309 research outputs found

    Designing topological quantum matter in and out of equilibrium

    Full text link
    Recent advances in experimental condensed matter physics suggest a powerful new paradigm for the realization of exotic phases of quantum matter in the laboratory. Rather than conducting an exhaustive search for materials that realize these phases at low temperatures, it may be possible to design quantum systems that exhibit the desired properties. With the numerous advances made recently in the fields of cold atomic gases, superconducting qubits, trapped ions, and nitrogen-vacancy centers in diamond, it appears that we will soon have a host of platforms that can be used to put exotic theoretical predictions to the test. In this dissertation, I will highlight two ways in which theorists can interact productively with this fast-emerging field. First, there is a growing interest in driving quantum systems out of equilibrium in order to induce novel topological phases where they would otherwise never appear. In particular, systems driven by time-periodic perturbations—known as “Floquet systems”—offer fertile ground for theoretical investigation. This approach to designer quantum matter brings its own unique set of challenges. In particular, Floquet systems explicitly violate conservation of energy, providing no notion of a ground state. In the first part of my dissertation, I will present research that addresses this problem in two ways. First, I will present studies of open Floquet systems, where coupling to an external reservoir drives the system into a steady state at long times. Second, I will discuss examples of isolated quantum systems that exhibit signatures of topological properties in their finite-time dynamics. The second part of this dissertation presents another way in which theorists can benefit from the designer approach to quantum matter; in particular, one can design analytically tractable theories of exotic phases. I will present an exemplar of this philosophy in the form of coupled-wire constructions. In this approach, one builds a topological state of matter from the ground up by coupling together an array of one-dimensional quantum wires with local interactions. I will demonstrate the power of this technique by showing how to build both Abelian and non-Abelian topological phases in three dimensions by coupling together an array of quantum wires

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 16th International Annual Conference on Cyber Security, CNCERT 2020, held in Beijing, China, in August 2020. The 17 papers presented were carefully reviewed and selected from 58 submissions. The papers are organized according to the following topical sections: access control; cryptography; denial-of-service attacks; hardware security implementation; intrusion/anomaly detection and malware mitigation; social network security and privacy; systems security

    Molecular Dynamics Simulation

    Get PDF
    Condensed matter systems, ranging from simple fluids and solids to complex multicomponent materials and even biological matter, are governed by well understood laws of physics, within the formal theoretical framework of quantum theory and statistical mechanics. On the relevant scales of length and time, the appropriate ‘first-principles’ description needs only the Schroedinger equation together with Gibbs averaging over the relevant statistical ensemble. However, this program cannot be carried out straightforwardly—dealing with electron correlations is still a challenge for the methods of quantum chemistry. Similarly, standard statistical mechanics makes precise explicit statements only on the properties of systems for which the many-body problem can be effectively reduced to one of independent particles or quasi-particles. [...

    Graph Theory and Universal Grammar

    Get PDF
    Tese arquivada ao abrigo da Portaria nÂș 227/2017 de 25 de Julho-Registo de Grau EstrangeiroIn the last few years, Noam Chomsky (1994; 1995; 2000; 2001) has gone quite far in the direction of simplifying syntax, including eliminating X-bar theory and the levels of D-structure and S-structure entirely, as well as reducing movement rules to a combination of the more primitive operations of Copy and Merge. What remain in the Minimalist Program are the operations Merge and Agree and the levels of LF (Logical Form) and PF (Phonological form). My doctoral thesis attempts to offer an economical theory of syntactic structure from a graph-theoretic point of view (cf. Diestel, 2005), with special emphases on the elimination of category and projection labels and the Inclusiveness Condition (Chomsky 1994). The major influences for the development of such a theory have been Chris Collins’ (2002) seminal paper “Eliminating labels”, John Bowers (2001) unpublished manuscript “Syntactic Relations” and the Cartographic Paradigm (see Belletti, Cinque and Rizzi’s volumes on OUP for a starting point regarding this paradigm). A syntactic structure will be regarded here as a graph consisting of the set of lexical items, the set of relations among them and nothing more

    Methods for Massive, Reliable, and Timely Access for Wireless Internet of Things (IoT)

    Get PDF
    • 

    corecore