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a b s t r a c t

It is a well-known fact that the Halton sequence exhibits poor
uniformity in high dimensions. Starting with Braaten and Weller
in 1979, several researchers introduced permutations to scramble
the digits of the van der Corput sequences that make up the
Halton sequence, in order to improve the uniformity of the
Halton sequence. These sequences are called scrambled Halton,
or generalized Halton sequences. Another significant result on the
Halton sequence was the fact that it could be represented as the
orbit of the von Neumann–Kakutani transformation, as observed
by Lambert in 1982. In this paper, I will show that a scrambled
Halton sequence can be represented as the orbit of an appropriately
generalized von Neumann–Kakutani transformation. A practical
implication of this result is that it gives a new family of randomized
quasi-Monte Carlo sequences: random-start scrambled Halton
sequences. This work generalizes random-start Halton sequences
ofWang and Hickernell. Numerical results show that random-start
scrambled Halton sequences can improve on the sample variance
of random-start Halton sequences by factors as high as 7000.

© 2009 Published by Elsevier Inc.

0. Introduction

The van der Corput sequence, and its generalization to higher dimensions, the Halton sequence,
are among the best known low-discrepancy sequences. The nth term of the van der Corput sequence
in base b, φb(n), is defined as follows: First, write n in its base b expansion:

n = (ak · · · a1a0)b = a0 + a1b+ · · · + akbk,
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then compute

φb(n) = (.a0a1 · · · ak)b =
a0
b
+
a1
b2
+ · · · +

ak
bk+1

. (1)

The Halton sequence in the bases b1, . . . , bs is (φb1(n), . . . , φbs(n))
∞

n=0. This is a uniformly distributed
mod 1 (u.d. mod 1) sequence if the bases are relatively prime. In practice, bi is usually chosen as the
ith prime number.
There is a well-known defect of the Halton sequence: in higher dimensions, certain components

of the sequence exhibit very poor uniformity—this is sometimes stated as high correlation between
components. This fact was observed by several authors, and as a remedy, scrambled Halton sequences
were introduced [1–10]. The scrambled van der Corput sequence generalizes Eq. (1) as

φb(n) =
σ(a0)
b
+
σ(a1)
b2
+ · · · +

σ(ak)
bk+1

where σ is a permutation on the digit set {0, . . . , b − 1}. By considering different permutations σbi
for the corresponding bases bi, one can define the scrambled Halton sequence in the bases b1, . . . , bs
in the usual way.
In this paper, we will consider a generalization of the above scrambling that allows the use of

different permutations at each digit. This generalization was considered by Faure in [11]. We obtain
the following definition for the nth term of the scrambled van der Corput sequence. The scrambled
Halton sequence is defined similarly.

Definition 1. The scrambled van der Corput sequence in base b and permutations σ1, σ2, . . ., is
(φb(n))∞n=0, where

φb(n) =
σ1(a0)
b
+
σ2(a1)
b2
+ · · · +

σk(ak−1)
bk

(2)

and n = (ak · · · a1a0)b.

There have been other methods introduced in the literature to reduce the correlation in the Halton
sequence. For example, Hess and Polak [12] shuffle the one-dimensional van der Corput sequences
that make up the Halton sequence, using independent random permutations. The ‘‘scrambled’’
strategy of Spanier [13] uses random permutations to scramble the order of the Halton sequences
across different random walks so that a lower dimensional Halton sequence can be used in a high
dimensional problem. Similar ideas appear in the ‘‘renumbering’’ and ‘‘continuation’’ methods used
by Moskowitz [14], and numbering techniques used by Coulibaly and Lécot [15], and Morokoff and
Caflisch [16].

1. The von Neumann–Kakutani transformation and a generalization

The van der Corput sequence can be obtained from the von Neumann–Kakutani transformation, as
was first observed by Lambert [17,18]. The ergodic theory connection to van der Corput sequences
was also explored in detail by Hellekalek [19]. Here we will give a brief description of the von
Neumann–Kakutani transformation, and later discuss a modification of it in more detail. A thorough
analysis of this transformation can be found in [20].
The von Neumann–Kakutani transformation is an ergodic and measure preserving transformation

T : [0, 1)→ (0, 1), and it is constructed inductively. At the nth stage of this construction, a mapping
Tn with domain Dn is defined. Dn is a proper subset of [0, 1), and the next stage constructs a mapping
Tn+1with domainDn+1 such thatDn $ Dn+1,Dn+1 $ (0, 1), and the restriction of Tn+1 ontoDn is Tn. The
construction is such that ∪∞n=1 Dn = [0, 1). The transformation T is defined as T (x) = limn→∞ Tn(x).
At the first stage of the construction we split [0, 1) into two subintervals, [0, 1/2) and [1/2, 1),

and define T1 as the translation of the first subinterval onto the second one. This is illustrated in the
first diagram in Fig. 1: the action of T1 is simply mapping a point in [0, 1/2) to the point directly
above in [1/2, 1). The second stage of the construction cuts these intervals in half, takes the second
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Fig. 1. Construction of the von Neumann–Kakutani transformation.

Fig. 2. Plotting the von Neumann–Kakutani transformation.

(right) half and stacks it onto the top of the first (left) half. This splitting and stacking is shown by
the arrows and the dashed lines in Fig. 1. This diagram also shows how T2 is defined: T2 translates
[0, 1/4) onto [1/2, 3/4), [1/2, 3/4) onto [1/4, 1/2), and [1/4, 1/2) onto [3/4, 1). Note that T2 extends
T1 by mapping [1/2, 3/4) onto [1/4, 1/2). Also note the progression of domains: D1 = [0, 1/2) and
D2 = [0, 1/2) ∪ (1/2, 3/4). The splitting and stacking process continues in this manner.
In Fig. 2, we plot T1, T2 and T3, to visualize the inductive construction of the limiting transformation

T . The graph of T1 is the line segment between (0, 1/2) and (1/2, 1), excluding the point (1/2, 1). The
graph of T2 is the union of the graph of T1 and the line segment between (1/2, 1/4) and (3/4, 1/2),
excluding the point (3/4, 1/2). The graph of T3, adds to the graph of T2, the line segment between
(3/4, 1/8) and (7/8, 1/4), excluding the point (7/8, 1/4). The construction continues in thismanner.
Observe that the orbit of 0 under T , 0 → 1/2 → 1/4 → 3/4 → · · ·, (see Fig. 1) is the van der

Corput sequence in base 2. The splitting and stacking construction we discussed above can be done in
any base b, in the following way. At each stage, the intervals will be cut into b subintervals of equal
size, and stacking will be done from right to left: If we number the ‘‘stacks’’ as 0, 1, . . . , b−1, starting
with the left-most stack, and if x ≺ ymeans stack ymoves to the top of stack x, then stacking is done
in the order 0 ≺ 1 ≺ · · · ≺ b− 1. The orbit of 0 under T in this general setting is the van der Corput
sequence in base b.



G. Ökten / Journal of Complexity 25 (2009) 318–331 321

Although the inductive definition of T by splitting and stacking is what we will examine in this
paper, here we note an algebraic definition for T , in base b, using the ‘‘rightward carry addition’’
operation

⊕
. If x is given as

x =
∞∑
k=0

uk
bk+1

then

T (x) := x
⊕ 1

b
=
1+ um
bm+1

+

∑
k>m

uk
bk+1

where

m = min{k | uk 6= b− 1}.

Since Tn+1 is an extension of Tn for all n, this definition also gives an algebraic description for the
mappings Tn. For example, the translations that were described in Fig. 1 are obtained by rightward
carry addition by 1/2 = (0.1)2. In particular, 0

⊕
1/2 = 1/2, 1/2

⊕
1/2 = 1/4, and 1/4

⊕
1/2 =

3/4.
There are advantages of approaching the van der Corput sequence using the von Neu-

mann–Kakutani transformation. The transformation T is ergodic and measure preserving, and
limN→∞ 1

N

∑N
n=1 f (T

n−1(ω)) =
∫ 1
0 f (x)dx for almost all ω, where f is an integrable function on [0, 1),

from Birkhoff’s ergodic theorem (see, for example, Friedman [21]). In other words, the orbit of ω,
{ω, T (ω), T 2(ω), . . .}, is a u.d. mod 1 sequence for almost all ω. If ω = 0, this orbit coincides with the
van der Corput sequence in base b. If ω is a b-adic rational, then it will appear as the left-end of an
interval in the splitting and stacking process, and thus T k(0) = ω for some k. Therefore, the orbit of
ω will be the van der Corput sequence in base b skipped by k terms.
We next describe a generalization of the splitting and stacking process. This new process will help

us to analyze scrambled van der Corput sequences using ergodic theory.

Definition 2. A ladder L of height h and width w is an ordered set of h disjoint subintervals Ii
contained in [0, 1). The subintervals are left-closed and right-open, and have width w. We write
L = (I0, I1, . . . , Ih−1).

Definition 3. Let σ1, σ2, . . . be a sequence of permutations on {0, 1, . . . , b − 1}. The scrambled
splitting and stacking process for [0, 1) in base b is an inductive construction of a sequence of ladders
Ln, where Ln has height bn and width b−n. The first ladder L1 is obtained by stacking the subintervals
I0 = [0, 1/b), I1 = [1/b, 2/b), . . . , Ib−1 = [ b−1b , 1) as follows: If we number the subintervals
I0, I1, . . . , Ib−1 as 0, 1, . . . , b− 1, then stacking is done in the order σ1(0) ≺ σ1(1) ≺ · · · ≺ σ1(b− 1).
Ladder Ln is obtained from Ln−1 by splitting the subintervals of Ln−1 into b subintervals of equal width.
This divides the ladder Ln−1 into b stacks, which are then arranged in the order σn(0) ≺ σn(1) ≺ · · · ≺
σn(b− 1),where 0, 1, . . . , b− 1 is the numbering of the stacks from left to right.

An example will be helpful. Let b = 3 and all permutations equal to σ = (0 2 1) (i.e., σ(0) =
0, σ (1) = 2, σ (2) = 1). The first ladder is obtained by stacking [0, 1/3)︸ ︷︷ ︸

0

, [1/3, 2/3)︸ ︷︷ ︸
1

, [2/3, 1)︸ ︷︷ ︸
2

in the

order σ(0) = 0 ≺ σ(1) = 2 ≺ σ(2) = 1 (see the first diagram in Fig. 3). The second ladder is
obtained by splitting the first ladder into thirds (see the dashed lines in Fig. 3), labeling the resulting
stacks as 0, 1, 2 (from left to right), and then stacking in the order 0 ≺ 2 ≺ 1. The lower arrow in
the figure shows that stack number 2 goes to the top of stack number 0, and the top arrow shows
stack number 1 goes to the top of stack number 2. Fig. 4 plots the resulting transformations: T1 maps
[0, 1/3) onto [2/3, 1), and [2/3, 1) onto [1/3, 2/3), and T2 extends T1 by mapping [1/3, 4/9) onto
[2/9, 1/3), and [5/9, 2/3) onto [1/9, 2/9).
At each stage of its construction, the scrambled splitting and stacking process defines a linear

mapping Tn, as in the original von Neumann–Kakutani construction: Tn maps each subinterval in the
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Fig. 3. Scrambled splitting and stacking.

Fig. 4. Plotting the von Neumann–Kakutani transformation for b = 3 and σ = (0 2 1).

ladder Ln onto the subinterval above by translation. This is possible since the intervals are disjoint and
have equal width. We will call Tn the mapping induced by Ln. It is also clear that Tn+1 is an extension
of Tn. Indeed, Tn is defined everywhere in [0, 1) except for the top interval of its ladder, and after
splitting and stacking, this top interval will contain the top interval of the next ladder (where Tn+1
is not defined) as a proper subset. Moreover, since stacking preserves the ordering of subintervals in
each ‘‘stack’’, Tn+1 reduces to Tn on the domain Dn of Tn. The limiting mapping, T (x) = limn→∞ Tn(x),
can be defined just as before, provided the union of the domains Dn is [0, 1). We will prove that T as
defined is ergodic and measure preserving, after we make a few more observations.
The orbit of 0 under the mapping T in the above example is {0, 2/3, 1/3, 2/9, 8/9, 5/9, 1/9,

7/9, 4/9, . . .}. This is precisely the scrambled van der Corput sequence in base 3with all permutations
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Fig. 5. Plotting the von Neumann–Kakutani transformation for b = 2 and σ1 = (0 1), σ2 = σ3 = · · · = (1 0).

equal to σ = (0 2 1) in (2). This choice of permutation for scrambled van der Corput sequence was
used by Braaten and Weller [2].
Not all scrambled splitting and stacking transformations yield a transformation T on [0, 1): it

is possible to obtain domains Dn whose union miss a point of [0, 1). For example, consider the
transformation in base 2, with σ1 = (0 1), σ2 = σ3 = · · · = (1 0). Since stacking is done from
left to right after the first stage, 1/2 appears as the left-end point of all the top intervals of the ladders.
Therefore, 1/2 does not belong to the domain of any of the Tn’s. Fig. 5 plots the translations: T1 maps
[0, 1/2) onto [1/2, 1), T2 extends T1 bymapping [3/4, 1) onto [0, 1/4), and T3 extends T2 bymapping
[5/8, 3/4) onto [1/4, 3/8). The arrow in Fig. 5 indicates the ‘‘direction’’ of the limiting process for Tn:
note that x = 1/2 will not appear as the left-end point of any domain (interval) of a translation.
This kind of behavior can be observed in any base b, if the left-most stack is stacked at the top

of another stack indefinitely, after a certain stage. In terms of permutations, this type of stacking
corresponds to having a sequence of permutations σk, σk+1, . . ., such that all permutations map 0 to a
nonzero value. Although redefining T on a set ofmeasure 0 does not change any of the properties such
as ergodicity or measure preservation, not having a b-adic rational in the orbit of 0 is not desirable.
There is another disadvantage of having permutations that map 0 to a nonzero value. Let σk be the

first permutation that stacks the left-most stack to the top of another stack. Then, 0 will appear as
the left-end point of a subinterval other than the bottom interval, in the kth ladder. For example, if
σ1 = (0 1) and σ2 = (1 0), then the left-end points of the subintervals in the first and second ladders
are (0, 1/2) and (1/4, 3/4, 0, 1/2). This destroys the sequential construction of the orbit of 0. Even
if we did not care about constructing a sequence, but only wanted to have a scrambled net (finite
point set), having 0 at any other location than the beginning is not desirable, since 0 is often avoided
(skipped) when its orbit is used in simulation.
For the reasons explained above, in the rest of the paper we will consider only scrambled splitting

and stacking processes where σk maps 0 to 0 for all k.

Definition 4. A scrambled splitting and stacking process for [0, 1) in base b, with permutations
σ1, σ2, . . ., is called normal if σk maps 0 to 0 for all k.

Lemma 5. Consider a normal scrambled splitting and stacking process in base b, and let Tn be themapping
induced by the ladder Ln. Let T (x) = limn→∞ Tn(x). Then, T is an ergodic and measure preserving
transformation on [0, 1).
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Proof. Let intervals In and Jn denote the domain and range of Tn. From the definition of the scrambled
splitting and stacking process, In and Jn are disjoint, they have the same length b−n, and Tn translates In
onto Jn. Moreover, ∪∞n=1 In = [0, 1). Indeed, observe that Tn is not defined on a left-closed right-open
interval of width b−n; the top interval of the ladder Ln. Denote this interval as [ln, rn). The next phase
of the process constructs Tn+1, which is undefined on an interval [ln+1, rn+1)withwidth b−n−1. Clearly,
[ln, rn) % (ln+1, rn+1), and since the process is normal, ln+1 6= ln. Therefore ∩∞n=1[ln, rn) is the empty
set, proving the assertion. Similarly, in a normal process, the intervals that are not contained in the
range of Tn (i.e., [0, 1)−Jn) are the bottom intervals of ladders: [0, 1/b), [0, 1/b2), . . .. The intersection
of these sets is {0}. Therefore, ∪In = ∪Jn = [0, 1), except for a set of measure 0. The properties we
have verified so far show that T is a σ -translation, and all σ -translations are measure preserving (see
Friedman [20]). The proof that T is ergodic follows the ergodicity proof of the von Neumann–Kakutani
transformation given in Friedman [20]. All the arguments made in the proof in Friedman [20] are still
valid, once the binary intervals of the proof are replaced by b-adic intervals. �

Lemma 6. The orbit of 0 under a normal scrambled splitting and stacking process in base b with
permutations σ1, σ2, . . ., coincides with the scrambled van der Corput sequence in base b with the same
permutations.

Proof. Proof is by induction on the stage number n of the scrambled splitting and stacking process.
Wewill show that for any n, the left-end points of the intervals of Ln are the scrambled van der Corput
numbers. At the first stage n = 1, the subintervals [i/b, (i + 1)/b)i = 0, . . . , b − 1, are arranged
in the order σ1(0) = 0 ≺ σ1(1) ≺ · · · ≺ σ1(b − 1) to construct L1. Therefore the left-end points
are 0, σ1(1)/b, . . . , σ1(b − 1)/b. These are exactly the first b terms of the scrambled van der Corput
sequence in base b since φb(0) = σ1(0)/b = 0, φb(1) = σ1(1)/b, . . . , φb(b− 1) = σ1(b− 1)/b.
Nowassume that the induction hypothesis is true for the ladder Lk−1. The left-end points of Lk−1 are

(0, T (0), . . . , T b
k−1
−1(0)), and the induction hypothesis implies T j(0) = φb(j), for j = 0, . . . , bk−1−1

(T 0 is the identity map). To construct Lk, we divide Lk−1 into b equal subintervals and stack according
to the permutation σk = (0, σk(1), . . . , σk(b − 1)). By construction, the first interval that moves
to the top of the ladder is the bottom interval of the stack numbered as σk(1) (see Fig. 6). This
interval is [ σk(1)

bk
,
σk(1)+1
bk

). Therefore, T (T b
k−1
−1(0)) = T b

k−1
(0) = σk(1)

bk
which is nothing but φb(bk−1).

The next bk−1 − 1 points in the orbit of 0 are the left-end points of the intervals in the rest of the
stack. These points are, T b

k−1
+1(0), T b

k−1
+2(0), . . . , T 2b

k−1
−1(0), and thus they are obtained from

σk(1)/bk by translating by T (0), T 2(0), . . . , T b
k−1
−1(0). Therefore, T b

k−1
+j(0) = σk(1)/bk + T j(0) =

σk(1)/bk + φb(j) = φb(bk−1 + j), where 0 ≤ j ≤ bk−1 − 1. The next stack, stack number σk(2), will
determine the next bk−1 points in the orbit: T 2b

k−1
(0), T 2b

k−1
+1(0), . . . , T 3b

k−1
−1(0). Now the bottom

interval of the stack numbered as σk(2) goes to the top, and thus, T 2b
k−1
(0) = σk(2)/bk, and the

rest of the orbit is obtained by translating σk(2)/bk by T (0), T 2(0), . . . , T b
k−1
−1(0) as before. Then

T 2b
k−1
+j(0) = σk(2)/bk + T j(0) = σk(2)/bk + φb(j) = φb(2bk−1 + j), where 0 ≤ j ≤ bk−1 − 1.

In general, stack number σk(i) determines the points T ib
k−1
(0), T ib

k−1
+1(0), . . . , T (i+1)b

k−1
−1(0), by

translating T ib
k−1
(0) = σk(i)/bk by T (0), T 2(0), . . . , T b

k−1
−1(0). Therefore

T ib
k−1
+j(0) = σk(i)/bk + T j(0) = σk(i)/bk + φb(j) = φb(ibk−1 + j)

for 1 ≤ i ≤ b− 1 and 0 ≤ j ≤ bk−1 − 1. This proves the lemma. �

2. A randomization of the scrambled van der Corput and Halton sequences

The quasi-Monte Carlo method, which uses low-discrepancy sequences such as the Halton
sequence in estimating integrals, has the following drawback: using one low-discrepancy sequence
in simulation gives a single estimate for the integral, and there is no practical way of assessing
the error of this estimate. Indeed, although the Koksma–Hlawka inequality (or, its generalizations)
provides an upper bound for the error, the upper bound itself needs to be estimated numerically, in
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Fig. 6. Constructing Lk from Lk−1 .

general. Moreover, for a given function, we do not know how tight the upper bound is. To address this
drawback, researchers have introduced the so-called randomized quasi-Monte Carlo (RQMC) methods
in the last decade. RQMC methods construct a family of low-discrepancy sequences, from which one
can draw a sequence at random and use it to obtain an estimate for the integral. Statistical analysis
can be applied to multiple estimates obtained this way, to measure error. For recent surveys of RQMC
methods, see Ökten and Eastman [22] and L’Ecuyer and Lemieux [23]. In this section we will discuss
a randomization of the scrambled Halton sequence.
Let T be an ergodic and measure preserving transformation obtained from a normal scrambled

splitting and stacking process in base b. The permutations σ1, σ2, . . ., are used in the splitting and
stacking process. A word about the notation: Since all results of this section, except for one, are true
for arbitrary sequences of permutations, we will suppress the permutations in the notation for T .
From the ergodic theorem, we have the following result.

Theorem 7. For almost all x ∈ (0, 1), the orbit of x under T , i.e., the sequence {T n(x)}∞n=0, is a
u.d.mod 1 sequence in [0, 1).

Lemma 8. If X is a random variable with the uniform distribution on [0, 1), then so is T (X).

Proof. T is a σ -translation, and thus, measure preserving (a proof can be found in Friedman [20]).
Therefore, λ(T (B)) = λ(B) for any Borel measurable set B ⊂ (0, 1), where λ is the Lebesgue measure
on [0, 1). Finally, for any such subset B, we observe that

P(T (X) ∈ B) = P(X ∈ T−1(B)) = λ(T−1(B)) = λ(B)

where the last equality holds since λ is measure preserving. �

Now define a random variable θN as

θN(X) =
1
N

N−1∑
i=0

f (T i(X))

where f is a function defined on [0, 1), and let I =
∫ 1
0 f (x)dx.
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Theorem 9. The random variable θN(X) is an unbiased estimator for I =
∫ 1
0 f (x)dx.

Proof. For a given x ∈ (0, 1), Theorem7 implies that θN(x)→ I asN →∞, for almost all x. Moreover,
for a given N , we have

E[θN ] =
1
N

N−1∑
i=0

E[f (T i(X))] = I

since T i(X) has the uniform distribution on [0, 1), for any i, as implied by Lemma 8. �

Let Tb1 , . . . , Tbs be the ergodic and measure preserving transformations obtained from normal
scrambled splitting and stacking processes in relatively prime bases b1, . . . , bs. For x = (x1, . . . , xs) ∈
(0, 1)s, define

T(x) = (Tb1(x1), . . . , Tbs(xs)).

Theorem 10. For almost all x ∈ (0, 1)s, the orbit of x under T, i.e., the sequence {Tn(x)}∞n=0, is a
u.d.mod 1 sequence in [0, 1)s.

Proof. The eigenvalues for the von Neumann–Kakutani transformation in base b are exp(2π ik/bn),
0 ≤ k ≤ bn, n ∈ N (see [21]), and the Cartesian product of ergodic transformations is ergodic,
as long as the only common eigenvalue of the transformations is one (see [24]). The generalized
von Neumann–Kakutani transformation can be viewed as an adic system or generalized odometer
(see [25]), and have the same eigenvalues as the von Neumann–Kakutani transformation.1 Given
relatively prime numbers b1, . . . , bs, the only common eigenvalue for Tb1 , . . . , Tbs is one. Therefore
T is ergodic. The conclusion follows from the ergodic theorem. �

Let X = (X1, . . . , Xs) be a random variable with the uniform distribution on [0, 1)s. Lemma 8
implies that Tbi(Xi) has the uniform distribution on [0, 1) for any i = 1, . . . , s, and thus, T(X) has the
uniform distribution on [0, 1)s. This fact enables us to generalize the estimator θN and Theorem 9 to
multidimensions.

Theorem 11. The random variable θN(X) = 1
N

∑N−1
i=0 f (T

i(X)) is an unbiased estimator for I =∫
[0,1)s f (x)dx.

To study the variance of θN , it suffices to know the discrepancy of the sequence {Tn(x)}∞n=0. This
is known for the special case when the permutations used in the scrambled splitting and stacking
process are the identity. The following result is by Lapeyre and Pagès [26], which generalizes the
corresponding discrepancy bound for a one-dimensional van der Corput sequence of Pagès [27] (a
proof of this result is sketched in [26]; personal communication with Dr. Lépingle and Dr. Pagès).

Theorem 12 (Lapeyre and Pagès). Consider the sequence {Tn(x)}∞n=0 where all the permutations used in
the scrambled splitting and stacking process are the identity. Then

D∗N(T
n(x)) ≤

1
N

[
1+

s∏
i=1

(bi − 1)
log biN
log bi

]
where D∗N is the star discrepancy.

If x = 0 = (0, . . . , 0) and the permutations are arbitrary, in other words, if {Tn(x)}∞n=0 is simply
the scrambled Halton sequence, then the following result by Atanassov [1] applies (this is the best
known bound for the star discrepancy of an arbitrary scrambled Halton sequence):

1 I am grateful to Dr. Karl Petersen for pointing this out.



G. Ökten / Journal of Complexity 25 (2009) 318–331 327

Theorem 13 (Atanassov). Consider the sequence {Tn(0)}∞n=0 where arbitrary permutations are used in
the scrambled splitting and stacking process. Then

D∗N(T
n(0)) ≤

1
N
1
s!

s∏
i=1

bi − 1
log bi

(logN)s + O(N−1(logN)s−1). (3)

Therefore, in the special cases when (i) the sequence is the orbit of x, but the permutations are the
identity, or (ii) the permutations are arbitrary, but the sequence is the orbit of 0, the star discrepancy
is O(N−1(logN)s). We think this result is true for any x, and for arbitrary permutations, but unable to
prove it.

Conjecture 14. D∗N(T
n(x)) is O(N−1(logN)s) for arbitrary permutations used in the scrambled splitting

and stacking process, arbitrary x, and any relatively prime bases b1, . . . , bs.

If this conjecture is true, then we can prove that

σ 2(θN(X)) = O(N−2(logN)2s)

if f has bounded variation in the sense of Hardy and Krause, and X is a random variable with the
uniform distribution on [0, 1)s. Indeed, this simply follows from the Koksma–Hlawka inequality:

σ 2(θN(X)) =
∫
[0,1)s
|θN(x)− I|2 dx ≤ V (f )2D∗N(T

n(x))2 = O(N−2(logN)2s),

where V (f ) is the variation of f in the sense of Hardy and Krause.

Remark 15. As we mentioned earlier, if xi is a bi-adic rational, then the orbit of xi is the (scrambled)
van der Corput sequence in base bi skipped by ki terms where ki is such that T ki(0) = xi. Similarly,
for x = (x1, . . . , xs), and each xi is a bi-adic rational, {Tn(x)}∞n=0 is the (scrambled) Halton sequence
in bases b1, . . . , bs, skipped by the integer vector (k1, . . . , ks), where ki is such that T ki(0) = xi for
i = 1, . . . , s. The bound O(N−1(logN)s) is valid for the star discrepancy of these skipped sequences.

The idea of randomizing the starting point in the orbit of an ergodic transformation for the original
Halton sequence first appeared in Struckmeier [28]. The theoretical analysis of this idea, including the
unbiasedness of the estimator as well as an estimate for its variance was established by Wang and
Hickernell [29]. We call the sequence {Tn(x)}∞n=0, random-start scrambled Halton sequence, adapting
the terminology used in [29].
The results of this section show that we can randomize any scrambled Halton sequence using

the random-start approach, and analyze the estimates obtained from independent randomizations
statistically. This will provide significant error reduction in especially high dimensional problems
where the standard Halton sequence fails. Next we present some examples.

3. Numerical results

In the numerical results that follow, we consider two test problems, and two scrambled Halton
sequences (via deterministic permutations); one by Faure [5], and the other by Kocis and Whiten [7].
Permutations of Faure [5] are constructed recursively, and they are designed tominimize the extreme
discrepancy of the one-dimensional van der Corput sequences. An algorithm to compute these
permutations is given in [9]. Permutations of Kocis and Whiten [7] are constructed following a
heuristic argument; the authors provide examples in [7].
Both of these sequences (Faure and Kocis & Whiten scrambled Halton sequences) are randomized

using the random-start method we discussed in the previous section. We compare them with
some other randomized quasi-Monte Carlo methods and standard Monte Carlo. The computer
implementation of the random-start method is based on Remark 15. Specifically, to generate a
random-start scrambled van der Corput sequence in base b, we first generate a random number u
from the uniform distribution on (0, 1).We then compute a b-adic rational x such that |x−u| < ε, for
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Table 1
Sample standard deviations for the test integral.

ak N (K) σH σFH σLSF σMC
σ 2MC
σ 2H

σ 2MC
σ 2FH

σ 2H
σ 2FH

σ 2LSF
σ 2FH

k2 10 14.8e−6 11.8e−6 5.7e−5 1129e−6 5859 9152 1.6 23
k2 20 7.5e−6 6.3e−6 3.0e−5 760.4e−6 10,354 14,592 1.4 22
k2 30 3.0e−6 3.3e−6 1.5e−5 574e−6 35,792 29,534 0.8 21
k2 40 3.1e−6 3.8e−6 1.3e−5 562.5e−6 32,075 22,135 0.7 12
k2 50 3.2e−6 2.7e−6 1.0e−5 404.5e−6 15,840 23,300 1.5 15

(s− k)2 10 2970e−6 36.7e−6 2.1e−5 556.4e−6 0.04 230 6542 0.3
(s− k)2 20 1185e−6 20.2e−6 1.1e−5 378.5e−6 0.1 353 3458 0.3
(s− k)2 30 535e−6 13.4e−6 4.3e−6 327.9e−6 0.4 595 1584 0.1
(s− k)2 40 768.4e−6 9.1e−6 4.3e−6 270.3e−6 0.1 880 7113 0.2
(s− k)2 50 145.2e−6 8.1e−6 4.1e−6 253.1e−6 3.0 984 324 0.3

1 10 31.20e−3 9.73e−3 1.0e−2 10.53e−3 0.1 1.2 10.3 1.1
1 20 13.29e−3 6.70e−3 6.7e−3 7.54e−3 0.3 1.3 3.9 1.0
1 30 13.43e−3 7.20e−3 4.7e−3 5.49e−3 0.2 0.6 3.5 0.4
1 40 14.12e−3 5.26e−3 4.1e−3 5.80e−3 0.2 1.2 7.2 0.6
1 50 8.69e−3 3.43e−3 3.0e−3 4.93e−3 0.3 2.1 6.4 0.8

some predetermined small tolerance ε. In our numerical results, we chose ε = b−20, in other words,
we let the b-adic rational x be the number obtained from the first twenty digits of u in base b. Then,
φ−1b (x) gives the number of terms that will be skipped in the van der Corput sequence.

3.1. A test integral

We consider a numerical integration test problem proposed in Radović, Sobol’ and Tichy [30].
This problem was also considered by Wang and Hickernell [29]. The function to be integrated is
f (x) =

∏s
k=1

|4xk−2|+ak
1+ak

over [0, 1)s. The true value of the integral is 1 for any s. The constant ak
determines the ‘‘importance’’ of the kth dimension. If ak is larger, then the importance, or sensitivity, of
f with respect to its kth component is smaller. The definition of sensitivity, in the sense of the ANOVA
decomposition of functions, can be found in Sobol’ [31].
In Table 1, we compute forty estimates e1, . . . , e40 for the integral, using the random-start

Halton sequence, random-start Faure-scrambledHalton sequence, the random linear scrambled Faure
sequence (see Matoušek [32]) and the Monte Carlo method. Each estimate is obtained by using N
vectors of the underlying s-dimensional quasi-Monte Carlo sequence {qi} in computing the standard
Monte Carlo estimator for the integral, i.e., ei =

∑N
i=1 f (qi)/N . We use the same methodology as

Wang and Hickernell [29], and report the sample standard deviation of the sample mean estimator,√∑M
i=1(ei − ē)2/ [M(M − 1)], where ē = (e1 + · · · + eM)/M and M = 40. The last four columns

of the table display the ratios of sample variances of the sample mean estimator for the sequences.
In the table, the abbreviations H, FH, LSF and MC correspond to random-start Halton, random-start
Faure-scrambled Halton, linear scrambled Faure, and Monte Carlo. The dimension of the problem is
s = 50. We use different choices for ak and N , the number of fifty-dimensional quasi-Monte Carlo
vectors used in estimating the integral. In the table K stands for 1000.
We make the following observations:

(1) When ak = k2, the importance of the components quickly decreases as the dimension
increases. The problem is essentially low dimensional, and the important dimensions are the early
dimensions. In such a problem, one would not expect the Halton sequence to perform badly, and
this is reflected in the numerical results. Both the sequences (random-start Halton and random-
start Faure-scrambled Halton) improve on the Monte Carlo error in factors between 20,000
and 30,000. The random-start Faure-scrambled Halton sequence is better than the random-start
Halton sequence in three out of five samples, but the differences between these two sequences are
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very small. The random-start Faure-scrambled Halton sequence improves on the linear scrambled
Faure sequence by factors (σ 2LSF/σ

2
FH) between 12 and 23.

(2) When ak = (s−k)2, the importance of the components decreases at the same rate as before, but in
different order: now the higher dimensions aremore important than lower dimensions.Wewould
expect the Halton sequence to perform poorly in such a problem (for small to moderate N), since
the high prime bases that cause correlation now contribute heavily to the solution of the problem.
In fact, the column σ 2MC/σ

2
H shows that Monte Carlo is more accurate than random-start Halton,

up to a factor of 25, except for N = 50K. The advantages of random-start Faure-scrambled Halton
sequence overMonte Carlo and random-start Halton sequence are impressive: improvements are
by factors as high as 1000 over Monte Carlo, and 7000 over random-start Halton sequence. Linear
scrambled Faure is better than random-start Faure-scrambled Halton though the improvements
are modest: factor of improvements are 3, 3, 3, 5, 10.

(3) When ak = 1, all components have the same importance, and the effective dimension of the
problem is quite high compared to the first two cases: this can be deduced by observing that
the sample standard deviation of the estimates increases by a factor of 103. The random-start
Halton sequence is worse than Monte Carlo for all N . The random-start Faure-scrambled Halton
sequence is better than Monte Carlo in four out of five choices for N , but the improvements are
small. There is not a significant separation between the linear scrambled Faure and random-start
Faure-scrambled Halton sequences.

3.2. Asian geometric call option

Here we consider a problem from computational finance: the pricing of Asian geometric call
options under the lognormal model. The price of the option can be computed exactly. Details on
Asian options, including its analytical solution, can be found in Glasserman [33]. The pricing problem
amounts to evaluating an integral, and the dimension of the integral in the numerical results reported
below is 30 and 50.
In a recent paper, Faure and Lemieux [6] compared several scrambled (via deterministic

permutations) Halton sequences, and the random-start Halton sequence, by an extensive set of
numerical experiments. They considered different scramblings by Atanassov (see [1,34]), Faure
and Lemieux [6], Kocis and Whiten [7], Vandewoestyne and Cools [9], and Chi, Mascagni and
Warnock [4]. These sequences were compared deterministically, by the actual estimation error, as
well as statistically, by the sample variance of their estimates when each method was randomized
using the random-shift method.
Two main conclusions were made in [6], based on the numerical results. The scrambled Halton

sequences by Atanassov, Faure & Lemieux, Kocis & Whiten, and Chi, Mascagni & Warnock, had a
similar performance, and they all outperformed the (standard) Halton sequence, random-start Halton
sequence, and the scrambled Halton sequence by Vandewoestyne & Cools.
Here we want to answer the following questions:

(1) One of the better scrambled Halton sequences tested in [6] was the one by Kocis & Whiten. This
sequence can be randomized using the random-shift method (considered in [6]) as well as the
random-start method as we have explained in this paper. How do these different randomizations
compare?

(2) The Faure-scrambled Halton sequence was not tested in [6]. How does this sequence compare
with the Kocis–Whiten-scrambled Halton sequence?

(3) How do these sequences compare with other randomized quasi-Monte Carlo methods, for
example, the random linear scrambling of the Faure sequence (also called generalized Faure, or
GFaure) which was considered by Tezuka [35], and Matoušek [32]?

In Tables 2 and 3, we compute twenty-five estimates for the option price, e1, . . . , e25, and report

their root mean square error,
√∑25

i=1(ei − e)2/25, where e is the true option price. The estimates for
the option price are obtained using (i) random-shift scrambled Halton by Kocis–Whiten (Rshift-KW),
(ii) random-start scrambledHaltonbyKocis–Whiten (Rstart-KW), (iii) random-start scrambledHalton
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Table 2
Root mean square error. Dimension is 30.

N Rshift-KW Rstart-KW Rstart-Faure LinScrFaure MC

500 1.48e−1 1.32e−1 1.24e−1 2.52e−1 4.09e−1
5 K 3.81e−2 3.25e−2 3.16e−2 3.24e−2 1.17e−1
10 K 1.85e−2 1.82e−2 1.84e−2 2.67e−2 8.04e−2

Table 3
Root mean square error. Dimension is 50.

N Rshift-KW Rstart-KW Rstart-Faure LinScrFaure MC

500 1.92e−1 1.89e−1 1.64e−1 2.36e−1 3.61e−1
5 K 4.57e−2 3.34e−2 4.24e−2 5.55e−2 1.21e−1
10 K 2.73e−2 2.54e−2 2.56e−2 3.52e−2 7.72e−2

by Faure (Rstart-Faure), (iv) random linear scrambled Faure sequence (LinScrFaure), and (v) Monte
Carlo. Each estimate is obtained using N vectors of the underlying quasi-Monte Carlo sequence. In
Table 2 the dimension is 30, and in Table 3 the dimension is 50. We are especially interested in the
performance of the methods when N is small, and the dimension is large, for this makes the problem,
in general, harder for quasi-Monte Carlo.
As the results indicate, Rstart-KW gives a lower root mean squared error than Rshift-KW, for all

N , although the improvement is small. Rstart-Faure also provides lower error than Rshift-KW. There
is no clear separation between Rstart-KW and Rstart-Faure. All methods based on scrambled Halton
sequences provide smaller error than the linear scrambled Faure sequence, except forN = 5K (Rshift-
KW and Rstart-KW) in Table 2.
The random-start Faure-scrambled Halton sequencewas applied to another problem from finance,

computation of the endogenous mortgage rates, and favorable numerical results were obtained
compared to random-start Halton sequence. See Goncharov, Ökten, Shah [36] for details.

4. Conclusion

Numerical results suggest that scrambled Halton sequences randomized by the random-start
method can improve error significantly, or stay competitive, when compared to various other
randomizations. Future numerical work will help in assessing the true benefits of these sequences.
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