceedings of the 10th ACM Conference on Recommender

Systems, RecSys ’16, New York, NY, 2016, ACM, pp. 273–276.

[140] G. TYSON, V. C. PERTA, H. HADDADI, AND M. C. SETO, A first look at user activity on

tinder, in 2016 IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining, ASONAM ’16, Melbourne, VIC, Australia, 2016, IEEE, pp. 920–

924.

[141] R. VAN METEREN AND M. VAN SOMEREN, Using content-based filtering for recommenda-

tion, in Proceedings of the ECML 2000 Workshop: Maching Learning in Information

Age„ ECML 2000, 2000, pp. 47–56.

[142] A. VASWANI, N. SHAZEER, N. PARMAR, J. USZKOREIT, L. JONES, A. N. GOMEZ,

L. KAISER, AND I. POLOSUKHIN, Attention is all you need, arXiv, (2017).

[143] O. VINYALS, C. BLUNDELL, T. LILLICRAP, K. KAVUKCUOGLU, AND D. WIERSTRA, Match-

ing networks for one shot learning, Advances in Neural Information Processing Systems,

29 (2016).

[144] F. VITALE, N. PAROTSIDIS, AND C. GENTILE, Online reciprocal recommendation with

theoretical performance guarantees, Arxiv.org, (2018).

[145] H.-F. WANG AND C.-T. WU, A mathematical model for product selection strategies in a

recommender system, Expert Systems with Applications, 36 (2009), pp. 7299–7308.

[146] C. WOTIPKA AND A. HIGH, An idealized self or the real me? predicting attraction to

online dating profiles using selective self-presentation and warranting, Communication

Monographs, 83 (2016), pp. 281–302.

[147] C.-Y. WU, A. AHMED, A. BEUTEL, A. SMOLA, AND H. JING, Recurrent recommender

networks, in Proceedings of the Tenth ACM International Conference on Web Search

and Data Mining, WSDM ’17, New York, NY, 2017, ACM, pp. 495–503.

143

BIBLIOGRAPHY

[148] F. WU, Y. QIAO, J.-H. CHEN, C. WU, T. QI, J. LIAN, D. LIU, X. XIE, J. GAO, W. WU, AND

M. ZHOU, Mind: A large-scale dataset for news recommendation, in Proceedings of the

58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, New

York, NY, 2020, ACL, pp. 3597–3606.

[149] B. XIA, J. YIN, J. XU, AND Y. LI, We-rec: A fairness-aware reciprocal recommendation

based on walrasian equilibrium, Knowledge-Based Systems, 182 (2019).

[150] P. XIA, B. LIU, Y. SUN, AND C. CHEN, Reciprocal recommendation system for online dating,

in Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social

Networks Analysis and Mining, ASONAM ’15, New York, NY, 2015, ACM, pp. 234–241.

[151] P. XIA, S. ZHAI, B. LIU, Y. SUN, AND C. CHEN, Design of reciprocal recommendation

systems for online dating, Social Network Analysis and Mining, 6 (2016), pp. 1–13.

[152] S. XIAO, Z. LIU, Y. SHAO, T. DI, AND X. XIE, Training microsoft news recommenders with

pretrained language models in the loop, arXiv, (2021).

[153] L. XU, J. XIANG, AND X. YUAN, Transferring rich deep features for facial beauty prediction,

arXiv, (2018).

[154] R. YAGER AND A. RYBALOV, Uninorm aggregation operators, Fuzzy Sets and Systems, 80

(1996), pp. 111–120.

[155] Z. YANG, L. XU, Z. CAI, AND Z. XU, Re-scale adaboost for attack detection in collaborative

filtering recommender systems, Knowledge-Based Systems, 100 (2016), pp. 74–88.

[156] Z. YIN, T. XU, H. ZHU, C. ZHU, E. CHEN, AND H. XIONG, Matching of social events and

users: a two-way selection perspective, in World Wide Web, WWW ’20, New York, NY,

2020, Springer, pp. 853–871.

[157] R. YING, R. HE, K. CHEN, P. EKSOMBATCHAI, W. L. HAMILTON, AND J. LESKOVEC, Graph

convolutional neural networks for web-scale recommender systems, in Proceedings of

the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’18:, New York, NY, 2018, ACM, pp. 974–983.

[158] H. YU, C. LIU, AND F. ZHANG, Reciprocal recommendation algorithm for the field of

recruitment, Journal of Information & Computational Science, 8 (2011), p. 0.

[159] H.-R. ZHANG AND F. MIN, Three-way recommender systems based on random forests,

Knowledge-Based Systems, 91 (2016), pp. 275–286.

[160] M. ZHANG, J. MA, Z. LIU, J. SUN, AND T. SILVA, A research analytics framework-supported

recommendation approach for supervisor selection, British Journal of Education Tech-

nology, 47 (2016), pp. 403–420.

144

BIBLIOGRAPHY

[161] S. ZHANG, L. YAO, A. SUN, AND Y. TAY, Deep learning based recommender system: A

survey and new perspectives, ACM Computing Surveys, 52 (2019), pp. 1–38.

[162] Y. ZHENG, T. DAVE, N. MISHRA, AND H. KUMAR, Fairness in reciprocal recommendations:

A speed-dating study, in Adjunct Publication of the 26th Conference on User Modeling,

Adaptation and Personalization, UMAP 2018, 2018, pp. 29–34.

[163] Y. ZHOU, D. WILKINSON, R. SCHREIBER, AND R. PAN, Large-scale parallel collaborative

filtering for the netflix prize, in Proceedings of the 4th international conference on

Algorithmic Aspects in Information and Management, AAIM ’08, Berlin, Heidelberg,

2008, Springer-Verlag, pp. 337–348.

145

	List of Tables
	List of Figures
	Introduction
	Recommender Systems
	Recommender Systems Classification
	Recommender System Challenges
	Recommender System Evaluation

	Reciprocal Recommender Systems
	Reciprocal Recommender System Applications
	Reciprocal Recommender Design
	Reciprocal Recommendation Evaluation
	Challenges of Reciprocal Recommendation

	Motivation and Research Questions
	Content-Based Filtering
	Collaborative Filtering
	Hybrid Systems
	Features of Reciprocal Systems

	Original Contributions
	Content-Based Filtering
	Collaborative Filtering
	Hybrid Systems

	Thesis Overview
	Published Work
	Summary

	Background
	Machine Learning Background
	Supervised Learning Methods
	Boosting
	Neural Network-Based Models
	Text Feature Extraction
	Learning from Images
	Suitability of Methods

	Reciprocal Recommendation Background
	Reciprocal Recommendation Literature Reviews

	Content-Based Filtering
	Content-Based Recommendation
	Content-Based Features
	Image-Based Features
	Content-Based Recommender Systems
	Limitations of Content-Based Methods
	Content-Based Reciprocal Recommendation
	Case Study: RECON

	Collaborative Filtering
	Collaborative Filtering for Recommendation
	Collaborative Filtering for Reciprocal Recommendation

	Hybrid Filtering
	Hybrid Recommendation
	Hybrid Reciprocal Recommendation

	Peripheral Topics
	Other Methods of Reciprocal Recommendation
	Multistakeholder Recommendation

	Summary

	Collaborative Filtering
	Introduction
	Background
	Collaborative Filtering
	Collaborative Filtering for Reciprocal Recommendation

	Aggregation Strategies for Collaborative Filtering
	Aggregation Functions
	Methodology
	Evaluation

	Latent Factor-Based Collaborative Filtering
	Methodology
	Evaluation

	Summary

	Hybrid Filtering
	Introduction
	Background
	Hybrid Filtering

	Hybrid Filtering for Social Networks
	Hybrid Single-Class Reciprocal Recommendation
	Item-to-User (Non-reciprocal) Matching
	Results and Discussion

	Summary

	Content-Based Filtering
	Introduction
	Background
	Content-Based Reciprocal Recommender Systems
	Machine Learning for Attractiveness

	Siamese Network-based Model for Image Preference
	Methodology
	Recommendation Algorithm
	Evaluation

	Recurrent Neural Network-based Model for Image Preference
	Training and Match Prediction
	TIRR vs Content-Based Algorithms
	TIRR vs Collaborative Filtering

	Summary

	Conclusions
	Summary of Results
	Collaborative Filtering Results
	Hybrid Filtering Results
	Content-Based Results

	Summary of Original Contributions
	Collaborative Filtering Contributions
	Hybrid Contributions
	Content-Based Contributions

	Themes
	Answers to Research Questions
	Can the current state of the art for reciprocal recommender systems be improved upon?
	What are the most effective methods for reciprocal recommendation, and how does this contrast with the most effective methods for conventional recommendation?
	Can models based on unstructured data such as photos be used to improve on current content-based RRSs?
	Can content-based RRSs be used to improve on the results of collaborative filtering RRSs in cold start situations?
	Is historical data a useful predictor of reciprocal preference in RNNs?
	Can modern techniques such as latent factor models be effectively adapted to reciprocal recommender systems?
	Can the efficiency of reciprocal recommender systems be improved over and above what's possible with current models?
	Does the aggregation function applied have a significant impact on the effectiveness of the recommender system?
	Can hybrid systems be used to improve on the results of content-based and collaborative filtering in reciprocal recommender systems?

	Further Work
	Content-Based Filtering
	Collaborative Filtering
	Hybrid Filtering
	General

	Summary

	Data
	Online Dating Dataset
	Service Description
	Data Curation for Collaborative Filtering
	Data Curation for Content-Based Filtering
	Dataset Characteristics and Limitations

	Recipe Sharing Dataset
	Service Description
	Data Curation for Hybrid Filtering
	Dataset Characteristics and Limitations

	Experimental Procedures
	LFRR
	HRRS
	ImRec
	TIRR

	Bibliography

