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SUMMARY

A methodology is formulated and presented for the integrated structural
dynamic analysis of space stations with controllable solar arrays and non-controllable
appendages. The structural system flexibility characteristics are considered in the
dynamic analysis by a synthesis technique whereby free-free space station modal
coordinates and cantilever appendage coordinates are inertially coupled. A digital
simulation of this analysis method is described and verified by comparison of
interaction load solutions with other methods of solution. Motion equations are
simulated for both the zero gravity and artificial gravity (spinning) orhital conditions.
Closed loop controlling dvnamics for both orientation control of the arrays and
attitude control of the space station are provided in the simulation by various generic
types of controlling systems. The capability of the simulation as a design tool is
demonstrated by utilizing typical space station and solar array structural repre-
sentations and a specific structural perturbing force. Response and interaction
load solutions are presented for this structural configuration and indicate the
importance of using an integrated type analysis for the predictions of structural

interactions.



INTRODUCTION

The solar cell and battery system has been sucessfully used nn many small
spacecrafts however, space stations of the future will have power requirements which
are much larger than those within the present design experience of solar cell
systems, The solar cell arrays used on future space stations will therefore be
relatively large and must be capable to tracking the sun in 2 manner which does not
restrict the desired space station orientation. A potential problem area exists due
to undesirable interactions between the flexible solar arrays and space station

caused by required control and stabilization forces and external perturbations.

Spacecraft instabilities have been observed in the past when flexible appendages
are part of the satellite structure. This past experience is summarized by Likins
and Bouvier (Reference 1). Because of the requirements imposed upon large area
solar arrays, a weight-efficient design rather than a stiffness design results, and
the primary array modal frequencies fall within the control system bandwidth, A
digital computer simulation for evaluating the dynamic interactions of large solar
cell arrays and orbiting space stations is formulated which considers the dynamic
characteristics of the array structure and the required systems for attitude and
orientation control. The objective of this simulation is to provide an automated method-
ology of interaction loads analysis for use as a design tool, The capability of the simulation
is demonstrated by obtaining interaction solutions for array structural concepts which

will provide 100 KW of electrical power to future space stations,

The equations of motion for an orbiting space station with attached controllable
arrays are generated and digitally programmed for solution by numerical techniques.
In the development of the equations of motion a modal synthesis technique is employed
whereby the elastic characteristics of the arrays are described by a finite set of
orthogonal cantilever modes and are inertially coupled with the flexible characteristics

of the space station described by free-free orthogonal coordinates.



Structural mode descriptions of the arrays are required as input to the simu-
lation; therefore, a structural analysis of the elastic system with the appropriate
boundary conditions is required prior to the performance of this simulation. The
simulation input requirements specifically include a finite element dynamic model
of the structure in terms of discrete mass and model geometry. Structural analyses
of space station and solar array configurations have been performed and results are
presented in this report. Provision is made for closed loop attitude control system
dynamics of the space station and orientation control dynamics for the solar arrays.
The latter control system provides the desired orientation of the arrays with the sun
by controlling the rotation about the orbit-adjust and seasonal-adiust. Several generic
types of control systems are mathematically modeled and are included as subprograms
within the simulation. Outputs of the simulation include interaction forces and moments,

magnitudes of all motion variables and control parameters as functions of time.
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SYMBOLS

force coefficient matrices defined by rigid body rotation
rates.

th
direction cosine matrix for the i coordinate frame.
center of mass of the orbiting structural system, center of
mass of space station, center of mass of J appendage,

respectively.

vector from space station reference point OB to system
center of mass,

defined by Equation 17,
rigid body forcing terms

defined in Equation (8).
externally applied forces defined in Equation (25).
externally applied force vector to the space station

total interaction force vector produced by the flexible and
rigid dynamics of the Jth controllable appendage.

transient interaction force vector produced by flexible
dynamics of the Jth controllable appendage.

total interaction force vector produced by flexible and
rigid dynamics of the Jth fixed appendage.

interaction force vector produced by the rigid dynamics of
the Jth controllable appendage.

transient interactign force vector produced by the flexible
dynamics of the Jt fixed appendage.
structural damping coefficient.

position vector for Jth appendage defined in Figure 2.

rigid body inertia tensor of Jth appendage (3 x 3).
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[R]

unity matrix.

indices.
V=T (1]

vector from point of external force application to space
station center of mass,

angular momentum of Jth controllable appendage about its
center of mass,

angular momentum of space station about its center of mass.

vector of applied forces to discrete masses.
defined by Equation (17).
force coefficients defined by Equation (25).

mass and stiffness matrices of a discretized elastic system.
ith discrete mass in a discretized structure.

th

generalized mass of i modal coordinate,

flexible discrete mass intertia tensor for the Jth appendage,
a 3J x 3J matrix.

total mass of JtB appendage.
mass of space station
total structural system mass.

spacecraft reference point, Newtonian reference point,
respectively.

defined by Equation (17).

matrix of discrete coordinates defined by Equation (10).

position vectors defined in Figure 4.

position vector defined in Figure 2,

inertial force coefficient matrix referenced to rigid body
coordinates,
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space station translational accelerations along the 1,2,3
axes directions, respectively,

radius vector in ECI.
- = th
(ro - hJ) force moment arm vector for J~ appendage.

vector from space station/controllable appendage interface
to the center of mass of the Jth controllable appendage,

array of rigid body motion variables.

inertial force coefficient matrix referenced to flexible
space station coordinates.

total interaction torque vector produced by the flexible and
rigid dynamics of the Jth controllable appendage about its
constrained axes,

total interaction torque vector produced by the flexible and
rigid dynamics of the Jth fixed appendage.

interaction torque vector produced by the flexible dynamics
of the Jth fixed appendage.

defined by Equation (29).

externally applied torque vector to the space station.

control torque vector produced by the attitude control system.

total interaction torque vector produced by the orientation
control system about the unconstrained axes of the Jth
controllable appendage.

modal force and moment coefficients in ith

defined by Equation (24).
defined by Equation (14).

vector in ECI coordinate frame.

vector in space station coordinate frame.

mode, respectively.



vector in the Jth controllable appendage coordinate frame.

uncoupled generalized coordinate of the spinning structure.
coordinates defined by Equation (21).

angular rate of control gyro.

defined by Equation (39).

space station rotational accelerations about the 1,2, 3 axes
directions, respectively.

Jth controllable appendage rotational accelerations about the
1,2 axes directions, respectively.
circular frequency.

steady spin rate of space station.
wobble rate,

rotational rates about the ith coordinate frame axes.

rotational coordinates of the space station and Jth
controlled appendage.

modal deflection coefficients.

matrix of space station modal deflection coefficients at the
Jth appendage attachment location (3 x J)

matrix of space station modal slope coefficients at the Jth
appendage attachment location (3 x J)

modal deflection coefficient matrix (3J x J)

generalized coordinates of cantilever appendage structure
and space station structure respectively.

complex circular frequency
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NOTATION

implies differentiation with respect to an inertial
reference

rectangular matrix

diagonal matrix

column matrix

designates the matrix transponse operation

vector operator in a 3-axis system
defined by Equation (7).

designates the conjugate of a complex quantity.

designates a vector quantity in a 3 x 1 array.

[ I
an operator designating the matrix[l: ! I]
having dimensions of 3 x 3J b



ANALYTICAL CONSIDERATIONS

In order to provide an automated methodology of predicting the dynamic inter-
actions of solar arrays and space stations, an analysis must be initially formulated
which considers all space station parameters affecting both rigid and flexible body
dynamics. The analytical considerations which have been included in this study are the
representive influencing parameters and their interactive paths depicted in Figure 1.
These considerations should be basic to any structural analysis of an orbiting space
station, especially if design criteria do not automatically minimize the possible
couplings shown. Since weight minimization of orbiting structures is usually of
prime importance, each of the parameters is a necessary consideration in structural
dynamic analyses. The following describes the specific manner in which each of the

important space station parameters are treated in this methodology.

The space station structural dynamics are described by rigid body and
flexible body motion degrees of freedom, the latter being represented by generalized
coordinates of the free-free structural vibration modes. The modal method of
describing flexible motions is employed so that a system frequency range of interest
can be chosen and model truncation employed. External perturbations such as docking
forces and crew motions which can be independently described in time, are considered
to specifically interact with the space station dynamics and result in total system
motions. In addition, control forces and torques, as provided by the attitude control
of the space station interact with the space station rigid and flexible dynamics.
Attached to the space station are flexible appendages, such as solar cell arrays which
are usually controllable about seasonal and orbital adjust axes. The rigid body
characteristics of these controllable appendages are described by hinged motions
relative to the space station body about the controllable axes and rigidly constrained
about the other axis. The flexible dynamics of these appendages are considered in
terms of orthogonal cantilever modes, the root constraint being at the appendage/

space station interface. A modal synthesis technique is therefore inherent in the



analytic formulation and consists of the description of coupled motion terms of rigid

body appendage and space station motions and the flexible dynamics of the appendages
(or solar arrays) and free-free flexible dynamics of the space station structure. The
use of orthogonal cantilever modal coordinates for the appendages allows for the pro-

vision of modal truncation.

Interactive with these flexible and rigid motions are the influence of controlling
torques by a solar array orientation control system. This system produces torques
about the unconstrained array axes so that sun orientation is maintained by a mathe-
matically described control law. Guidance commands for an orbiting system at
specified orbital parameters are automatically generated within the

simulation,

The governing equations of the structural system and general types of appli-
cable control laws are represented in the digital simulation. The simulation provides
the real time solutions of structural motions and interaction loads which result from

applied perturbations.
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SPACE STATION-SOLAR ARRAY EQUATION FORMULATIONS

The following presents a summary of the motion equations contained in the
digital simulation. These equations form the basis for the calculation of interaction
loads which result from external perturbations during orbital operations. Two
separate orbiting space station conditions have been considered in the analytical
formulation. One condition represents the structural configuration in a zero ""G"
or operational mode with the arrays tracking the sun according to a designated
control law. The other condition represents the structural configuration spinning
at a constant rate about some designated spin vector for simulation of an artificial
""G" environment. This condition will not require sun tracking arrays, but rather,
solar arrays which are rigidly constrained to the space station. Detailed formula-

tions of these equations are contained in Reference 2.

"Zero "G" Structural Condition

Because the solar arrays may have large angular motion with respect to the
space station during simulation of structural perturbations, a linear analysis is in-
adequate. Therefore, a Newton-Euler representation of the rigid body dynamics is
employed. The rigid body system consists of a central body or space station to
which is attached fixed and controllable appendages -- the latter representing con-
trolled solar arrays. Fixed appendage mass and inertia properties, in a rigid body
sense, are considered as part of the central body. The rigid characteristics of the
rotating arrays are represented as hinged bodies suitably constrained at the point of
attachment in those directions in which motion is not controlled. In this study two
arbitrarily located appendages have been designated as controlled, and up to four
appendages are considered uncontrollable. Therefore, the rigid body system of
structures comprises a three~hinged body system of connected structures. Vector
equations of motion are defined and formulated with reference to the central body

and attached appendage system depicted in Figure 2. The equation sets are chosen

11



to be defined in terms of a system force equation, a space station moment equation,

and a hinged body moment equation for each controllable appendage.

System Force Equation (three-body rigid system)
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Jth Hinged Body Moment Equation

The right hand side of the above equations include all external

interaction forces and torques applied to the respective rigid body. All motion

(1)

(2)

3) -

variables, both rigid body and flexible body, are coupled with the appropriate inertial

coupling terms. For example, in the above system force equation, flexible body

dynamics are treated as external forces while in the flexible body dynamics equation,

the rigid body dynamics are considered as external perturbations. The vector

Equations (1 - 3) are formulated into a set of matrix equations for the facilitation of

digital computations. The system force and space station moment equations are

formulated with respect to the space station reference axes and the hinged body

equations are formulated with respect to the solar array reference axes. The

transformation to the solar array reference system requires the use and computation

of specific direction cosine matrices.

12



The principle coordinate frames and direction cosine identities utilized are as

follows:

{XAI} B [CJT {Xs} (5)

(6)

N
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These direction cosine matrices are calculated in terms of Euler angles and are

updated in time in the simulation by the following equation:

S = G 0 %3 “i2 =C oy (M
wjg 0 9
Wi @i 0

The equations representing all considered rigid body motion variables are shown in
Figure 3. Submatrices Ai represent linear and time-dependent coefficients of the
appropriate motion variables. The right hand side of this equation is representative
of the applied forces, control forces, and all non-linear terms. Detailed de scriptions

of these equation coefficients are given in Reference 2.

Flexibilities of the attached appendages are described by generalized coordinates
associated with a set of orthogonal vibration modes for each structure cantilevered
from the space station. This modal synthesis method of coupling rigid body and
flexible body motions is adapted from the formulations developed by Likins
(Reference 3). Space station flexibility is described by generalized coordinates
associated with a set of vibration modes representing a freely translating and rotating
structure. Coupled motion equations of the complete rigid body and flexible body
structural system are represented in the digital simulation and the numerical solution

of these equations are used to predict the structural interactions. The flexibility

13



equations for the attached appendages are formulated with reference to the elastic
system depicted in Figure 4. It is assumed that the particle masses have negligible
inertias and elastic deflections are small so that linear structural analysis is valid.
The force on the ith mass of a flexible appendage is given by the following.

d2 = - - =

—2—( + h_+r. + U) (8)

at o) J i 11

F, = m,

i i

Substitution in Equation (8) of the appropriate direction cosine matrices and considera-
tion of the properties resulting from elastic deformation of controllable appendages,

produce the following equations.

[M] ¢ +[k] ¢ = -[6] a -[B]Ja + {L} (9)
where
T
_ 1 .1 .1 2 2 N N N
q = [Ul U2 U3 U1 U2 U§ —-—U1 U2 U3] (10)

The matrices designated by [B] and [G] in Equation (9) represent force
coefficients which are dependent upon rotation rates; i.e., they are analogous to
centrifugal and coriolis type force coefficients. The matrix designated by { L }
contains the time varying inertial loads produced by all rigid body and flexible
coordinates of the space station. {L } can be further defined by the following

equation.

| R
| S] 2. (11)
' ;
] S

Following the method of Reference 3, it is convenient to transform Equation (9) into
orthogonal coordinates, representing cantilever modes of vibration. This permits
the system of uncoupled equations to be truncated on the basis of some chosen engi-

neering criterion. The transformed equations then become

D} +foditd +Codied =lo] (dlok} -[e]" [BIe)E o] (L) 12)
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The modal damping matrix is inserted in Equation (12) in the classical manner.

The assumption made in going from Equation (9) to Equation (12) is that the motion
dependent matrices which are functions of rigid body rotation rates, are small and
have a negligible effect. Without this assumption the simulation would be required to
be performed in discrete coupled coordinates with resulting manipulations of large

order matrices.

The motion equations considered for the fixed appendages are similar to that
given by Equation (12) with the exception that the motion dependent matrices [G] and
[B] are assumed negligible. This assumption implies small space station flexible
and rigid rotation rates (however the total rotation rates of controllable appendages

are still maintained in the analytical considerations).

The flexible space station equations are formulated as a truncated set of

free-free modal coordinates of the following form.

[rJfed « Peadfed <[] 4 = 1a” {¥} a9

The columns of the modal deflection matrix on the right hand side of Equation (13)
produce generalized forces to the free-free modes. The column vector of time de-
pendent forces include those which are discretely applied as external forces or
attitude control forces. In addition, the force vector includes the inertial force

interactions produced by all attached appendages.

Equations (1 - 3), (12) and (13) form a second order differential matrix

equation. This equation is represented in its final form by the following:

o] b+ [e i« [x i < {o) s

Partitioning of this equation logically leads to four variable subgroups, such that

the solution vector takes the following form:

;x =[{RO;T,;eOzT,{eAlzT,{eA;T, Pegt {afl --.-{sc;j 15)
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The left hand side of Equation (14) is constructed in the simulation from computed
direction cosines, input rigid body inertia tensors, center of gravity and appendage
attachment locations in the space station coordinate frame, and modal properties of
flexible appendages and the space station. The latter includes deflection coefficients,
frequencies, damping coefficients, and discrete masses, for a chosen number of
orthogonal modes for each flexible structure. It is noted that the coefficient matrix
of {X} in Equation (14) results from the terms produced by[q)]T [B] [@] and the
inclusion of structural damping only; the coefficient matrix of {X} results from the
terms produced by[cp]T [G] [Cb] and the inclusion of the generalized stiffnesses of
respective flexible modes. The primary coupling terms associated with each
structure of the three body hinged system is therefore the inertial coupling matrix [M]
A representative matrix subset of the inertial coupling matrix would be that given in
Figure 3. The right hand side of Equation 14 is comprised of the externally applied
forces, control forces and non-linear terms containing the motion variables. A de-
tailed description of each of the matrix subsets of Equation (14) is given in Reference
2. A simultaneous solution of the combined system equations is provided by using a
numerical integration algorithm (References 2, 4), with a specified integration time
interval. Time dependent terms in the [M] matrix are updated at each interval or

can be updated at multiples of this interval.

The simulation computes interaction loads at the connection point of each
flexible appendage from the time solution of the motion equations. The detailed
formulations for the interaction loads in terms of vector forces and torques are
given in Figure 5. These interaction loads account for all rigid body inertial forces
and toi'ques applied to the appendages and the elastic body force contributions. The
direction cosine matrices included in these equations produce the interaction load

description in the space station coordinate system.

16



Artificial "G" Structural Condition

Equation formulations contained in the simulation for a flexible space station
with rigidly attached flexible appendages also consider the influence of a steady spin
rate of the structural system upon perturbed motion. The rigid body motion equations
are of the same form as Equations (1) and (2), and the hinged body equations are

omitted since all appendages are considered to be constrained to the Space station.

In order to account for the possible effect of large magnitude spin rate upon
the flexible coordinates described by cantilever modes of the appendages or the free-

free modes of the space station, the following formulation of flexibility equations is

utilized
M) fab + [B) {a} + (k] {a} = {u] 16)

where q has the same definition as is given in Equation (10). The matrices [B] and
[K’] incorporate the force coefficients defined by the steady spin rate and a detailed
description of these matrices are presented in Reference 5. The above second order
matrix equation is reduced to the following first order state equation for purposes of

defining generalized coordinates.

D) {Q} + [E] {q}

il
e

(17)
where ' | .
0] !-[m] [M] 1 (o] a fo}
D = f--=ud |, [E] = |11, {Q} = {--{, {:L':l = | —=a
[ | [X] q ful
The reduced order motion equations given by Equation (17) in terms of coupled

discrete coordinates can be uncoupled by the transformation so that
fet = [® {vl (18)

The transformation matrix consists of deflection coefficients of the complex eigen-
vectors and their conjugates pairs, and corresponding eigenvalues are complex with
imaginary parts only and also exist in conjugate pairs. An automated procedure for

producing the transformation eigenvectors from discrete coordinate matrices is

17



given by Gupta (Reference 6). Substitution of Equation (18) into Equation (17) and
premultiplication by [cp*]T results in the following.

vt = - [alyp o+ {1 (19)

where A is the matrix of the complex eigenvalues, and { i } = [cb*]T {L’}

Equation (19) can be written as:

Y

A 0 Y _
= - +{L} (20)
—_ % — —
Y 0 A * Y*
S T
where Y = [Y, = ¥,---Y ]
— * % T
Y = [Y1 Y, - - =Y
A 1 A *
= Ay 0 A=Ay 0
A
Ay 2*
A TA
0 N 0 N*

Multiplying both sides of Equation (20) by the following

|
|
1/2 R S
(4] | B4
. o _ *
and letting Z, = (1/2) (Y, +Y.) (21)
z? = am VT @ - v
The following modal equations result.
CAL 0 | CAL, _
= + {V] {L} (22)
=@

Z 1) 0 AL
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where EI]

vl = 1r ij—-g-[:[;jJ [DJ_I I}p*:lT

!
When N modes are retained as a truncated set, the following definitions apply.

(1) (2)
Z1 Z1
2(1)' = . E(Z):
5 (1) - (2)
ZN ZN

Modal damping may be introduced into Equation (22) by the coefficient "g'" in the

classical manner.

z 0 3] [ z®

., + = [V] ;'12 { (23)
7% Al gint] | 2¥

In terms of the new coordinates, _Z, Equation (18) is written as

5(1)

Telivy - [efdiEAY 2" g
{Q} ) [Q]{ } [®][I]:+[JJ z @ 9

Equations (23) and (24) are implemented in the simulation for describing appendage

and space station flexibility. These equations are combined with the rigid body force
and space station moment equations in the same manner as that utilized for the total
system equations representing the zero ""G'" condition. A simultaneous solution of

the rigid body and generalized coordinate variables is provided by the digital simulation.
Interaction forces and torques are computed by equations similar to that given in

Figure 5. A complete and detailed set of matrix equations representing the artificial

'C'"" or spinning condition is given in Reference 2.
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The transient interaction forces and torques at any solution time are dependent upon
the number of finite modes utilized, and the steady-state portion of force and torque
is exactly represented. To demonstrate a step forcing function with a finite number
of cantilever appendage modes and an expected solution with an infinite mode

usage, Table 2 is presented. Contained are the numerical values of interaction
force coefficients modal mass and modal participation factors for the first six
modes of a five slug mass uniform beam, 10 feet in length, and a designated
fundamental cantilever frequency of 2Hz. Modal participation is defined as that
contribution of steady state moment and/or force provided by that mode in its
statically deflected shape. The use of an infinite number of modes gives 100%
modal participation in exactly defining the static loads. The accumulated percentage
with number of modes utilized is shown in Figure 16, The numerical values
presented are derived from the tabularized data given in Reference 14. Table 3
presents the initial forces and torques produced by both the analytical solution

and the digital simulation for a finite number of utilized modes and the solution
which would be given by an infinite number of modes. A comparison of numerical
values shows significant differences do exist with the finite mode approximation

and that interaction loads at zero time will always have an initial finite value

rather than zero. This initial force value is also seen to be dependent upon
structural position since in the results given in Figure 14, for shear force at

the quarter span, an unobservable initial value is indicated. The above numerical
data and comparisons show that the modal synthesis method represents an
apprdximation of the transient response interaction forces, and the magnitude of
the approximation can be evaluated in terms of the number of modes utilized

in the solution. In addition, the percentage accumulation of modal participation
factor can be a measure of this approximation. It is generally concluded that in
most engineering applications, the synthesization method is a satisfactory method

if a sufficient choice and number of modes are utilized.

To further substantiate the structural dynamics methodology and simu-~

lation verification, a simple arrangement of uniform beams in a planar "T"

30
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where EI]

'
] / I -1 [cb*] :
= 3 e B
(v 1/2 f : 1] D
When N modes are retained as a truncated set, the following definitions apply.

1) (2)
2y 2
CACORES Iap 7(@)=
> (1) > (2)
ZN ZN

Modal damping may be introduced into Equation (22) by the coefficient "g'" in the

classical manner.

zW 0 Jal| [ z®

° + = {VJ 3 L f (23)
_.2 - - —_—
A IA| gIAl z®

In terms of the new coordinates, E, Equation (18) is written as
=(1)

{Q} = [@]{Y} - [cb] E—%—EL-[E—E— 2((2) 24)

Equations (23) and (24) are implemented in the simulation for describing appendage

and space station flexibility. These equations are combined with the rigid body force
and space station moment equations in the same manner as that utilized for the total
System equations representing the zero ""G" condition. A simultaneous solution of

the rigid body and generalized coordinate variables is provided by the digital simulation.
Interaction forces and torques are computed by equations similar to that given in

Figure 5. A complete and detailed set of matrix equations representing the artificial

‘"' or spinning condition is given in Reference 2.
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DIGITAL SIMULATION PROGRAM

Structural Representation

The digital simulation program is designed to accept rigid body and flexible
body structural data in a general format. The structural configuration may consist
of a flexible central body (space station) with two attached controllable flexible
appendages (solar arrays) and four attached non-controllable flexible appendages.
For the case of a spinning space station, only four non-controlled appendages can be
considered. Required rigid body input data consists of the inertia tensors for the
central body and all considered flexible appendages, the attachment locations of the
appendages in the coordinate axis of the central body, and direction cosine matrices

relating the rigid body axes of the appendages with the central body axes.

Flexible dynamics are input in terms of a discrete mass matrix corresponding
to a derived structural finite element model and modal data such as mass, frequency,
and deflection coefficients. As stated previously, the flexible dynamics of the space
station are represented by free-free modes and the flexible dynamics of the solar
arrays and appendages are represented by cantilever modes. A total of 60 modes
can be represented in the program. All modal descriptions are referenced to each
respective structural coordinate reference frame. Modal deflections for the flexible
appendages can be described by three translations and those for the central body or
space station can be described by three translations and three rotations. Modal des-
criptions, as required for input to the simulation, are obtainable from the results of
most finite element structural analysis computer programs, such as those described

in References 7 and 8.

For the representation of spinning structures, both the coriolis force
coefficient and "effective' stiffness matrices (Reference 5), in addition to the mass
matrix of the discretized structure,are required as input. In addition the modal
representations in the complex domain, resulting from orthogonalization and subsequent

modal truncation are required input. Transformation of the discrete coordinates to

20



sets of orthogonal coordinates for both the spinning cantilever appendage structures
and the spinning "free-free' space station structure can be obtained by the method

given in Reference 6.

Perturbation of the structural system is produced by the application of
defined force and/or torque histories applied at a specified node point of the central
body. In addition, perturbation may be obtained by thernon—zero initialization of
appendage and central body motion variables so that attitude and orientation control-
ling forces and torques are non-zero at the initiation of the simulation. Output data
from the simulation includes the time solutions of all motion variables and their time
derivatives, and the time solutions of appendage-central body interaction forces and
torques. In the case where control systems are active, controlling torques are also
given. A typical list of simulation output parameters for a specific simulation real

time value are shown in Figure 6.

A subprogram of the simulation calculates internal structural loads in the
elements of the structural model. A loads transformation matrix relating internal
loads to the rigid body and generalized coordinate variables must be initially derived
and used as input. The general matrix equation represented in this subprogram is

given by the following.

{LOADS} - [ LA] { x} 4 [LB]{S(} +[Lc]{x} + [LDJ{f} + {LE} (25)
Matrices LA, LB, LC, LD, and LE are user supplied and all or a portion of

the matrix input capability is optional. { X }, { X }, and {X } are the motion

variables and their time derivatives and { f } is a force matrix (time variant) which

includes external forces, interaction forces and control forces. It is seen that both

the modal acceleration and modal displacement methods of internal load evaluation

(Reference 9) can be considered by this general matrix equation.

The simulation can be viewed as being completely general when cons idering
the structural dynamics of arbitrary configurations as defined by precalculated rigid
body and flexible body structural parameters. Influences of attitude and orientation
control system dynamics are incorporated in the simulation by the inclusion of specific

imathematical control system representations. These representations are subroutines
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and provide optional closed loop control dynamics. Other types of control systems
can be easily included in the simulations as optionally coded subroutines by the user.

Those which are presently included are described.

Control System Representations

Control system definitions which are contained in the simulation program for
orientation control of the solar arrays and attitude control of the Space station are

representative of the following generic types.

0 Continuous Array Drive System

o Non-Linear Array Drive System

o] Control Moment Gyro Attitude Control System
0 Reaction Jet Attitude Control System

o} Wobble Damper

Produced torques and forces from these systems to the solar arrays and
space station contribute to the rcactive rigid body and flexible body dynamics of
these structures. The first four systems are incorporated for use only in gimulations
of a space station and solar array configuration while in a zero "G" or non-spinning
condition. It is assumed that orientation control of solar arrays is not a requirement
of a spinning condition, and therefore the arrays would be rigidly constrained to the
space station in this operational mode. The attitude control of a spinning space station
configuration is provided by a simple wobble damper model. 'The solar array orienta-
tion control systems (OCS) provide the controlling torques for the plane of the solar
array to be maintained normal to the sun line to a desired degree of angular accuracy.
A continuous-type drive system cmploys either a DC torque motor or a variable
frequency synchronous motor as its drive element and is continuously correcting for
solar array errors with the sun line during the specified orbit. A block diagram of
the continuous drive system is given in Figure 7. Attitude of the space station
is generated by the use of Lyddane's method (Reference 10) and appropriately defined
orbital constants. Array guidance commands as well as error angle and angular rate feed-
back are computed relative to space station rigid body and flexible body degrees of

freedom. The difference between the commanded array angle and actual array angle
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are used to generate the angle error signal. Array angular rate is multiplied by

the back EMF coefficient and added (negatively) to the filtered error signal. This
gives the effective drive signal for the motor which is modeled as a first order lag.
Numerical values of drive systems constants have been generated for specific 100 kw
array structural configurations and are given in Reference 2. These values are con-
tained in the simulation as default values and may be easily changed by user option

to complement other structural configurations.

The non-linear drive OCS is similar to the continuous drive system with the
exception that the control logic of the non-linear OCS is operated in an on-off manner.
When the array error exceeds some preselected threshold value, the motor is turned
on until the array is driven to a null position at which point the motor is switched off.
The specific representation of the non-linear OCS model contained in the simulation is
that presented by the block diagram in Figure 8. Because of the on-off manner of the
non-linear OCS, inherent friction in the drive mechanism requires consideration
and is represented by an input variable of friction torque in the simulation. It is
programmed so that the driving torque on the array is zero if the motor torque is less
than a designated friction torque value when the array is not moving relative to the
space station. When the array is rotating and the motor torque is less than a friction
torque value, the torque on the array is the friction torque minus the motor torque and
when motor torque is greater than the friction torque the torque applied to the arrays
is the difference between these respective torques. Numerical values for the non-
linear drive system constants have been generated for a specific 100 Kw array
structural configuration and they are given in Reference 2. These values are con-
tained in the simulation as default values and may be easily changed by user option to

complement other desired structural configurations.

The guidance and control systems which are mathematically modelled are the
control moment gyro (CMG) and reaction jet systems, One CMG control system that
is siimulated is that designed by the Defense Electronics Division (DED) of the General
Electric Company (Reference 11) in support of the space station studies performed by
the North American Rockwell Corporation (Reference 12), A complete description

of this system is presented in Reference 2. Reference 11 specifies that this control
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Figure 13 presents a comparison of the shear histories obtained by using the simulation
with one cantilever mode and one free~free mode in Equations (32) and (33), respectively.
An Adams numerical integration method is used to obtain the solution of the motion
histories given by the above motion equations for the free-free beam and both the modal
acceleration and model displacement methods are used for the shear force evaluations.
Numerical coefficients of the motion equation are derived from the tabulations given in
Reference 14. Comparison of the shear force history produced by the simulation with
the fundamental cantilever mode is seen to be in excellent agreement with that produced
by one free-free mode. Minor differences in force magnitude are observable between
the two methods of force calculation. Simulation results for this forced response
condition are also compared with the results obtained by the NASTRAN Direct Transient
Response Method (Reference 7). These histories are presented in Figure 14 and

results reflect the use of the first five cantilever modes for each of two flexible
appendages (beams). The free-free uniform beam used in NASTRAN is represented

by 40 discrete masses, each having two structural degrees of freedom (one translational
and one rotational). No modal damping is considered in the presented response solutions.
In general, good agreement exists between the frequency content and magnitude of

shear history obtained by the two methods. Higher frequency transients, however,

exist in the NASTRAN solution which are due to the inherent representation of all beam

modes.

The above comparisons indicate that the modal synthesis method is adequate for
the determination of dynamic response solutions. It is also indicated that a sufficient
number of modal coordinates must be used to accurately describe the basic parameters
of the given response condition. For a complex structural arrangement, this might
necessitate an iteration in the number of modes used for obtaining an accurate response

solution.
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of this system is presented in Reference 2. Reference 11 specifies that this control

23



system has a natural frequency of 1.414 Hz and a damping ratio of 0.707; however, it
was found that during the performance of various digital simulations, considering the
space station as a rigid body, that a relatively small numerical integration interval
(At = . 005 second) was required to stabilize solutions to motion equations when the
CMG was chosen as the active control system, thus indicating higher frequencies of
inner control loops. Because of the small integration time required for stability of
solution with the CMG of Reference 11, a simpler and equivalent system for the
control of relatively large structural motions is also included in the simulation to
represent CMG controlling torques. This simplified system produces a more efficient
computer simulation time to real time ratio when the CMG is chosen as the active
control. It is programmed in the simulation as represented by the diagram shown in
Figure 9, and is comprised of a lead~lag compensator, a constant multiplying of the
moment of inertia properties of the orbiting structure and an output torque limiter.
The time constants of the lead-lag compensator, the constant multiplying spacecraft
inertia and the limiting torque are allowed to be input quantities to the control sub-
routine. This simplified representation allows a certain degree of flexibility when
analyzing general space station configurations. The space station attitude is

obtained from parameters calculated by Lyddane's method, the angles being
comprised of rigid plus flexible spacecraft body structural motions. Since space
station structural flexibility is considered in the feedback control loop, the positions
of angle sensors and angular rate sensors within the structural system are specified
by user input. In like manner, the position of the control torque is specified so that
torques produced by the control system can be considered as input generalized torques

to modal degrees of freedom.

The reaction jet control system (RCS) is used as an alternate to the CMG for
controlling the attitude of the space station. A description of this system, as used
for the control of the space station, when considered as a rigid body, is given in
Reference 2. The method of simulating space station motions and their effect upon
dynamic interaction is designed to account for space station flexibility. Therefore the
reaction jet control system is configured to consist of six individual constant-thrust-
magnitude thrusters at user specified structural locations to control the three

angular rigid body motions. Location of each thruster, thrust magnitude and direction,
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are user options. The typical applied torque to the rigid body is given by

= . 1 - 26
TC K (98 QDB) =9
where
T c - output torque of the reaction jets at any given time for which
the computed error is 96 .
K = torque capability of the reaction jets
1() = unit step function having the value zero for negative or zero
arguments and the value unity for positive arguments.
QE = computed equivalent attitude/rate error of the space station
determined by
o =K K,8 - o) 27
where K1 and K2 are input constants.
gDB = deadband threshold level for equivalent attitude /rate error

which determines when the reaction jets are active.

As previously mentioned, a simple wobble damper control representation is
included for control of the spinning structural configuration. It consists of a single
degree-of-freedom control moment gyro with its gimbal axis along the nominal spin
axis and its momentum vector normal to that axis. With reference to Figure 10,
the structural system is considered to be spinning about the X axis. The control
moment gyro is torqued so that its momentum vector h always lags the wobble
rate @, by 90°. A correction torque is applied to the space station which is

equal to the following.
+ a)x h (28)

An increase in the nominal spin rate also occurs in the correction wobble torque

d is gi s T, = -®_ xh 2
and is given a TS Txh (29)

The magnitude of parameters associated with the wobble damper are user option.
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SIMULATION WITH SIMPLE STRUCTURAL CONFIGURATIONS

In order to verify the program, simple structural configurations are utilized and
perturbed by classical forcing functions. A comparison of solution results with other
methods of analysis then provides a measure of the adequacy of the employed modal
synthesis techniques. Uniform beams are represented as flexible appendages and
attached to both finite and zero mass central bodies. The attachment of two flexible
cantilevers to a zero mass central body is analogous to a free-free beam system
representation when the axes of each cantilever lie along one line. Therefore, comparisons
of modal solutions from both perturbation of the two appendage system and its equivalent
free-free system provides a desired measure of simulation adequacy and accuracy.
Initially the adequacy of the modal syntheses method is compared by transforming the
coordinates of the coupled appendages into a set of coordinates representing the
free-free modes of the composite structure. Reference is made to Figure 11 depicting
the rigid body and modal coordinates of the cantilever beams and the represented
free-free beam structure for planar translational motion. Equilibrium equations are
derived for the two connected cantilevers when fixed in inertial space so as to facilitate
the coordinate transformations; these equations are derived in Reference 13 and are
summarized below

.. J ..
L _
M; R (t) + > A <?> Ec_(t) =0 (30)

i=1 i
M v f)y + M 2 )y +V L R t)y =0 31
eq, EC () eq. wi EC() i 9 0() - (31)

Equations (30) and (31) give the coordinate description for the system in terms of one
rigid body coordinate R0 and the generalized coordinates of the cantilevers, A trans-
formation of the coordinates given in Equations (30) and (31) to orthogonal coordinates
then provides a basis of comparison between the derived orthogonal coordinates and

the orthogonal coordinates of a free-free beam. The tables given in Reference 14 are

utilized to obtain the invariant modal data for both free-free and cantilever beams.
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Values of cantilever beam mass (5.0 slugs), frequency (12.566 rad/sec) and length
(10 feet) were assigned for purposes of making numerical comparisons. Evaluation
of the modal force coefficients of Equations (30) and (31) are based upon a 25-point
discretized mass representation of the cantilever beam. The resulting frequencies
obtained by a coordinate transformation analysis utilizing the method of Reference 6
(at zero spin rate) are listed in Table 1. These frequencies, together with corresponding
free~free beam frequencies have been normalized with respect to the frequency of the
fundamental free-free beam mode. The rate of convergence provided by the modal
synthesis method is demonstrated by the successive number of cantilever modes
utilized in Equations (30) and (31) and the subsequent transformations. Similarly,
the degree of correlation and convergence in the modal amplitude domain is given by
the comparisons of mode shapes in Figure 12. The comparisons show the cantilever
beam description of the free-free beam modal properties is an excellent synthesis

method when a sufficient number of cantilever coordinates is used.

Since the primary purpose of the simulation is to obtain interaction loads between
the space station and solar array, a comparison of load histories for the cantilever
and free-free beams subjected to a unit step force input at mid-span as shown in
Figure 11. Shear force histories at the one-quarter beam span are chosen for these

comparisons,

The motion equations for the cantilever beam which are utilized for this

perturbation condition are

oo

J
+ LY . _
MJ Ro Z Vi( > Ec. f0/2
i=1 i
.. 5 L\ (32)
M £ + M w ¢ +V.{—]JR =0
eqi ci eqi i ci i\2 0

Similarly, the motion equations utilized for the free-free beam are

2M_ R =f
Jd o o

.. 2 (33)
M + M . = )
£ w ¢ b, (e f
eq]_ s eqi L ss, si o
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Figure 13 presents a comparison of the shear histories obtained by using the simulation

with one cantilever mode and one free-free mode in Equations (32) and (33), respectively.

An Adams numerical integration method is used to obtain the solution of the motion
histories given by the above motion equations for the free-free beam and both the modal
acceleration and model displacement methods are used for the shear force evaluations.
Numerical coefficients of the motion equation are derived from the tabulations given in
Reference 14. Comparison of the shear force history produced by the simulation with
the fundamental cantilever mode is seen to be in excellent agreement with that produced
by one free-free mode. Minor differences in force magnitude are observable between
the two methods of force calculation. Simulation results for this forced response
condition are also compared with the results obtained by the NASTRAN Direct Transient
Response Method (Reference 7). These histories are presented in Figure 14 and
results reflect the use of the first five cantilever modes for each of two flexible
appendages (beams). The free-free uniform beam used in NASTRAN is represented

by 40 discrete masses, each having two structural degrees of freedom (one translational

and one rotational). No modal damping is considered in the presented response solutions,

In general, good agreement exists between the frequency content and magnitude of
shear history obtained by the two methods. Higher frequency transients, however,

exist in the NASTRAN solution which are due to the inherent representation of all beam

modes.

The above comparisons indicate that the modal synthesis method is adequate for
the determination of dynamic response solutions. It is also indicated that a sufficient
number of modal coordinates must be used to accurately describe the basic parameters
of the given response condition. For a complex structural arrangement, this might
necessitate an iteration in the number of modes used for obtaining an accurate response

solution.
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Additional qualifications of the modal synthesization method are indicated
by the numerical analysis results provided below. The analysis is presented to
show that the numerical solutions can be very dependent upon the number of
cantilever modes used to represent the flexible appendage. Again, a uniform
cantilever beam having the same numerical properties as previously described
and constrained to rigid body translation in one plane is utilized. A rigid center
mass between the two cantilevers is utilized and assigned a mass of five slugs.
The motion equations for this structural system are the same as Equations (32)
and (33) except that a center body mass Ms must be added to the total mass of the
appendages MJ. Simultaneous solution of Equations (32) and(33) for the coordinate
accelerations at zero simulation time for an applied step force on the center body

yields the following.

.. Vifo
£ (t=0) = ———— (34)
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From the free body diagram shown in Figure 15, the interaction forces and

torques are

. . J .
= —-— = + 7
Fra fo M_X MJX 2_: \A Ec. (37
1 i=1 i
. J .
= +
TFA MJ LX .Z B; L Vi sc- (38)
1 2 i=1 i

where ’BiL is defined as the ratio of modal moment and modal shear coefficients

of the ith mode.

(39)
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The transient interaction forces and torques at any solution time are dependent upon
the number of finite modes utilized, and the steady-state portion of force and torque
is exactly represented. To demonstrate a step forcing function with a finite number
of cantilever appendage modes and an expected solution with an infinite mode

usage, Table 2 is presented. Contained are the numerical values of interaction
force coefficients modal mass and modal participation factors for the first six
modes of a five slug mass uniform beam, 10 feet in length, and a designated
fundamental cantilever frequency of 2Hz. Modal participation is defined as that
contribution of steady state moment and/or force provided by that mode in its
statically deflected shape. The use of an infinite number of modes gives 100%
modal participation in exactly defining the static loads. The accumulated percentage
with number of modes utilized is shown in Figure 16, The numerical values
presented are derived from the tabularized data given in Reference 14. Table 3
presents the initial forces and torques produced by both the analytical solution

and the digital simulation for a finite number of utilized modes and the solution
which would be given by an infinite number of modes. A comparison of numerical
values shows significant differences do exist with the finite mode approximation

and that interaction loads at zero time will always have an initial finite value

rather than zero. This initial force value is also seen to be dependent upon
stiructural position since in the results given in Figure 14, for shear force at

the quarter span, an unobservable initial value is indicated. The above numerical
data and comparisons show that the modal synthesis method represents an
apprdximation of the transient response interaction forces, and the magnitude of
the approximation can be evaluated in terms of the number of modes utilized

in the solution. In addition, the percentage accumulation of modal participation
factor can be a measure of this approximation. I is generally concluded that in
most engineering applications, the synthesization method is a satisfactory method

if a sufficient choice and number of modes are utilized.

To further substantiate the structural dynamics methodology and simu-

lation verification, a simple arrangement of uniform beams in a planar "T"
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orientation is analyzed. This arrangement is representative of a flexible space
station and two flexible appendages (solar arrays) as depicted in Figure 17.
Stiffness and mass properties of each beam are chosen so that the center member
has an uncoupled fundamental free-free axial mode frequency of 1 Hz and each of
the appendage beams have an uncoupled fundamental cantilever bending frequency
of 1 Hz. The structural system is perturbed by a unit step force as shown.
Several methods of obtaining interaction moment solutions of the formulated

problem are used and compared with the simulation. These solutions are

presented in Figure 18. Modal solutions of the structural arrangement considered

as a system were obtained by the transient response solution method provided in
Reference 7. One rigid body translational degree of freedom and the first four
elastic modes are used. The results for both the modal displacement and modal
acceleration methods of load calculation are shown. A solution of interaction
moment produced by a coupled system response, as given by the direct transient
response method of NASTRAN, is also presented. The finite element model of
the ""'T" beam is represented by a total of 79 discrete mass points and complete
description of this modal and system mode results are given in Reference 2. The
interaction moment of the "T'" beam given by the simulation reflects the use of
the first 10 free-free axial deflection modes of the center body and the first two
cantilever modes of the appendages. Modal input for these substructures were
obtained by the NASTRAN program. The results obtained by all of the methods

compare very well and show the adequacy of the methodology.

Solutions to a simple problem are also presented for a spinning body
representing the artificial '""G" condition and an independent method. This
problem was formulated for the purpose of providing a verification of the
simulation. The configuration consists of the rotating mass appendage, shown
in Figure 19, elastically attached to a spinning and infinitely large central mass.
The central mass is allowed perturbed translational motion only. Motion
equations for the appendage mass are derived on the basis of being attached to

an infinite mass foundation undergoing accelerated motion and are given below.
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Solutions to these equations are obtained by use of a digital program and interaction -
loads are given in Figure 19. A solution to this problem was also obtained by the

artificial ""G" simulation using a large magnitude mass for the central body.

Orthogonal coordinates were initially defined by the method of Reference 6 for

input to the simulation. A step force is applied to the central mass to duplicate

the value of ”ﬁo ' used in the formulation. Resulting interactions loads
2
obtained by the simulation duplicated those obtained by simultaneous solution of

Equation (40).
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SIMULATION WITH SPACE STATION-SOLAR ARRAY CONFIGURATIONS

The applications of the simulation with various space station and solar array
configurations is performed to demonstrate the effect of system parameters upon
interaction loads and System response. Present design concepts of the solar array
and space station are utilized and consist of a modular-type space station and a
rollup solar array. The results of independent configuration studies of these type of
structural systems are given in References 12 and 15. Figures 20 and 21 present
configuration details of the space station and solar array concepts, respectively.
Geometrical sizes of the 1/2 array wing section shown in Figure 21 correspond to an
electrical power output of 10 watts per square foot. In a zero '"'G" configuration, each
wing i8 comprised of a series of 10 flexible substrates deployed with an extendible
center boom. Each strip is attached to the inner hoom assembly by a linear spring
and tensioned to 12 pounds. A guy wire is provided between the outboard end of the
extendible boom and the extremity of the inner boom as a tension carrying member,
Pertinent stiffness and mass data for the array components are given in Table 4. During
a proposed artificial '"G" mode of operation only, the two substrate strips on each

side of the center boom are deployed. A complete array configuration in an artificial

"G" environment iS shown in Reference 2.

The space station configuration is comprised of a series of modules which can
be assembled in "cruciform" and "bar bell'" arrangements. These modules can be
considered as part of the total station structural system or as attached flexible
appendages to that system. A power boom is also part of the space station and
provides the structural support for the solar arrays. Detailed stiffness properties

of the space station modules and power boom are shown in Figure 22, Mass proper-

ties of these structures are taken to be uniform.

33



Structural Analyses

Analysis of the space station was required to be performed to obtain the
basic structural mode parameters for input to the simulation. Finite element
models of both the solar array and space station structures were derived for this
purpose. The automated method of finite element structural analysis given by
Reference 4 was used for these modal definitions. The finite element models are
depicted in Figures 23 and 24 and utilize discrete mass and stiffness data based upon
the properties contained in Table 4 and Figures 20 and 22. For the space station,
each discrete point is allowed three translational degrees-of-freedom and one
rotational degree-of-freedom corresponding to module torsion. Shear flexibility
is considered because of the relatively small length to diameter ratio (3) of each
module. A complete set of free-free modal data for the configuration as obtained
by NASTRAN is given in Reference 2 and a partial list is included in Table 5. It
is to be noted that joint flexibility has not been considered in these analyses. The
analysis predicts the lowest space station frequency to be 1.57 Hz and this fundamental
mode is described by core module torsion with the appendages acting as rigid bodies.
(See Figure 25). In addition to the modal analysis of the space station, modal
extraction was performed for the cantilever attached module and the core-power
boom structure alone, as a free-body, for subsequent use in the simulation. Detail
results are presented in Reference 2 and a tabular summary of modal data are

given in Table 5,

The vibration properties of the solar array are obtained with only the
inherent tension load providing stiffness to each membrane strip. The effect of the
compression load upon bending stiffness of the central boom is accounted for in the
stiffness matrix. However, the beam columning has only a small effect upon the array
frequencies for the configuration investigated. It is to be noted that the beam columning
effects should be a necessary consideration in rollup array configuration design
analyses since the structural system frequency cannot be simply increased by
increasing membrane tension forces without considering frequency reduction effects
produced by beam columning. Descriptions of the membrane and boom sfiffness

properties are depicted in Figures 22 and 26, Initial structural models which were
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analysed and presented in Reference 2 utilized the membrane analogy for the
specification of the out~of-plane stiffness matrix (Figure 26). However, subsequent
modal extraction produced sets of membrane twisting modes which were self-
equilibrating and produced only small constraint forces at the root of the array.
Therefore, length 12 of the membrane element (Figure 26) was set equal to zero
for purposes of defining the stiffness. In this case, the matrix reduces to a 2x 2,
The inplane stiffness descriptions of tensioned membrane substrates
have been found to be non-linear and dependent upon rollup mechanism and structural
design details. For example, vibration testing of the blanket array described in
Reference 16 exhibited the non-linearity of membrane buckling. Due to the lack of
analysis and supporting test data the inplane stiffness properties were assumed to

be the same as the out-of-plane properties.

For purposes of optimizing computer execution time, in the modal extraction
analysis, summetry properties of the array are utilized. Specifically, four
different boundary conditions are considered for the extendible boom nodes shown in

Figure 24 to produce the following modal deflection characteristics:

] Out-of-Plane Symmetric Bending

] Out-of-Plane Antisymmetric Bending
. In-plane Symmetric Bending

. In-plane Antisymmetric Bending

For example, the out-of-plane symmetric bending motion is obtained by rigidly
constraining the nodes along the boom in the "Y' translation, X" translation and
rotation about the "X'' axis. Modal properties from the rollup array are characterized
by sets of almost numerically equal frequency modes representing individual but
similar modal motions of each array membrane strip. This is readily observable by
the detailed tabular listings of modal data presented in Reference 2. Most of these
modes represent internal structural loads that are self-equilibrating; i.e., they do

not represent a significant load reaction to space station/array interface. Also,

they will not be perturbed by accelerated motions at the interface since the resulting
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Simulations

Simulations are performed with several space station and array structural
configurations fixed in inertial space. Results from these simulations are described
and interpreted in the following paragraphs. The configurations utilized in the
simulations consist of the Zero "G" space station shown in Figure 20, the core
module and power boom combination, a cantilever space station module, a cantilever
solar array and a cantilever uniform beam representing basic solar array modal
properties. In all simulations the plane of the solar array is positioned in the space
station "X-Z" plane and the axis of symmetry is normal to the space station X axis.
The uniform beam structure is utilized to perform response analysis with NASTRAN
and to provide comparisons with simulation results. A symmetrical triangular force
pulse shape is used as an externally applied force history to excite structural motions
and this shape was chosen to be representative of a docking force. The direction of
force application is designated by the "X", "Y' or "Z" subscript and is referenced

to space station axes.

Several simulation solutions were obtained with the space station configura-
tion consisting of the core and power boom with the two attached uniform beams,
and inoperative control systems. Solutions for the same condition were also
obtained by the ""Direct Transient Response Method" of NASTRAN. The beam
fundamental mode and mass distribution properties were chosen so as to approxi-
mately represent the corresponding properties of the rollup array, Figure 30
presents simulation and NASTRAN interaction load solutions for this structural
combination forced by the triangular pulse. Each of the appendage and core boom
structures was discretized into ten masses for NASTRAN analysis purposes. It
is observed that a high frequency transient, representing the core boom frequency,
exists in the simulation solution, but not in the NASTRAN solution. The reasons
for this difference in wave form is attributed to the finite number of core-power
boom and beam modes used in the simulation analysis. The NASTRAN solution,

which is performed in discrete coordinates, does not represent modal truncation,
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analysed and presented in Reference 2 utilized the membrane analogy for the
specification of the out-of-plane stiffness matrix (Figure 26). However, subsequent
modal extraction produced sets of membrane twisting modes which were self-
equilibrating and produced only small constraint forces at the root of the array.
Therefore, length 12 of the membrane element (Figure 26) was set equal to zero
for purposes of defining the stiffness. In this case, the matrix reduces to a 2 x 2.
The inplane stiffness descriptions of tensioned membrane substrates
have been found to be non-linear and dependent upon rollup mechanism and structural
design details., For example, vibration testing of the blanket array described in
Reference 16 exhibited the non-linearity of membrane buckling. Due to the lack of

analysis and supporting test data the inplane stiffness properties were assumed to

be the same as the out-of-plane properties.

For purposes of optimizing computer execution time, in the modal extraction
analysis, summetry properties of the array are utilized. Specifically, four
different boundary conditions are considered for the extendible boom nodes shown in

Figure 24 to produce the following modal deflection characteristics:

° Out-of-Plane Symmetric Bending

] Out-of-Plane Antisymmetric Bending
° In-plane Symmetric Bending

] In-plane Antisymmetric Bending

For example, the out-of-plane symmetric bending motion is obtained by rigidly
constraining the nodes along the boom in the "Y' translation, "X' translation and
rotation about the "X axis. Modal properties from the rollup array are characterized
by sets of almost numerically equal frequency modes representing individual but
similar modal motions of each array membrane strip. This is readily observable by
the detailed tabular listings of modal data presented in Reference 2. Most of these
modes represent internal structural loads that are self-equilibrating; i.e., they do

not represent a significant load reaction to space station/array interface. Also,

they will not be perturbed by accelerated motions at the interface since the resulting
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generalized forces are small. Therefore, a criterion was established for the
specific modes which would contribute to significant interaction loads. This criterion
was to select modes which contain the highest modal participation of interaction load.
The modes selected by this criterion are listed in Table G in terms of mode number
from the lowest frequency, frequency and the numerical evaluated modal participation
factors. It is noted that the participation factors are described for each type of
constraint produced by the boundary conditions. For example, a symmetric out-of-
plane mode requires both a root moment and force constraint while an out-of-plane
antisymmetric modes requires only a moment constraint. The resulting array
fundamental frequencies produced are less than 0.1 Hz, with the exception of the
fundamental inplane symmetric mode which is greater than 1 Hz. These primary
cantilever modes, will probably lie within the control system frequency bandwidth

of space station control system. The frequency and generalized mass modal parameters
together with the modal deflections at each mass point are required as input to the
digital simulation. Examples of the modal deflection results in a vector format are
shown in Figure 27 and 28 and correspond to the significant modes of out-of-plane
symmetric and inplane antisymmetric motions. Reference 2 also presents analysis
results of a fold-out array which is sized to meet the same power requirements as
the presented rollup array. The design is based upon a fold-out array concept
presented in Reference 18. Although the stiffness of a fold-out panel array might be
thought to be inherently greater than the rollup array structure, weight minimization
in the design resulted in significantly lower structural frequencies than shown in
Table 6. For example, a fundamental out-of-plane symmetric mode frequency of
0.034 Hz resulted. A weight comparison between the two arrays in 2930 Ibs. per
wing panel of the rollup array and 6100 lbs. for the fold-out panel array. The
fold-out panel array modal characteristics are not presented since the influence of
array flexibility upon dynamic interactions can be shown with the rollup array

structure.

As part of the evaluation of modal data and its influence upon dynamic
interactions, the artificial "G" array configuration is also analyzed for various spin

rates. The array configuration considered only includes four array membrane strips
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per wing and the finite element model utilized is presented in Figure 29. The digital
program used for this vibration analysis is presented in Reference 6. The programmed
method requires the input of the mass, coriolis force, and stiffness matrices, the
latter containing the effects of the steady spin rate. Complete matrix derivations for
the spinning structure are provided in Reference 7. Eigenvalues and eigenvectors
producing the orthogonalization are complex quantities and occur in complex conjugate
pairs. Resulting modal frequencies from the application of this digital method are
presented in Table 7 for a variation in spin rates about an axis paralleled to the "Z"
axis and displaced along the "Y' axis, 44 feet from the root of the array. A complete
set of modal results from this analysis is given in Reference 2. A comparison is

also presented for results obtained by the "GIVENS" eigenvalue-eigenvector operational
method in NASTRAN at zero rate of spin. The comparison indicates good frequency
correlation except for the fundamental frequency. The separation noted in the lower
mode frequency might be explained by the numerical roundoff occurring in the matrix
manipulations required by NASTRAN prior to the use of the "GIVENS' routine. The
frequency variation with spin rate in Table 7 shows the independence of the out-of-
plane modes upon spin. This is expected since coriolis and centrifugal forces do
couple with the out-of-plane inertial degrees-of-freedom. In contrast, the inplane
modal frequencies are seen to decrease with increasing spin rate and this is of
significance for the fundamental inplane mode. This frequency decrease is also
exhibited for the case of the spinning beam presented in Reference 7. It may be
concluded from the results of this array configuration that the effects of spin rate
upon the structural mode properties can be of significance and should be considered

in structural dynamic analyses.



Simulations

Simulations are performed with several space station and array structural
configurations fixed in inertial space. Results from these simulations are described
and interpreted in the following paragraphs. The configurations utilized in the
simulations consist of the Zero "G'" space station shown in Figure 20, the core
module and power boom combination, a cantilever space station module, a cantilever
solar array and a cantilever uniform beam representing basic solar array modal
properties. In all simulations the plane of the solar array is positioned in the space
station '""X-Z" plane and the axis of symmetry is normal to the space station X axis.
The uniform beam structure is utilized to perform response analysis with NASTRAN
and to provide comparisons with simulation results. A symmetrical triangular force
pulse shape is used as an externally applied force history to excite structural motions
and this shape was chosen to be representative of a docking force. The direction of
force application is designated by the "X", "Y' or "Z'" subscript and is referenced

to space station axes.

Several simulation solutions were obtained with the space station configura-
tion consisting of the core and power boom with the two attached uniform beams,
and inoperative control systems. Solutions for the same condition were also
obtained by the "Direct Transient Response Method" of NASTRAN. The beam
fundamental mode and mass distribution properties were chosen so as to approxi-
mately represent the corresponding properties of the rollup array. Figure 30
presents simulation and NASTRAN interaction load solutions for this structural
combination forced by the triangular pulse. Each of the appendage and core boom
structures was discretized into ten masses for NASTRAN analysis purposes. It
is observed that a high frequency transient, representing the core boom frequency,
exists in the simulation solution, but not in the NASTRAN solution. The reasons
for this difference in wave form is attributed to the finite number of core-power
boom and beam modes used in the simulation analysis. The NASTRAN solution,

which is performed in discrete coordinates, does not represent modal truncation,
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as is employed in the simulation's methodology. The truncation process guarantees
less than 100% modal participation and therefore a rigid mass is apparent and exactly
follows the perturbing motion, such as the accelerated motion of the central body.

The rigid mass effect is also inherent to the results given in Table 3.

The effect on response wave form when using a truncated set of appendage
modes, which represent only a portion of the total appendage rigid mass, is better
seen from the results provided in Figure 31. A pulse having a period of 1 second
is used to perturb a rigid core-power boom with attached rollup arrays and the
number of array modes is varied (Table 6, in-plane-antisymmetric modes). The
shape of the pulse is obvious in the wave form for those solutions corrresponding
to the one and two array mode analysis. The rigid mass effect is therefore more
pronounced with the smaller number of modes used and correspondingly, the smaller
amount flexible mode participation. The period of the highest frequency mode in the
two mode analysis is 5.2 seconds as compared to 3.1 seconds in the four mode analysis,
It is also apparent that the waveform is affected by those modes with periods closer
to the period of the forcing pulse -- even though the modal participation for those
array modes is comparatively small. It may be concluded from these results that
the interaction load solution is very dependent upon the number of modes utilized
to define the flexibility parameters of the structural system. An automated plot of
the four mode analysis solution of interaction "X" direction force and interaction "Y"
direction torque is given in Figure 32 for 3 minutes of simulation time. A structural
damping coefficient of 0.1% (g) has been used for this solution and is evident from the

observable slowing decay peak load amplitude in time.

Interesting solutions from NASTRAN and the simulation are also provided
in Figure 33 in which the basic waveforms are comparable and the 'high frequency"
pulse shape is not observed in the simulation load history. Here the core-power
boom structure is taken to be rigid in the simulation and flexible for the NASTRAN
solution. It is to be noted that the perturbation pulse is in the '"X'" direction and

bending modes of the appendage are not excited by rotational base motion, but by
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translational motions. This is also the case in the forcing condition producing the
comparative results shown in Figure 18. In contrast, bending modes of the central
body are excited in the simulation results of Figure 30. The magnitude of the
higher frequency content of the simulation solution in Figure 30 would therefore

be predominant due to the appendage beam base rotational acceleration resulting
from the central body modal slopes at the interface point. It can be concluded
from the presented solutions that a criterion must be established from known
parameters which are to be used in the interactions simulation. This criterion
must include considerations of the perturbing force frequency content and its
relation with the primary structural mode frequencies and modal properties being
simulated. In addition, it would be expected that a sufficient number of modes
would be required to encompass the expected frequency content of the interaction
load solution. For example, if a triangular pulse is used to excite the central
body and has a period of one second, appendage modes with modal frequencies
representing periods up to and beyond one second should be utilized unless
corresponding modal participation factors are very small. Also the frequency
range of appendage modes should encompass the frequency range of central body
modes if the latter modal coordinates are expected to be significantly excited by

the applied forces.

The variation of interaction load with rigid and flexible space station
considerations can be identified by the results presented in Figures 34 and 35.
In both sets of solutions with the core-power boom flexibility consideration the
fundamental frequency of this body is predominant. Significant response from
this mode is expected due to the period of the forcing pulse. Dynamic motion with
the rigid core-power boom consideration is only represented by the lower frequency
solar array modes. Again the pulse shape is noted in the response history and is
due to that portion of the total array mass which is not represented by the modal
load participation. Interaction load descriptions by the modal displacement
method of load calculation would obviate this inherent high frequency shape, but

is not considered as accurate of a method in analysis for the same number of modes.
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Modal displacements, such as shown in the simulation solutions presented in
Figures 36 and 37 for the indicated pulse forces, do not identify the pulse shape
in the initial solution time. These displacement histories are graphically

presented by the automated graphical provisions contained in the simulation.

Several simulations with the rollup array and core-power boom structures
were performed with considered variations in forcing pulse magnitude and period.
Corresponding interaction load solutions are presented in Figures 38 and 39. As
cxpected, the interaction load magnitudes vary linearly with applied force magnitude.
The solutions given in Figure 39 also are representative of the classical response
solutions; i.e., higher responses occur as the ratio of the pulse period to modal
period become closer to 1.0. The interaction load magnitude for the same force
pulse is also reduced with an increased central body mass, as is indicated by the
interaction load solution history for the zero "G" space station configuration
presented in Figure 10, A large reduction in magnitude is noted when comparing
this history with that presented in Figure 34 in which rigid body accelerations
at the interface are greater. Figure 41 presents the variation of maximum
interaction load with space station mass and forcing pulse magnitude. These
results can be considered an example of using the simulation for the prediction
of solar array design loads when structural system parameters and external

perturbhation force definitions are known.

Waveform differences in interaction load solution histories for the inplane
and out-of-plane array responses are exhibited by the results presented in Figures
42 and 43. Solutions in Figure 42 represent the inplane response of the array
and those given in Figure 43 represent array out-of-plane response. For both
conditions a higher coupled system frequency produced by the fundamental
core~power boom bending mode is predominate. The lower frequency solar

array modes are also evident by the low frequency modulation.

The effect of increased space station or central body mass upon the solar

array interaction load is seen by the solutions given in Figure 44. Here two
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modules have been attached to the space station as flexible appendages in the
"X~Z" plane at node point 21. The longitudinal axis of one module is in the "Z"
direction and the other in the ""-Z'" direction. Comparison of maximum solution
magnitudes with that given in Figure 33 shows the effect of the reduced inertial
acceleration. The high frequency content in the interaction history is due to the
high frequency mode of the attached modules. Again the representation of module
flexibility by one mode does not produce 100% modal load participation and the
pulse shape is predominate in the initial solution time. Interaction load feedback
through the central body in terms of accelerated motion at the array frequency is
low as evidenced by the absence of low frequency content in the module interaction
load history. Figure 45 presents selected interaction load histories for the
structural configuration of four attached flexible module appendages, solar arrays
and the core-power boom. The consideration of a total of six appendages is the
limitation of the simulation. The four modules are all positioned in the "X-Z"
plane and normal to the space station or central body ""X'" axis, and at nodes 21 and 31

depicted in Figure 23.

A simulation is also performed using the zero ""G'" space station rigid
inertial properties with the reaction jet control system. The structural system
is given an initial attitude error of 1° and the control system is chosen to be
operative for equivalent angular errors above 0.5 degrees as defined by Equation 26,
Two thrusters of 200 1bs. magnitude have been positioned along the "X'" axis of
the space station to produce a maximum of 6000 ft. lbs. of controlling torque.
Figure 46 presents the histories of rigid body attitude error, attitude rate and
controlling torque. Solar arrays have been arbitrarily omitted as part of the
structural system in this condition. These solution histories show the proper
operation of the contained reactioa jet control system. Solutions of motion and
interaction load histories are also obtained by the simulation for the initial array
attitude conditions given in Figures 47 and 48. The non-linear orientation control
is operative as the array controlling system and the simplified CMG system is

considered to be both nonoperative (Figure 47) and operative (Figure 48).
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per wing and the finite element model utilized is presented in Figure 29, The digital
program used for this vibration analysis is presented in Reference 6. The programmed
method requires the input of the mass, coriolis force, and stiffness matrices, the
latter containing the effects of the steady spin rate. Complete matrix derivations for
the spinning structure are provided in Reference 7. Eigenvalues and eigenvectors
producing the orthogonalization are complex quantities and occur in complex conjugate
pairs. Resulting modal frequencies from the application of this digital method are
presented in Table 7 for a variation in spin rates about an axis paralleled to the ""Z"
axis and displaced along the "Y' axis, 44 feet from the root of the array. A complete
set of modal results from this analysis is given in Reference 2. A comparison is

also presented for results obtained by the ""GIVENS' eigenvalue-eigenvector operational
method in NASTRAN at zero rate of spin. The comparison indicates good frequency
correlation except for the fundamental frequency. The separation noted in the lower
mode frequency might be explained by the numerical roundoff occurring in the matrix
manipulations required by NASTRAN prior to the use of the ""GIVENS' routine. The
frequency variation with spin rate in Table 7 shows the independence of the out-of-
plane modes upon spin. This is expected since coriolis and centrifugal forces do
couple with the out-of-plane inertial degrees-of-freedom. In contrast, the inplane
modal frequencies are seen to decrease with increasing spin rate and this is of
significance for the fundamental inplane mode. This frequency decrease is also
exhibited for the case of the spinning beam presented in Reference 7. It may be
concluded from the results of this array configuration that the effects of spin rate
upon the structural mode properties can be of significance and should be considered

in structural dynamic analyses.



Simulations

Simulations are performed with several space station and array structural
configurations fixed in inertial space. Results from these simulations are described
and interpreted in the following paragraphs. The configurations utilized in the
simulations consist of the Zero ""G" space station shown in Figure 20, the core
module and power boom combination, a cantilever space station module, a cantilever
solar array and a cantilever uniform beam representing basic solar array modal
properties. In all simulations the plane of the solar array is positioned in the space
station "X-Z" plane and the axis of symmetry is normal to the space station X axis.
The uniform beam structure is utilized to perform response analysis with NASTRAN
and to provide comparisons with simulation results. A symmetrical triangular force
pulse shape is used as an externally applied force history to excite structural motions
and this shape was chosen to be representative of a docking force. The direction of
force application is designated by the X", "Y' or "Z" subscript and is referenced

to space station axes.

Several simulation solutions were obtained with the space station configura-
tion consisting of the core and power boom with the two attached uniform beams,
and inoperative control systems. Solutions for the same condition were also
obtained by the "Direct Transient Response Method" of NASTRAN. The beam
fundamental mode and mass distribution properties were chosen so as to approxi-
mately represent the corresponding properties of the rollup array. Figure 30
presents simulation and NASTRAN interaction load solutions for this structural
combination forced by the triangular pulse. Each of the appendage and core boom
structures was discretized into ten masses for NASTRAN analysis purposes. It
is observed that a high frequency transient, representing the core boom frequency,
exists in the simulation solution, but not in the NASTRAN solution. The reasons
for this difference in wave form is attributed to the finite number of core-power
boom and beam modes used in the simulation analysis. The NASTRAN solution,

which is performed in discrete coordinates, does not represent modal truncation,
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as is employed in the simulation's methodology. The truncation process guarantees
less than 1007 modal participation and therefore a rigid mass is apparent and exactly
follows the perturbing motion, such as the accelerated motion of the central body.

The rigid mass effect is also inherent to the results given in Table 3.

The effect on response wave form when using a truncated set of appendage
modes, which represent only a portion of the total appendage rigid mass, is better
seen from the results provided in Figure 31. A pulse having a period of 1 second
is used to perturb a rigid core-power boom with attached rollup arrays and the
number of array modes is varied (Table 6, in-plane-antisymmetric modes). The
shape of the pulse is obvious in the wave form for those solutions corrresponding
to the one and two array mode analysis. The rigid mass effect is therefore more
pronounced with the smaller number of modes used and correspondingly, the smaller
amount flexible mode participation. The period of the highest frequency mode in the
two mode analysis is 5.2 seconds as compared to 3.1 seconds in the four mode analysis.
It is also apparent that the waveform is affected by those modes with periods closer
to the period of the forcing pulse -- even though the modal participation for those
array modes is comparatively small. It may be concluded from these results that
the interaction load solution is very dependent upon the number of modes utilized
to define the flexibility parameters of the structural system. An automated plot of
the four mode analysis solution of interaction '""X'"" direction force and interaction "Y"
direction torque is given in Figure 32 for 3 minutes of simulation time. A structural
damping coefficient of 0.1% (g) has been used for this solution and is evident from the

observable slowing decay peak load amplitude in time,

Interesting solutions from NASTRAN and the simulation are also provided
in Figure 33 in which the basic waveforms are comparable and the 'high frequency"
pulse shape is not observed in the simulation load history. Here the core-power
boom structure is taken to be rigid in the simulation and flexible for the NASTRAN
solution. It is to be noted that the perturbation pulse is in the ""X'" direction and

bending modes of the appendage are not excited by rotational base motion, but by
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translational motions. This is also the case in the forcing condition producing the
comparative results shown in Figure 18. In contrast, bending modes of the central
body are excited in the simulation results of Figure 30. The magnitude of the
higher frequency content of the simulation solution in Figure 30 would therefore

be predominant due to the appendage beam base rotational acceleration resulting
from the central body modal slopes at the interface point. It can be concluded
from the presented solutions that a criterion must be established from known
parameters which are to be used in the interactions simulation. This criterion
must include considerations of the perturbing force frequency content and its
relation with the primary structural mode frequencies and modal properties being
simulated. In addition, it would be expected that a sufficient number of modes
would be required to encompass the expected frequency content of the interaction
load solution. For example, if a triangular pulse is used to excite the central
body and has a period of one second, appendage modes with modal frequencies
representing periods up to and beyond one second should be utilized unless
corresponding modal participation factors are very small. Also the frequency
range of appendage modes should encompass the frequency range of central body
modes if the latter modal coordinates are expected to be significantly excited by

the applied forces.

The variation of interaction load with rigid and flexible space station
considerations can be identified by the results presented in Figures 34 and 35.
In both sets of solutions with the core-power boom flexibility consideration the
fundamental frequency of this body is predominant. Significant response from
this mode is expected due to the period of the forcing pulse. Dynamic motion with
the rigid core-power boom consideration is only represented by the lower frequency
solar array modes. Again the pulse shape is noted in the response history and is
due to that portion of the total array mass which is not represented by the modal
load participation. Interaction load descriptions by the modal displacement
method of load calculation would obviate this inherent high frequency shape, but

is not considered as accurate of a method in analysis for the same number of modes.
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Modal displacements, such as shown in the simulation solutions presented in
Figures 36 and 37 for the indicated pulse forces, do not identify the pulse shape
in the initial solution time. These displacement histories are graphically

presented by the automated graphical provisions contained in the simulation.

Several simulations with the rollup array and core-power boom structures
were performed with considered variations in forcing pulse magnitude and period.
Corresponding interaction load solutions are presented in Figures 38 and 39, As
cxpected, the interaction load magnitudes vary linearly with applied force magnitude.
The solutions given in Figure 39 also are representative of the classical response
solutions: i.e., higher responses occur as the ratio of the pulse period to modal
period become closer to 1.0. The interaction load magnitude for the same force
pulse is also reduced with an increased central body mass, as is indicated by the
interaction load solution history for the zero "G" space station configuration
presented in I'igure 40. A large reduction in magnitude is noted when comparing
this history with that presented in Figure 34 in which rigid body accelerations
at the interface are greater. TFigure 41 presents the variation of maximum
interaction load with space station mass and forcing pulse magnitude. These
results can be considered an example of using the simulation for the prediction
of solar array design loads when structural system parameters and external

perturbation force definitions are known.

Waveform differences in interaction load solution histories for the inplane
and out-of-plane array responses are exhibited by the results presented in Figures
42 and 43. Solutions in Figure 42 represent the inplane response of the array
and those given in Figure 43 represent array out-of-plane response. For both
conditions a higher coupled system frequency produced by the fundamental
core-power boom bending mode is predominate. The lower frequency solar

array modes are also evident by the low frequency modulation,

The effect of increased space station or central body mass upon the solar

array interaction load is seen by the solutions given in Figure 44, Here two

41



modules have been attached to the space station as flexible appendages in the
"X~Z" plane at node point 21. The longitudinal axis of one module is in the "Z"
direction and the other in the "-Z" direction. Comparison of maximum solution
magnitudes with that given in Figure 33 shows the effect of the reduced inertial
acceleration. The high frequency content in the interaction history is due to the
high frequency mode of the attached modules. Again the representation of module
flexibility by one mode does not produce 100% modal load participation and the
pulse shape is predominate in the initial solution time. Interaction load feedback
through the central body in terms of accelerated motion at the array frequency is
low as evidenced by the absence of low frequency content in the module interaction
load history. TFigure 45 presents selected interaction load histories for the
structural configuration of four attached flexible module appendages, solar arrays
and the core-power boom. The consideration of a total of six appendages is the
limitation of the simulation. The four modules are all positioned in the '"X-Z"
plane and normal to the space station or central body "X'" axis, and at nodes 21 and 31

depicted in Figure 23.

A simulation is also performed using the zero ""G" space station rigid
inertial properties with the reaction jet control system. The structural system
is given an initial attitude error of 1° and the control system is chosen to be
operative for equivalent angular errors above 0.5 degrees as defined by Equation 26,
Two thrusters of 200 Ibs. magnitude have been positioned along the "X'" axis of
the space station to produce a maximum of 6000 ft. 1bs. of controlling torque.
Figure 16 presents the histories of rigid body attitude error, attitude rate and
controlling torque. Solar arrays have been arbitrarily omitted as part of the
structural system in this condition. These solution histories show the proper
operation of the contained reactioa jet control system. Solutions of motion and
interaction load histories are also obtained by the simulation for the initial array
attitude conditions given in Figures 47 and 48. The non-linear orientation control
is operative as the array controlling system and the simplified CMG system is

considered to be both nonoperative (Figure 47) and operative (Figure 48),
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A limiting CMG controlling torque is arbitrarily chosen to be 1000 ft 1bs when
simulated, and the solar array is given an initial attitude error about the space
station "X" axis. The resulting history of attitude error and error rate is

similar to that presented in Reference 15. The change in slope of the attitude

error history at zero degrees is due to the loss of controlling torque and the
application of friction torque. The error history of the space station in Figure 47
appears to be divergent, but is only the result of the reactive torque. The
application of the array control torque produces the interaction torque history

shown. In addition, the coupling of the transient array response is evident in

the array and space station rigid body motions. The control of space station

attitude with the simplified CMG system produces the attitude oscillations shown

in Figure 48 and this is attributed to the system coupling with the flexible dynamics
of the solar array. The oscillation becomes relatively large when the array
controlling torque is removed and friction torque begins reducing the array angular
rate. A simulation in which only the rigid body properties of the array and space
station are considered, show the flexibility effects cause a 40% increase in interaction
torque. A variation of one control system parameter, K (Figure 9), was made for this
simulated condition and results are presented in Figure 49 in terms of the maximum
interaction torque and space station attitide error experienced in a 100 second period.
Parameter variations of this type, demonstrate the reduction in response that can be
obtained and also the sensitivity of the maximum response to these parameters. No
attempt was made in simul ating this condition with other aititude or orientation
control parameters which are user input. These parameters are those coetficient s

listed in Figure 8 and 9.

The results for the structural configurations and controlling systems show
the analytical flexibility of the simulation and its use as a design tool. Itis
concluded from the interpretation of solutions that care must be taken in the
formulation of the response condition with the modal synthesis technique.

Sufficient and important structural modes must be utilized for the adequate
description of the interactive dynamics and its effect upon system response and

interactions,
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CONCLUSIONS AND RECOMMENDATIONS

An integrated dynamic analysis method has been developed and implemented
in a digital computer program for simulating structural dynamic interactions
between a space station and controllable solar arrays. The methodology in the
simulation has been verified through the performance of simple response problems
and comparison with other solution methods, and the performance of simulations

with space station and array structural configurations.

The modal synthesis technique employed in the simulation provides an
accurate method of coupling structural components into one integrated system.
Care must be taken, however, in the choice and number of structural component

modes utilized in the coupling technique.

The use of the modal acceleration method of computing interaction loads
and the inherent ''rigid mass'* which remains after modal truncation can result
in appreciable loading magnitudes. This is due to the coupling with transient
inertial forces at frequencies higher than the frequency range of modes considered
for representing appendage flexibility. This result would not occur with the use

of the modal displacement method of load calculation.
Modal frequency comparisons of an array in a non-spinning and spinning
environment indicate a decrease in frequency with increase in spin rate; this

therefore warrants the consideration of the effect of spin rate upon modal proper-

ties in structural dynamic analyses.

From the demonstrated application of the simulation it is recommended
that this simulation be utilized as a design tool for use in future spacecraft

design studies.
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V'2 2
1
Mode No. £ \ Meg = PE Vi
1 =
i (Hz) (Sugs) (Slugs) Ted i MMeq
g (Slugs) 1
1 2 1.957479] 1.25 | 3.06538 0.6131
2 12.5338 | -1.084840| 1.25 | 0.941502 0.1883
3 35. 0950 0.636063] 1.25 | 0.323661 0.0647
4 68.7721 | -0.454745{ 1.25 | 0.165434 0.0331
5 113. 6852 0.353677 1.25 0.100070 0.0200
b5}
Z Q = 10 -4.59605 = 5.40395] 4.59605 0.919209
n Residual = (0.40395) (0.080191)
6 169. 67 0.289373 1.25 0.066989 0.013398
G 4.66304 0.932607
ngl Residual = (0.33696) (0. 067393)
l |
Beam Properties - MJ = 5 Slugs, L. = 10 Feet
n v 2
1IM Z ! = M.,= 5.0
m-—00 i: ] Meq_ J
m 1
A
LIM. &~ MPF, = 1.0
m—so00 4§ =1 i

TABLE 2 .

CANTILEVER BEAM -
NUMERICAL MODE LATA



PARAMETERS FIRST 5 MODES LIM n. —>e

" t -2.9 -3.1
£1 (0) F /SeC 0 3.13
22(0) +1.62 +1.175
53 (0) -0.928 -1.00
54 (0) +0.679 +0. 740
55 (0) -0.517 -0.560
£ (0) -1.48 Vn -1.6 yn
n (o )
wng ~n2
X (0) 1.85 2.00
Fra (0 LBS 0.736 0
t .21¢
TFA (0) Ft Lbs 0.215 0

First Mode Only
2,179
FFA (0) Lbs 0

TFA (0) Ft Lbs 3.95 0

TABLE 3. TIME ZERO MODAL SOLUTIONS
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SPACE STATION CONFIGURATION (FIGURE 20)

GENERALIZED
FREQUENCY MASS MODAL
MODE NO. (Hz) (LB—SECZ/IN.) DESCRIPTION

1 1.57 230 CORE TORSION
2 2.28 36.4 CORE MODULE "Y" AXIS BENDING
3 2.28 36.6 CORE MODULE "Z" AXIS BENDING
4 3.15 87.7 CORE MODULE "Z" AXIS BENDING
5 3.25 109 CORE MODULE "Y" AXIS BENDING
6 4.39 151 CORE MODULE "Y" AXIS BENDING
7 4.48 312 CORE MODULE "Z'" AXIS BENDING

CANTILEVER SPACE STATION MODULE
1 8.48 25.3 FUNDAMENTAL "Y" AXIS BENDING
2 8.48 25.3 FUNDAMENTAL "X" AXIS BENDING
3 34.27 1. 12(105)* TORSION
* units of 1b-in-sec?

FREE-FREE CORE MODULE-POWER BOOM

= W N

5.64
5.64
13.1
13.1

18.2
18.2
36.7
36.7

"Z" AXIS BENDING
"Y" AXIS BENDING
"Z" AXIS BENDING
"Y" AXIS BENDING

TABLE 6.

SPACE STATION MODAL DATA SUMMARIES
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ELASTIC NASTRAN "GUPTA'" PROGRAM RESULTS
MODE NO., RESULTS
=0 2=Q =4 RPM | 2=8 RPM | =12 RPM

1 0.1989 0.1786 0.1786 0.1787 0.1787
2 0.2032 0.1977 0.1977 0.1977 0.1977
3 0.3784 0.3768 0.3710 0.3524 0.3185
9 0. 5037 0. 5031 0. 5025 0. 5025 0.5025
10 0.5215 0.5142 0.5151 0.5151 0.5151
11 0.7045 0.7010 0. 6969 0.6881 0.6716
17 0.7782 0.7774 0.7777 0.7777 0.7777
18 0.7941 0.7912 0.7911 0.7911 0.7911
19 0.9051 0. 9047 0. 9049 0.9049 0.9049
20 0.9349 0.9315 0.9291 0.9224 0.9090
28 1.0654 1,0544 1,0506 1,0454 1,0331
32 3.8422 3.8402 3.8413 3. 8441 3.8462

OUT-OF-PLANE MODES 1, 2, 9, 10, 17, 18, 19

IN-PLANE MODES 3, 11, 20, 28, 32

TABLE 7. ART "G" SOLAR ARRAY CONFIGURATION LIST OF EIGENVALUES
IN HERTZ
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Jth Controllable
Appendage

/— Space Station

J th Fixed Appendage

FIGURE 2. RIGID BODY COORDINATES
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RIGID BODY MATRIX EQUATIONS

FIGURE 3.
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FORCE EQUATION

F o= - + 20 R +(@ +0 ®)(R +h. +C.r
FAJ MJ[R cuo Ro (wo wowo) (Ro hJ chJ)
+ 20 o r_ + S v 5. oyT —
@, Coytyt Cylwy “’J“’J”JJ F
A
J
1
MJ[CDS,J (Cyrp @ ]{Es}
S,J
. .
-CJZ MJch{E } } Fy
J J
MOMENT EQUA TION
— Sy —_ —_ T -
= - + +
TAJ Cyl€y o, + @) I () + C; @)
+1 (—' vy el ety e
J 'Yy J %o 3% g%y
~ — !
+(C.r )F
C5ry A

Note: wJ = 0 for fixed appendages.

FIGURE 5. ZERO "G" - INTERACTION FORCE AND MOMENT EQUATIONS
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o - Gimbal Rate of CMG

h - Momentum Vector

©g - Spin Axis Component of Spin Rate
@m - Transverse Component of Spin Rate

Applied Torques

'Ié‘: '(‘US +a)x h (opposes w T)

- X h (increases spin rate)

T
s

FIGURE 10. WOBBLE DAMPER CONTROL TORQUES
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Normalized Deflection, & EI

1st Symmetric Mode

. 8~ =Free-Free

O3 Cantilever Mode
.44 Approximation

ol

2nd Symmetric Mode

1. 0-d 3rd Symmetric Mode
1.

' -
1.0 g

Beam Station, /e/L

FIGURE 12, MODE SHAPE COMPARISONS



Shear Force, F (‘{- =1/4, t) (Lbs.)

66

— ] Free-Free Mode

® 1 Cantilever Mode

Note:

Shear Calculated Using Modal Displacement, i.e.,

F(1/4, )=V, (1/4) wlz f, ()

i

— 1

o 1

Cantilever Mode

Note:

Free-Free Mode

Simulation

Time, t (Seconds)

Shear Calculated Using Modal Acceleration,
i.e.,

F (1A, ty=-M /2 X -V, (/) .E'C {t)

J 1

FIGURE 13. COMPARISON OF CANTILEVER & FREE-FREE BEAM SHEAR

AT /4 SPAN VS TIME FOR A UNIT STEP FORCE APPLIED
AT MID-SPAN.
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=1/, t)

4
L

Shear Force, F (
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1

NASTRAN Results
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1 |
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Simulation Results Using First Five Cantilever Modes

Time, t (Seconds)

5
Fasn=-Mp/s K- voamEw
C.

i=1 i

FIGURE 14. UNIFORM BEAM COMPARISONS OF SHEAR HISTORY
AT 1/4 SPAN FOR A UNIT STEP FORCE APPLIED AT
MID-SPAN
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NASTRAN Modal Displacement Method
8.0
6,0 4
4,0 4
2,0
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-2,04
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10,0 _
NASTRAN Modal Acceleration Method
8,04
w0
3 6.0
><N 4,0 4
g 2.0
)
N 0 : T : % ﬁ‘
4 0.2 0.4 0.6 0,
2 -2.0 8 Lo
5 Time (sec)
10.0 -
° g o | NASTRAN Direct Transient Response Method
§. 6.0
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s 4,0
=
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I 2.0 4
)
E 0 + + f + {
_2'0_1 0.2 0,4 0.6 0.8 1.0
10,0 _ Time (sec)
8.0 Simulation Results
6.0 4
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FIGURE 18. "T'" BEAM INTERAC TION TORQUE HISTORIES
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