453 research outputs found

    Application of fuzzy set and Dempster-Shafer theory to organic geochemistry interpretation

    Get PDF
    An application of fuzzy sets and Dempster Shafter Theory (DST) in modeling the interpretational process of organic geochemistry data for predicting the level of maturities of oil and source rock samples is presented. This was accomplished by (1) representing linguistic imprecision and imprecision associated with experience by a fuzzy set theory, (2) capturing the probabilistic nature of imperfect evidences by a DST, and (3) combining multiple evidences by utilizing John Yen's generalized Dempster-Shafter Theory (GDST), which allows DST to deal with fuzzy information. The current prototype provides collective beliefs on the predicted levels of maturity by combining multiple evidences through GDST's rule of combination

    Fuzzy sets, rough sets, and modeling evidence: Theory and Application. A Dempster-Shafer based approach to compromise decision making with multiattributes applied to product selection

    Get PDF
    The Dempster-Shafer theory of evidence is applied to a multiattribute decision making problem whereby the decision maker (DM) must compromise with available alternatives, none of which exactly satisfies his ideal. The decision mechanism is constrained by the uncertainty inherent in the determination of the relative importance of each attribute element and the classification of existing alternatives. The classification of alternatives is addressed through expert evaluation of the degree to which each element is contained in each available alternative. The relative importance of each attribute element is determined through pairwise comparisons of the elements by the decision maker and implementation of a ratio scale quantification method. Then the 'belief' and 'plausibility' that an alternative will satisfy the decision maker's ideal are calculated and combined to rank order the available alternatives. Application to the problem of selecting computer software is given

    Certain and possible rules for decision making using rough set theory extended to fuzzy sets

    Get PDF
    Uncertainty may be caused by the ambiguity in the terms used to describe a specific situation. It may also be caused by skepticism of rules used to describe a course of action or by missing and/or erroneous data. To deal with uncertainty, techniques other than classical logic need to be developed. Although, statistics may be the best tool available for handling likelihood, it is not always adequate for dealing with knowledge acquisition under uncertainty. Inadequacies caused by estimating probabilities in statistical processes can be alleviated through use of the Dempster-Shafer theory of evidence. Fuzzy set theory is another tool used to deal with uncertainty where ambiguous terms are present. Other methods include rough sets, the theory of endorsements and nonmonotonic logic. J. Grzymala-Busse has defined the concept of lower and upper approximation of a (crisp) set and has used that concept to extract rules from a set of examples. We will define the fuzzy analogs of lower and upper approximations and use these to obtain certain and possible rules from a set of examples where the data is fuzzy. Central to these concepts will be the idea of the degree to which a fuzzy set A is contained in another fuzzy set B, and the degree of intersection of a set A with set B. These concepts will also give meaning to the statement; A implies B. The two meanings will be: (1) if x is certainly in A then it is certainly in B, and (2) if x is possibly in A then it is possibly in B. Next, classification will be looked at and it will be shown that if a classification will be looked at and it will be shown that if a classification is well externally definable then it is well internally definable, and if it is poorly externally definable then it is poorly internally definable, thus generalizing a result of Grzymala-Busse. Finally, some ideas of how to define consensus and group options to form clusters of rules will be given

    An introduction to DSmT

    Get PDF
    The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning. In this introduction, we present a survey of our recent theory of plausible and paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT), developed for dealing with imprecise, uncertain and conflicting sources of information. We focus our presentation on the foundations of DSmT and on its most important rules of combination, rather than on browsing specific applications of DSmT available in literature. Several simple examples are given throughout this presentation to show the efficiency and the generality of this new approach

    Net pay determination by Dempster rule of combination: Case study on Iranian offshore oil fields

    No full text
    International audienceNet pay detection is a key stage in reservoir characterization for several purposes: reserve estimation, reservoir modeling and simulation, production planning, etc. Determining productive zones always is simultaneous with some amount of uncertainty due to lack of enough data, insufficiency of knowledge and wild-nature of petroleum reservoirs. It becomes even more challenging in carbonates, because of their highly heterogeneous environment. Conventionally, evaluating net pays is done by applying petrophysical cutoffs on well-logs, which results in crisp classification of pay or non-pay zones. In addition, cutoff based method is developed in sandstones, and does not provide suitable results in carbonates at all. Proposed methodology of this work, Dempster-Shafer Theory, is a generalization of Bayesian Theory of conditional probabilities. Net pays are studied in two oil reservoirs by this theory; one of them is carbonate reservoir of Mishrif, the other is sandy Burgan reservoir. For validation, results 2 are compared to well tests and output of conventional cutoff method. The advantages of using Dempster-Shafer Theory, comparing to conventional cutoff based method in studying net pays is: to have a continuous fuzzy output, based on geological facts, with high generalization ability and more compatibility with well test data
    corecore