6 research outputs found

    Generalized von Neumann–Kakutani transformation and random-start scrambled Halton sequences

    Get PDF
    AbstractIt is a well-known fact that the Halton sequence exhibits poor uniformity in high dimensions. Starting with Braaten and Weller in 1979, several researchers introduced permutations to scramble the digits of the van der Corput sequences that make up the Halton sequence, in order to improve the uniformity of the Halton sequence. These sequences are called scrambled Halton, or generalized Halton sequences. Another significant result on the Halton sequence was the fact that it could be represented as the orbit of the von Neumann–Kakutani transformation, as observed by Lambert in 1982. In this paper, I will show that a scrambled Halton sequence can be represented as the orbit of an appropriately generalized von Neumann–Kakutani transformation. A practical implication of this result is that it gives a new family of randomized quasi-Monte Carlo sequences: random-start scrambled Halton sequences. This work generalizes random-start Halton sequences of Wang and Hickernell. Numerical results show that random-start scrambled Halton sequences can improve on the sample variance of random-start Halton sequences by factors as high as 7000

    From van der Corput to modern constructions of sequences for quasi-Monte Carlo rules

    Full text link
    In 1935 J.G. van der Corput introduced a sequence which has excellent uniform distribution properties modulo 1. This sequence is based on a very simple digital construction scheme with respect to the binary digit expansion. Nowadays the van der Corput sequence, as it was named later, is the prototype of many uniformly distributed sequences, also in the multi-dimensional case. Such sequences are required as sample nodes in quasi-Monte Carlo algorithms, which are deterministic variants of Monte Carlo rules for numerical integration. Since its introduction many people have studied the van der Corput sequence and generalizations thereof. This led to a huge number of results. On the occasion of the 125th birthday of J.G. van der Corput we survey many interesting results on van der Corput sequences and their generalizations. In this way we move from van der Corput's ideas to the most modern constructions of sequences for quasi-Monte Carlo rules, such as, e.g., generalized Halton sequences or Niederreiter's (t,s)(t,s)-sequences

    Directional Control of Generating Brownian Path under Quasi Monte Carlo

    Get PDF
    Quasi-Monte Carlo (QMC) methods are playing an increasingly important role in computational finance. This is attributed to the increased complexity of the derivative securities and the sophistication of the financial models. Simple closed-form solutions for the finance applications typically do not exist and hence numerical methods need to be used to approximate their solutions. QMC method has been proposed as an alternative method to Monte Carlo (MC) method to accomplish this objective. Unlike MC methods, the efficiency of QMC-based methods is highly dependent on the dimensionality of the problems. In particular, numerous researches have documented, under the Black-Scholes models, the critical role of the generating matrix for simulating the Brownian paths. Numerical results support the notion that generating matrix that reduces the effective dimension of the underlying problems is able to increase the efficiency of QMC. Consequently, dimension reduction methods such as principal component analysis, Brownian bridge, Linear Transformation and Orthogonal Transformation have been proposed to further enhance QMC. Motivated by these results, we first propose a new measure to quantify the effective dimension. We then propose a new dimension reduction method which we refer as the directional method (DC). The proposed DC method has the advantage that it depends explicitly on the given function of interest. Furthermore, by assigning appropriately the direction of importance of the given function, the proposed method optimally determines the generating matrix used to simulate the Brownian paths. Because of the flexibility of our proposed method, it can be shown that many of the existing dimension reduction methods are special cases of our proposed DC methods. Finally, many numerical examples are provided to support the competitive efficiency of the proposed method
    corecore