3 research outputs found

    GALP: A hybrid artificial intelligence algorithm for generating covering array

    Get PDF
    Today, there are a lot of useful algorithms for covering array (CA) generation, one of the branches of combinatorial testing. The major CA challenge is the generation of an array with the minimum number of test cases (efficiency) in an appropriate run-time (performance), for large systems. CA generation strategies are classified into several categories: computational and meta-heuristic, to name the most important ones. Generally, computational strategies have high performance and yield poor results in terms of efficiency, in contrast, meta-heuristic strategies have good efficiency and lower performance. Among the strategies available, some are efficient strategies but suffer from low performance; conversely, some others have good performance, but is not such efficient. In general, there is not a strategy that enjoys both above-mentioned metrics. In this paper, it is tried to combine the genetic algorithm and the Augmented Lagrangian Particle Swarm Optimization with Fractional Order Velocity to produce the appropriate test suite in terms of efficiency and performance. Also, a simple and effective minimizing function is employed to increase efficiency. The evaluation results show that the proposed strategy outperforms the existing approaches in terms of both efficiency and performance

    Generating, selecting and prioritizing test cases from specifications with tool support

    No full text
    The classification-tree method provides a systematic way for software testers to derive test cases by considering important relevant aspects that are identified from the specification. The method has been used in many real-life applications and shown to be effective. This paper presents several enhancements to the method by annotating the classification tree with additional information to reduce manual effort in the generation, selection and prioritization of test cases. A tool for supporting this enhanced process is also described

    A Tabu Search hyper-heuristic strategy for t-way test suite generation

    Get PDF
    This paper proposes a novel hybrid t-way test generation strategy (where t indicates interaction strength), called High Level Hyper-Heuristic (HHH). HHH adopts Tabu Search as its high level meta-heuristic and leverages on the strength of four low level meta-heuristics, comprising of Teaching Learning based Optimization, Global Neighborhood Algorithm, Particle Swarm Optimization, and Cuckoo Search Algorithm. HHH is able to capitalize on the strengths and limit the deficiencies of each individual algorithm in a collective and synergistic manner. Unlike existing hyper-heuristics, HHH relies on three defined operators, based on improvement, intensification and diversification, to adaptively select the most suitable meta-heuristic at any particular time. Our results are promising as HHH manages to outperform existing t-way strategies on many of the benchmarks
    corecore