2,594 research outputs found

    Generalized exponents of non-primitive graphs

    Get PDF
    AbstractThe exponent of a primitive digraph is the smallest integer k such that for each ordered pair of (not necessarily distinct) vertices x and y there is a walk of length k from x to y. As a generalization of exponent, Brualdi and Liu (Linear Algebra Appl. 14 (1990) 483–499) introduced three types of generalized exponents for primitive digraphs in 1990. In this paper we extend their definitions of generalized exponents from primitive digraphs to general digraphs which are not necessarily primitive. We give necessary and sufficient conditions for the finiteness of these generalized exponents for graphs (undirected, corresponding to symmetric digraphs) and completely determine the largest finite values and the exponent sets of generalized exponents for the class of non-primitive graphs of order n, the class of connected bipartite graphs of order n and the class of trees of order n

    Crossover from Isotropic to Directed Percolation

    Full text link
    Percolation clusters are probably the simplest example for scale--invariant structures which either are governed by isotropic scaling--laws (``self--similarity'') or --- as in the case of directed percolation --- may display anisotropic scaling behavior (``self--affinity''). Taking advantage of the fact that both isotropic and directed bond percolation (with one preferred direction) may be mapped onto corresponding variants of (Reggeon) field theory, we discuss the crossover between self--similar and self--affine scaling. This has been a long--standing and yet unsolved problem because it is accompanied by different upper critical dimensions: dcI=6d_c^{\rm I} = 6 for isotropic, and dcD=5d_c^{\rm D} = 5 for directed percolation, respectively. Using a generalized subtraction scheme we show that this crossover may nevertheless be treated consistently within the framework of renormalization group theory. We identify the corresponding crossover exponent, and calculate effective exponents for different length scales and the pair correlation function to one--loop order. Thus we are able to predict at which characteristic anisotropy scale the crossover should occur. The results are subject to direct tests by both computer simulations and experiment. We emphasize the broad range of applicability of the proposed method.Comment: 19 pages, written in RevTeX, 12 figures available upon request (from [email protected] or [email protected]), EF/UCT--94/2, to be published in Phys. Rev. E (May 1994

    Synchronizing Automata on Quasi Eulerian Digraph

    Full text link
    In 1964 \v{C}ern\'{y} conjectured that each nn-state synchronizing automaton posesses a reset word of length at most (n1)2(n-1)^2. From the other side the best known upper bound on the reset length (minimum length of reset words) is cubic in nn. Thus the main problem here is to prove quadratic (in nn) upper bounds. Since 1964, this problem has been solved for few special classes of \sa. One of this result is due to Kari \cite{Ka03} for automata with Eulerian digraphs. In this paper we introduce a new approach to prove quadratic upper bounds and explain it in terms of Markov chains and Perron-Frobenius theories. Using this approach we obtain a quadratic upper bound for a generalization of Eulerian automata.Comment: 8 pages, 1 figur

    Intersections of multiplicative translates of 3-adic Cantor sets

    Full text link
    Motivated by a question of Erd\H{o}s, this paper considers questions concerning the discrete dynamical system on the 3-adic integers given by multiplication by 2. Let the 3-adic Cantor set consist of all 3-adic integers whose expansions use only the digits 0 and 1. The exception set is the set of 3-adic integers whose forward orbits under this action intersects the 3-adic Cantor set infinitely many times. It has been shown that this set has Hausdorff dimension 0. Approaches to upper bounds on the Hausdorff dimensions of these sets leads to study of intersections of multiplicative translates of Cantor sets by powers of 2. More generally, this paper studies the structure of finite intersections of general multiplicative translates of the 3-adic Cantor set by integers 1 < M_1 < M_2 < ...< M_n. These sets are describable as sets of 3-adic integers whose 3-adic expansions have one-sided symbolic dynamics given by a finite automaton. As a consequence, the Hausdorff dimension of such a set is always of the form log(\beta) for an algebraic integer \beta. This paper gives a method to determine the automaton for given data (M_1, ..., M_n). Experimental results indicate that the Hausdorff dimension of such sets depends in a very complicated way on the integers M_1,...,M_n.Comment: v1, 31 pages, 6 figure

    Applications of Field-Theoretic Renormalization Group Methods to Reaction-Diffusion Problems

    Full text link
    We review the application of field-theoretic renormalization group (RG) methods to the study of fluctuations in reaction-diffusion problems. We first investigate the physical origin of universality in these systems, before comparing RG methods to other available analytic techniques, including exact solutions and Smoluchowski-type approximations. Starting from the microscopic reaction-diffusion master equation, we then pedagogically detail the mapping to a field theory for the single-species reaction k A -> l A (l < k). We employ this particularly simple but non-trivial system to introduce the field-theoretic RG tools, including the diagrammatic perturbation expansion, renormalization, and Callan-Symanzik RG flow equation. We demonstrate how these techniques permit the calculation of universal quantities such as density decay exponents and amplitudes via perturbative eps = d_c - d expansions with respect to the upper critical dimension d_c. With these basics established, we then provide an overview of more sophisticated applications to multiple species reactions, disorder effects, L'evy flights, persistence problems, and the influence of spatial boundaries. We also analyze field-theoretic approaches to nonequilibrium phase transitions separating active from absorbing states. We focus particularly on the generic directed percolation universality class, as well as on the most prominent exception to this class: even-offspring branching and annihilating random walks. Finally, we summarize the state of the field and present our perspective on outstanding problems for the future.Comment: 10 figures include

    The stable index of digraphs

    Full text link
    The stable index of a digraph DD is defined to be the smallest integer kk such that DD contains two distinct (k+1)(k+1)-walks with the same initial vertex and terminal vertex if such an integer exists; otherwise the stable index of DD is defined to be \infty. We characterize the set of stable indices of digraphs with a given order
    corecore