218,968 research outputs found

    The competition number of a generalized line graph is at most two

    Full text link
    In 1982, Opsut showed that the competition number of a line graph is at most two and gave a necessary and sufficient condition for the competition number of a line graph being one. In this note, we generalize this result to the competition numbers of generalized line graphs, that is, we show that the competition number of a generalized line graph is at most two, and give necessary conditions and sufficient conditions for the competition number of a generalized line graph being one.Comment: 13 pages, 4 figure

    Sequence mixed graphs

    Get PDF
    A mixed graph can be seen as a type of digraph containing some edges (or two opposite arcs). Here we introduce the concept of sequence mixed graphs, which is a generalization of both sequence graphs and literated line digraphs. These structures are proven to be useful in the problem of constructing dense graphs or digraphs, and this is related to the degree/diameter problem. Thus, our generalized approach gives rise to graphs that have also good ratio order/diameter. Moreover, we propose a general method for obtaining a sequence mixed diagraph by identifying some vertices of certain iterated line digraph. As a consequence, some results about distance-related parameters (mainly, the diameter and the average distance) of sequence mixed graphs are presented.Postprint (author's final draft

    Normal Factor Graphs and Holographic Transformations

    Full text link
    This paper stands at the intersection of two distinct lines of research. One line is "holographic algorithms," a powerful approach introduced by Valiant for solving various counting problems in computer science; the other is "normal factor graphs," an elegant framework proposed by Forney for representing codes defined on graphs. We introduce the notion of holographic transformations for normal factor graphs, and establish a very general theorem, called the generalized Holant theorem, which relates a normal factor graph to its holographic transformation. We show that the generalized Holant theorem on the one hand underlies the principle of holographic algorithms, and on the other hand reduces to a general duality theorem for normal factor graphs, a special case of which was first proved by Forney. In the course of our development, we formalize a new semantics for normal factor graphs, which highlights various linear algebraic properties that potentially enable the use of normal factor graphs as a linear algebraic tool.Comment: To appear IEEE Trans. Inform. Theor
    corecore