62,467 research outputs found

    Embedding a θ\theta-invariant code into a complete one

    Full text link
    Let A be a finite or countable alphabet and let θ\theta be a literal (anti-)automorphism onto A * (by definition, such a correspondence is determinated by a permutation of the alphabet). This paper deals with sets which are invariant under θ\theta (θ\theta-invariant for short) that is, languages L such that θ\theta (L) is a subset of L.We establish an extension of the famous defect theorem. With regards to the so-called notion of completeness, we provide a series of examples of finite complete θ\theta-invariant codes. Moreover, we establish a formula which allows to embed any non-complete θ\theta-invariant code into a complete one. As a consequence, in the family of the so-called thin θ\theta--invariant codes, maximality and completeness are two equivalent notions.Comment: arXiv admin note: text overlap with arXiv:1705.0556

    Origin of symbol-using systems: speech, but not sign, without the semantic urge

    Get PDF
    Natural language—spoken and signed—is a multichannel phenomenon, involving facial and body expression, and voice and visual intonation that is often used in the service of a social urge to communicate meaning. Given that iconicity seems easier and less abstract than making arbitrary connections between sound and meaning, iconicity and gesture have often been invoked in the origin of language alongside the urge to convey meaning. To get a fresh perspective, we critically distinguish the origin of a system capable of evolution from the subsequent evolution that system becomes capable of. Human language arose on a substrate of a system already capable of Darwinian evolution; the genetically supported uniquely human ability to learn a language reflects a key contact point between Darwinian evolution and language. Though implemented in brains generated by DNA symbols coding for protein meaning, the second higher-level symbol-using system of language now operates in a world mostly decoupled from Darwinian evolutionary constraints. Examination of Darwinian evolution of vocal learning in other animals suggests that the initial fixation of a key prerequisite to language into the human genome may actually have required initially side-stepping not only iconicity, but the urge to mean itself. If sign languages came later, they would not have faced this constraint

    Communication as the Main Characteristic of Life

    Get PDF

    Reconstruction Codes for DNA Sequences with Uniform Tandem-Duplication Errors

    Full text link
    DNA as a data storage medium has several advantages, including far greater data density compared to electronic media. We propose that schemes for data storage in the DNA of living organisms may benefit from studying the reconstruction problem, which is applicable whenever multiple reads of noisy data are available. This strategy is uniquely suited to the medium, which inherently replicates stored data in multiple distinct ways, caused by mutations. We consider noise introduced solely by uniform tandem-duplication, and utilize the relation to constant-weight integer codes in the Manhattan metric. By bounding the intersection of the cross-polytope with hyperplanes, we prove the existence of reconstruction codes with greater capacity than known error-correcting codes, which we can determine analytically for any set of parameters.Comment: 11 pages, 2 figures, Latex; version accepted for publicatio

    Review on DNA Cryptography

    Get PDF
    Cryptography is the science that secures data and communication over the network by applying mathematics and logic to design strong encryption methods. In the modern era of e-business and e-commerce the protection of confidentiality, integrity and availability (CIA triad) of stored information as well as of transmitted data is very crucial. DNA molecules, having the capacity to store, process and transmit information, inspires the idea of DNA cryptography. This combination of the chemical characteristics of biological DNA sequences and classical cryptography ensures the non-vulnerable transmission of data. In this paper we have reviewed the present state of art of DNA cryptography.Comment: 31 pages, 12 figures, 6 table
    • …
    corecore