11,548 research outputs found

    Generalized trapezoidal words

    Get PDF
    The factor complexity function Cw(n)C_w(n) of a finite or infinite word ww counts the number of distinct factors of ww of length nn for each n≥0n \ge 0. A finite word ww of length ∣w∣|w| is said to be trapezoidal if the graph of its factor complexity Cw(n)C_w(n) as a function of nn (for 0≤n≤∣w∣0 \leq n \leq |w|) is that of a regular trapezoid (or possibly an isosceles triangle); that is, Cw(n)C_w(n) increases by 1 with each nn on some interval of length rr, then Cw(n)C_w(n) is constant on some interval of length ss, and finally Cw(n)C_w(n) decreases by 1 with each nn on an interval of the same length rr. Necessarily Cw(1)=2C_w(1)=2 (since there is one factor of length 00, namely the empty word), so any trapezoidal word is on a binary alphabet. Trapezoidal words were first introduced by de Luca (1999) when studying the behaviour of the factor complexity of finite Sturmian words, i.e., factors of infinite "cutting sequences", obtained by coding the sequence of cuts in an integer lattice over the positive quadrant of R2\mathbb{R}^2 made by a line of irrational slope. Every finite Sturmian word is trapezoidal, but not conversely. However, both families of words (trapezoidal and Sturmian) are special classes of so-called "rich words" (also known as "full words") - a wider family of finite and infinite words characterized by containing the maximal number of palindromes - studied in depth by the first author and others in 2009. In this paper, we introduce a natural generalization of trapezoidal words over an arbitrary finite alphabet A\mathcal{A}, called generalized trapezoidal words (or GT-words for short). In particular, we study combinatorial and structural properties of this new class of words, and we show that, unlike the binary case, not all GT-words are rich in palindromes when ∣A∣≥3|\mathcal{A}| \geq 3, but we can describe all those that are rich.Comment: Major revisio

    Palindromically rich GT-words

    Get PDF
    Generalized trapezoidal words (or GT-words for short) were introduced by A. Glen and F. Leve in 2011. This new class of words naturally extends to an arbitrary finite alphabet the family of binary trapezoidal words that were originally introduced and studied by A. de Luca in 1999. Here, we completely describe all GT-words that are "rich" in palindromes, i.e., those that contain the maximal number of distinct palindromic factors

    Enumeration of super-strong Wilf equivalence classes of permutations in the generalized factor order

    Full text link
    Super-strong Wilf equivalence classes of the symmetric group Sn{\mathcal S}_n on nn letters, with respect to the generalized factor order, were shown by Hadjiloucas, Michos and Savvidou (2018) to be in bijection with pyramidal sequences of consecutive differences. In this article we enumerate the latter by giving recursive formulae in terms of a two-dimensional analogue of non-interval permutations. As a by-product, we obtain a recursively defined set of representatives of super-strong Wilf equivalence classes in Sn{\mathcal S}_n. We also provide a connection between super-strong Wilf equivalence and the geometric notion of shift equivalence---originally defined by Fidler, Glasscock, Miceli, Pantone, and Xu (2018) for words---by showing that an alternate way to characterize super-strong Wilf equivalence for permutations is by keeping only rigid shifts in the definition of shift equivalence. This allows us to fully describe shift equivalence classes for permutations of size nn and enumerate them, answering the corresponding problem posed by Fidler, Glasscock, Miceli, Pantone, and Xu (2018).Comment: 18 pages, 5 table

    On dual Schur domain decomposition method for linear first-order transient problems

    Full text link
    This paper addresses some numerical and theoretical aspects of dual Schur domain decomposition methods for linear first-order transient partial differential equations. In this work, we consider the trapezoidal family of schemes for integrating the ordinary differential equations (ODEs) for each subdomain and present four different coupling methods, corresponding to different algebraic constraints, for enforcing kinematic continuity on the interface between the subdomains. Method 1 (d-continuity) is based on the conventional approach using continuity of the primary variable and we show that this method is unstable for a lot of commonly used time integrators including the mid-point rule. To alleviate this difficulty, we propose a new Method 2 (Modified d-continuity) and prove its stability for coupling all time integrators in the trapezoidal family (except the forward Euler). Method 3 (v-continuity) is based on enforcing the continuity of the time derivative of the primary variable. However, this constraint introduces a drift in the primary variable on the interface. We present Method 4 (Baumgarte stabilized) which uses Baumgarte stabilization to limit this drift and we derive bounds for the stabilization parameter to ensure stability. Our stability analysis is based on the ``energy'' method, and one of the main contributions of this paper is the extension of the energy method (which was previously introduced in the context of numerical methods for ODEs) to assess the stability of numerical formulations for index-2 differential-algebraic equations (DAEs).Comment: 22 Figures, 49 pages (double spacing using amsart

    Enumeration and Structure of Trapezoidal Words

    Full text link
    Trapezoidal words are words having at most n+1n+1 distinct factors of length nn for every n≥0n\ge 0. They therefore encompass finite Sturmian words. We give combinatorial characterizations of trapezoidal words and exhibit a formula for their enumeration. We then separate trapezoidal words into two disjoint classes: open and closed. A trapezoidal word is closed if it has a factor that occurs only as a prefix and as a suffix; otherwise it is open. We investigate open and closed trapezoidal words, in relation with their special factors. We prove that Sturmian palindromes are closed trapezoidal words and that a closed trapezoidal word is a Sturmian palindrome if and only if its longest repeated prefix is a palindrome. We also define a new class of words, \emph{semicentral words}, and show that they are characterized by the property that they can be written as uxyuuxyu, for a central word uu and two different letters x,yx,y. Finally, we investigate the prefixes of the Fibonacci word with respect to the property of being open or closed trapezoidal words, and show that the sequence of open and closed prefixes of the Fibonacci word follows the Fibonacci sequence.Comment: Accepted for publication in Theoretical Computer Scienc

    The exponentially convergent trapezoidal rule

    Get PDF
    It is well known that the trapezoidal rule converges geometrically when applied to analytic functions on periodic intervals or the real line. The mathematics and history of this phenomenon are reviewed and it is shown that far from being a curiosity, it is linked with computational methods all across scientific computing, including algorithms related to inverse Laplace transforms, special functions, complex analysis, rational approximation, integral equations, and the computation of functions and eigenvalues of matrices and operators
    • …
    corecore