53,478 research outputs found

    SIC-POVMs and the Extended Clifford Group

    Full text link
    We describe the structure of the extended Clifford Group (defined to be the group consisting of all operators, unitary and anti-unitary, which normalize the generalized Pauli group (or Weyl-Heisenberg group as it is often called)). We also obtain a number of results concerning the structure of the Clifford Group proper (i.e. the group consisting just of the unitary operators which normalize the generalized Pauli group). We then investigate the action of the extended Clifford group operators on symmetric informationally complete POVMs (or SIC-POVMs) covariant relative to the action of the generalized Pauli group. We show that each of the fiducial vectors which has been constructed so far (including all the vectors constructed numerically by Renes et al) is an eigenvector of one of a special class of order 3 Clifford unitaries. This suggests a strengthening of a conjuecture of Zauner's. We give a complete characterization of the orbits and stability groups in dimensions 2-7. Finally, we show that the problem of constructing fiducial vectors may be expected to simplify in the infinite sequence of dimensions 7, 13, 19, 21, 31,... . We illustrate this point by constructing exact expressions for fiducial vectors in dimensions 7 and 19.Comment: 27 pages. Version 2 contains some additional discussion of Zauner's original conjecture, and an alternative, possibly stronger version of the conjecture in version 1 of this paper; also a few other minor improvement

    Gallavotti-Cohen-Type symmetry related to cycle decompositions for Markov chains and biochemical applications

    Full text link
    We slightly extend the fluctuation theorem obtained in \cite{LS} for sums of generators, considering continuous-time Markov chains on a finite state space whose underlying graph has multiple edges and no loop. This extended frame is suited when analyzing chemical systems. As simple corollary we derive in a different method the fluctuation theorem of D. Andrieux and P. Gaspard for the fluxes along the chords associated to a fundamental set of oriented cycles \cite{AG2}. We associate to each random trajectory an oriented cycle on the graph and we decompose it in terms of a basis of oriented cycles. We prove a fluctuation theorem for the coefficients in this decomposition. The resulting fluctuation theorem involves the cycle affinities, which in many real systems correspond to the macroscopic forces. In addition, the above decomposition is useful when analyzing the large deviations of additive functionals of the Markov chain. As example of application, in a very general context we derive a fluctuation relation for the mechanical and chemical currents of a molecular motor moving along a periodic filament.Comment: 23 pages, 5 figures. Correction

    Integrated dynamic analysis simulation of space stations with controllable solar array

    Get PDF
    A methodology is formulated and presented for the integrated structural dynamic analysis of space stations with controllable solar arrays and non-controllable appendages. The structural system flexibility characteristics are considered in the dynamic analysis by a synthesis technique whereby free-free space station modal coordinates and cantilever appendage coordinates are inertially coupled. A digital simulation of this analysis method is described and verified by comparison of interaction load solutions with other methods of solution. Motion equations are simulated for both the zero gravity and artificial gravity (spinning) orbital conditions. Closed loop controlling dynamics for both orientation control of the arrays and attitude control of the space station are provided in the simulation by various generic types of controlling systems. The capability of the simulation as a design tool is demonstrated by utilizing typical space station and solar array structural representations and a specific structural perturbing force. Response and interaction load solutions are presented for this structural configuration and indicate the importance of using an integrated type analysis for the predictions of structural interactions

    BROJA-2PID: A robust estimator for bivariate partial information decomposition

    Full text link
    Makkeh, Theis, and Vicente found in [8] that Cone Programming model is the most robust to compute the Bertschinger et al. partial information decompostion (BROJA PID) measure [1]. We developed a production-quality robust software that computes the BROJA PID measure based on the Cone Programming model. In this paper, we prove the important property of strong duality for the Cone Program and prove an equivalence between the Cone Program and the original Convex problem. Then describe in detail our software and how to use it.\newline\inden
    corecore