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1. Introduction 

In 1990, R.A. Brualdi and Bolian Liu [l] introduced three types of the gen- 
eralized exponents for non-negative primitive matrices and primitive digraphs. 
These notions of generalized exponents are natura1 extensions of the concepts 
of the primitive exponents for non-negative primitive matrices and the ergodic 
indices for the transition matrices of finite homogeneous Markov chains (see 
the comments following Definition 1.2). Primitive exponents and ergodic indi- 
ces have been extensively studied. 

Generalized exponents also have an interpretation in a model of “memory- 
less communication networks”. For details, see [ 11. Generalized exponents tan 
be defined both for matrices and digraphs. In this Paper, we adopt the graph- 
theoretic version to define the generalized exponents and use graph-theoretic 
methods to prove our main results (see [l] for matrix Versions of the definitions 
of generalized exponents). 

A digraph D is called primitive if there exists a positive integer k such that 
for each ordered pair of vertices x and y (not necessarily distinct), there is a 
walk of length k from x to y. The smallest such k is called the primitive expo- 
nent of D, denoted by y(D). It is well known that a digraph D is primitive if and 
only if D is strongly connected and the greatest common divisor of the lengths 
of its cycles is 1. In Order to define the three types of the generalized exponents, 
we first define the “Set exponent” for the vertex subsets of digraphs. 

Definition 1.1 [l]. Let D be a digraph and X be a vertex subset of D. The “Set 
exponent” exp,(X) is defined to be the smallest positive integer p such that for 
each vertex y of D, there exists a walk of length p from at least one vertex in X 
to y. If no such p exists, then we define exp,(X) = 00. 

If x is a vertex of D, then the “vertex exponent” rD(x) is defined to be 

Y&) = expdW (1.1) 

Definition 1.2 [l]. Let D be a digraph of Order IZ. If we choose to Order the 12 
vertices 01, ~2, . , v, of D in such a way that 

Yo(V,) < YD(Q) < . . . < YD(%), 

then we cal1 yD(vA) “the kth first type generalized exponent of D”, denoted by 

exp(D, k). 

It is obvious that 

exp(D, 1) < exp(D,2) < ... < exp(D,n). 

In particular, if D is primitive, then exp (D, TZ) equals the primitive exponent 
y(D) of D. Also if D is the associated digraph of the transition matrix of a finite 
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homogeneous Markov chain, then exp (D, 1) is just the ergodic index of the 
chain. Thus the classical primitive exponent and ergodic index are special cases 
of k = n and k = 1 of our (first type) generalized exponent exp (D! k). 

Now we define the second and third types of generalized exponents of di- 
graphs. 

Definition 1.3 [l]. Let D be a digraph of Order y2 and let k be an integer with 
1 <k < n. Then we define 

.f’(D. k) = min{exp,(X) / X C V(D) and /X( = k} (1.2) 

and 

F(D; k) = max{exp,(X) 1 X C V(D) and /X/ = k}, (1.3) 

,f‘(D. k) and F(D. k) are called “the kth second type and the h-th third type gen- 
eralized exponents of D”, respectively. 

Note that the case k = n for f(D. k) and F(D, k) is trivial, so in the study of 
,f’(D: k) and F(D. k) in this Paper (Sections 3 and 4), we will only consider the 
case 1 <k<n - 1. 

It is easy to see from (Eq. (1.1)) that 

.f(D. 1) = exp (D, l), F(D, 1) = exp(D. n) (1.4) 

We would like to mention here that the original definitions of the three types 
of generalized exponents in [l] were given only for primitive digraphs, while 
here we extend the definitions to all digraphs. Therefore it might happen that 
the values of some generalized exponents of some digraphs are infinity. It is not 
difficult to see that if a digraph D is primitive, then all the generalized expo- 
nents of D are finite. It has also been shown in [2] that primitivity is only a suf- 
ficient condition, but not (in general) a necessary condition for the finiteness of 
these generalized exponents. This means that there do exist non-primitive di- 
graphs with finite values of generalized exponents. So it is natura1 for us to 
study generalized exponents for (more general) non-primitive digraphs. 

A symmetric digraph D is a digraph where for any vertices .Y and y in 
D. (y. x) is an arc if and only if (x! y) is an arc. An (undirected) graph G tan nat- 
urally correspond to a symmetric digraph DG by replacing each (undirected) 
edge [x: y] of G by a pair of (directed) arcs (x, y) and (y..~). In this Paper we will 
identify the graph G with the corresponding symmetric digraph DG. Thus the 
primitivity of G and the three types of generalized exponents of G are defined 
to be the same as that of the corresponding digraph DG. 

Since any edge of G corresponds to a directed cycle of length 2 in DG, we 
deduce from the primitivity criterion for digraphs that an (undirected) graph 
G is primitive if and only if G is connected and contains at least one odd cycle, 
namely, G is a connected non-bipartite graph. 
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In [1,3,4], Brualdi and Liu derived various upper bounds of the generalized 
exponents for primitive digraphs and for primitive digraphs of special types such 
as: symmetric digraphs, toumaments and minimally strong digraphs. In this 
Paper, we study the generalized exponents for non-primitive (undirected) graphs 
(including connected bipartite graphs and trees). We will give the finiteness cri- 
terion for the three types of the generalized exponents for graphs (in Section 2). 
Then (in Sections 3 and 4) we will completely determine the largest finite values 
and the entire exponent sets (the set of those numbers attainable as exponents) of 
these generalized exponents for the class of non-primitive graphs of Order n, the 
class of connected bipartite graphs of Order n and the class of trees of Order n. 

2. The finiteness conditions for the generalized exponents of undirected graphs 

In Order to study the three types of the generalized exponents for non-prim- 
itive undirected graphs, the first question is when these generalized exponents 
exp (G, k), AG, k) and F(G, k) are finite for a non-primitive graph G. The nec- 
essary and sufficient conditions for the finiteness of exp(D, k), f(D, k) and 
F(D, k) for a general digraph D were given by Shao and Wu [2]. But for undi- 
rected graphs (i.e., symmetric digraphs), we tan give more explicit formulations 
and direct proofs of the finiteness conditions of their generalized exponents. 

Theorem 2.1. Let G be an undirected graph of Order n, 1 <k 6 n, then 
exp (G, k) < 00 if and only if G is primitive. 

Proof. The sufficiency part is obvious. So we only consider the necessity part. 
Suppose G is not primitive. Then either Gis not connected or G is connected and 
bipartite. If G is not connected, then the vertex exponent of any vertex of G is 
infinite, so exp (G, k) = CO. If Gis a connected bipartite graph, let v be any vertex 
of G and m be any positive integer. If m is odd, then there is no walk of length m 
from v to v; If m is even, then there is no walk of length m from v to its adjacent 
vertices. This Shows that y,(v) = cc for any vertex v of G, so exp(G, k) = CO. 
This proves the necessity part and completes the proof of the theorem. 0 

From Theorem 2.1 we see that there is no non-primitive graph G such that 
exp(G, k) is finite. Thus, there is no need to study the first type generalized ex- 
ponents for non-primitive graphs, and so we will restritt ourselves to the study 
of the second and third type generalized exponents for non-primitive graphs. 

Theorem 2.2. Let G be an undirected graph of Order n, GI,. . . , G, be the 
connected components of G which are primitive, BI,. . . , BS be the connected 
components of G which are notprimitive (namely bipartite). Let V(Bi) = Xi U & 
be the bipartition of the vertex set of the connected bipartite graph Bi (1 6 i < s). 
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Suppose X is any vertex subset of G, then the set exponent exp&) < 0~) ifand 
only if the following three conditions are satisfied: 

(l)XnV(G,)#fl (j= l,...,~); (2.1) 
(2)Xnxj #fl (i= l!...,s). (2.2) 
(3)/YnY, #fl (i= l,...,S);. (2.3) 

Proof. Necessity. If (1) is not satisfied, then X n V( G,) = $4 for some j, and so 
there is no walk from any vertex of Xto any vertex of Gj, and thus exp,(X) = 3~. 
If (2) is not satisfied, thenX n Xi = fl for some i, so there is no walk of even length 
from any vertex of Xto any vertex ofXi, and there is no walk of odd length from 
any vertex of X to any vertex of K, and thus we also have exp,(X) = 0~. A 
similar argument tan be applied to the case when (3) is not satisfied. 

Sufficiency. Suppose (l), (2) and (3) are all satisfied. Take 

Z, EXnV(G,) (j= l...., r). 

x, Exnx, (i= l,...,s). 

y, Exnr, (i= l,...:s). 

Let 1/(Gj) be the primitive exponent of the primitive graph Gj ( j = 1, . . , Y) and 
d(Bi) be the diameter of the connected graph B,, (i = 1, ~ s). Let m be a pos- 
itive integer such that 

m 3 max{y(Gr), . . , y(G,); d(B,), . ,d(B,)}. 

We will show that exp,(X) < m < CQ. Suppose y is an arbitrary vertex of G. 
If y E V(Gj) for somej, then there is a walk of length m from the vertex zj of X 
to y; If y E Xi for some i, then there is a walk of length m from the vertex Xi of X 
to y in case m is even, and there is a walk of length m from the vertex y; of X to 
y in case m is odd (see Remark 2.1). A similar argument tan be applied to the 
case y E x for some i. Thus we have shown that there is a walk of length m 
from some vertex of X to y. Since y is arbitrary, this implies 
exp,(X) < m < 00, and thus completes the proof of the theorem. 0 

Remark 2.1. In the above proof we have used the following basic property for 
undirected graphs: If there is a walk of length b from a non-isolated vertex x to 
a vertex y in a graph G, then there is a walk of length b + 2t from x to y for all 
integers t 3 0. 

This basic property is easy to prove and will be used several times later in 
this Paper. 

Theorem 2.3. Let G, GI, . . . , G, and Bk,. . , B,s be us in Theorem 2.2, where 
r.s>Oundr+s>l.Letkbeanintegerwithl<k<n-l.Then: 
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(1) f(G,k) < 03 ifandonly ij’k 3r+2s; 
(2) F(G, k) < 00 ifand onZy if 

n-k<min{/V(G~)I ,..., /V(G,)I, I~lI,...,IXi, IKl:...,lKl). (2.4) 

Proof. (1) If k < r + 2s, then any k-vertex subset X of G cannot satisfy all the 
three conditions (2. l), (2.2) and (2.3), so exp,(X) = 00 for any k-vertex subset 
X of G (by Theorem 2.2) and thus f(G, k) = CO. If k 3 r + 2s, then it is easy to 
obtain a k-vertex subset XO satisfying Eqs. (2.1)-(2.3), thus f(G, k) < expG 
(Xo) < 03. 

(2) It is not difficult to prove that 
F(G, k) < 03 

w exp,(X) < CO for every k-vertex subset X of G 
_ every k-vertex subset X of G satisfies Eqs. (2.1)-(2.3) 
_ no (n - k)-vertex subset Y of G tan contain any of V(Gj) 

and&, J$ (j= l,..., r; i= l,.... s) 
en-k< IV(G,)l forallj= l,...,r 

andn-k< IX,1 foralli= l,...,s 
andn-k<j~Jforalli=l,...,s 

_ Eq. (2.4) is satisfied. 0 

3. The second type generalized exponent f( G, k) 

In this section we study the second type generalized exponents f (G, k) for 
non-primitive graphs and some special classes of non-primitive graphs such as 
connected non-primitive graphs (i.e., connected bipartite graphs) and trees. It 
is natura1 that we only consider those graphs G and integers k for which 
f(G, k) is finite. From Theorem 2.3 we know that if G is a non-primitive graph 
with f(G, k) < CO, then we must have k 3 2, while for connected bipartite 
graphs (including trees), f(G, k) < CO if and only if k 3 2. Also the case k = n 
for f(G, k) is trivial. So in this section we consider only the case 2 < k < n - 1. 

Let n, k be integers with 2 < k < n - 1. Let B(n) be the class of all connected 
bipartite graphs of Order n (here k > 2 implies f(G, k) < 00 for G E B(n)), T(n) 
be the class of all trees of Order n (also k 3 2 implies f(G, k) < m for 
G E 7’(n)), and N(n, k) be the class of all non-primitive graphs of Order n such 
that f(G, k) < 00. Let 

-b@(n), k) = {f(G, k) I G E B(n)} (2 <k 6 n - l), (3.1) 

NT(n),k) = -V(G, k) I G E T(n)) (2 G k < n - l), (3.2) 

h(N(n,k),k) = {f(G,k) 1 GEN(~,~)} (2<k<n- 1) (3.3) 
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be the exponent sets of the second type generalized exponents of the classes 
B(n), r(n) andN(n,k). Let el(B(n),k), el(T(n).k) and ez(N(n.k).k) be the larg- 
est numbers of the exponent sets E,(B(n),k), &(T(n),k) and &(N(n. k).k). In 
this section we give explicit expressions for the numbers e?(B(n). k), el( T(II). /i). 
r~(N(n.k).k) and for the sets &(B(n),k), Ez(T(n),k) and El(N(n.k),k). 

Let X be a vertex subset of a graph G. We say that X “d-covers” G, if the set 
exponent exp,(X) < d, i.e., if for any vertex c of G, there exists a walk of length 
d from at least one vertex of X to the vertex 1’. 

In the following, [u] denotes the largest integer not exceeding a and [hl de- 
notes the smallest integer not less than h. 

We first consider the generalized exponent f(T.k) for trees T of Order 17. 

Lemma 3.1. Let T he a trre qf Order n. Lrt k, d he positive integer.7 with k 3 2 md 

n< kf2 
, --d+k. 

: 1 2 
(3.4) 

Then thrrc exists LI 0erte.x suhset X qf T bvith IX/ <k ,iAich cm d-cozvr T. 

Proof. We proceed by induction on k. First assume k = 2. Then n < 2d c 2. Let 
Q be a longest path of T with length IQ]. Then IQ] <n - 1 < 2d + 1. If IQ] is 
odd, we take the two central vertices u and z’ of Q; If ]Q] is even, take the central 
vertex u of Q and a vertex ti in Q adjacent to U. Then for any vertex y of T, one 
of the distances d(u,y) and d(v,y) does not exceed d since Q is a longest path of 
T with length IQ] < 2d + 1. Without loss of generality, we assume d(u:y) < d. If 
d(u.>‘) and d have the same parity, then there is a walk of length d from u to J 
by Remark 2.1. If d(u,y) and d have different parity, then there is a walk of 
length d from c to y since L> is adjacent to U. This Shows that the vertex subset 
X = {u, ~3) tan d-cover T, where /X/ = 2 = k. 

Now we assume k 2 3 and use induction on k. Let Q be a longest path of T 
with length IQ]. If IQ] 6 2d + 1, then using the same arguments as in the case 
k = 2. we tan show that there exists a vertex subset X = {u. r} with 
/XI = 2 <k which tan d-cover 7‘. So in the following we may assume that 
IQ] 2 2d + 2. 

Let x and y be two end vertices of the path Q, let z be a vertex in Q such that 
the distance d(z.y) (the length of the unique path between z and v in the tree T) 
is d, let u be a vertex in Q adjacent to z with d(u.y) = d + 1. let B be the con- 
nected component containing ZI in the spanning subgraph T ~ E(Q). let 
Bi, &, : B,, be all the connected components of the graph B - u. Then there 
is exactly one vertex (say ui) in Bi adjacent to u (see Fig. 1). 

Let h(u, B,) be the largest distance between u and the vertices of B,. Since Q is 
a longest path of T we must have 

h(u.B,)<d+l (l<i<rrz). 



214 J.-Y. Shao, S.-G. Hwang / Linear Algebra and its Applications 279 (1998) 207-225 

x u z Y 

Fig. 1. 

Without loss of generality we may assume that there exists an index r with 
O<r<m such that 

h(u,B,) =d+l (l<i<r) (3.5) 

and 

h(U,Bj)<d (Y+ 1 <j<F72). 

(Here we agree that if there is no Bi such that h(u,&) = d + 1, then the index r 
is considered to be equal to Zero.) 

Then from Eq. (3.5) we tan deduce that 

IV(&)l 3 d+ 1 (1 <i<r). (3.6) 

Now let G be the set of vertices of T such that u E V, if and only if the (un- 
ique) path between x and v Passes through U, let TI be the subgraph induced by 
the vertex subset 6. Then TI is a subtree of T, and TI tan be d-covered by the 
following set of (r + 2) vertices: 

XI ={z,%f4,~2,.~~,%). 

Also from Eq. (3.6) we have that 

[V(Tl)l = IF’il ar(d+ l)+d+2. (3.7) 

Let V, = V(T) \ V, and TZ be the subgraph of T induced by the vertex subset 
V,. Then Tz is also a subtree of T. By the assumption that IQ] > 2d + 2 we have 

IV(T2)l = Ib/ B (2d+3) - (d+2) =d+ 1. 

On the other hand, from Eqs. (3.7) and (3.4) we also have 

(3.8) 

IV(T2)l = n - IWl)I < 
[ 1 
y d-t-k- (r(d+l)+d+2). (3.9) 

Combining Eqs. (3.8) and (3.9) we have 

1 1 F d + k - (r + 2)d - (r + 3) 3 0. 
L L J 
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1°[ k-2r-2 2 1 d + (k - r - 3) 3 0, (3.10) 

which implies that k 2 r + 3. 
Case 1. Suppose k = r + 3. Then from Eq. (3.10) we have [(l - r)/2]d 3 0. 

So [(l - r)/2]d = 0 and equality holds in Eq. (3.10), and thus equality also 
holds in Eqs. (3.9) and (3.8). So IV(T2)1 = d + 1 and TZ is a subgraph of the 
path Q. Now let w be the vertex in Q adjacent to u and different from z, and 
take the following set of Y + 3 vertices: 

X=X,u{W}={ W,z,u,#r,u~ . . . . . u,}. (3.11) 

Then 1x1 = Y + 3 = k and X tan d-cover T. 
Case 2. Suppose k 3 r + 4. Let kl = k - r - 2. Then kl 2 2. From Eq. (3.9) 

we have 

IV(fi)l< r+]d+k, = r’ -;+‘]d+k,< r+]d+k,. (3.12) 

Using induction on kl b 2 for the tree Tz we know that there exists a vertex 
subset & of r* with 1x21 6 kl which tan d-cover Tz. Now take 

then 1x1 = 1x11 + iX,l< r + 2 + kl = k and X tan d-cover the original tree T. 
This completes the proof of the lemma. 0 

Remark 3.1. Lemma 3.1 is also true if T is a primitive graph of Order n, but it is 
more difficult to use an inductive proof in the primitive case because the 
subgraph obtained in the inductive process does not necessarily remain 
primitive. Actually, the primitive case tan be proved as an easy consequence of 
our tree case by simply taking a spanning tree of the primitive graph. This is an 
example to Show the advantages of considering the non-primitive case in the 
study of the generalized exponents. 

Lemma 3.2. Let G be any connected graph (primitive OY non-primitive) of Order n 
and2<k<n - 1. Then we haue 

f(G, k) 6 

Proof. Let T be a spanning tree of G. Then f(G, k) < f (T, k). Let 

(3.13) 

(3.14) 
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Since ,f( T. k) = WZ, there exists a k-vertex subset X. C V(T) which tan m-cov- 
er T. It is easy to see that X. tan also nz-cover T”. so 

,f(T‘.k) <m =f(T,k). (3.27) 

On the other hand, suppose ,f( T”. k) = p. Then there exists a k-vertex subset 
Y’, C V( T‘) which tan p-cover T*. Now let 

X, = 
{ 

r;, if F* @ F,. 

( &, \ {u*}) U {r} if t’* E Yo. 
(3.33) 

then X, is a vertex subset of T and IX, / < k. It is easy to see that XI tan i?-covet 
T. so 

.f(T.k) <f(T.Ix,I) < exp,(XI) <p =.f’(T’.k). (3.24) 

Combining Eqs. (3.22) and (3.24). we have 

,f(r*.k) =f(T,k) = 1?1. (3.25’1 

Since T* is a tree of Order rz + 1, Eq. (3.25) implies m t E,( r(n + 1). k) and thus 
&(T(n).k) C E:(T(n + l).k), as desired. 0 

Now we tan give explicit expressions for the exponent Sets Ez(B(n).k) and 
Ez( T(n). k). 

Theorem 3.1. Let n. k he htegevs uYth 2 < k < IZ - 1, tlwn 

L(B(n). k) = &(T(n).k) = 

Proof. By definition we know that el( r(n). k) E Ez(T(n). k). Using Lemma 3.3 
we also have for k + 1 < m <n that 

e?(T(m),k) E &(T(m).k) C fG(T(n),k) (k+ 1 <t?7</7). (3.37) 

Thus 

{ez(T(m).k) 1 k + 1 < m < rz} C Ez(T(n). k). (3.38) 

Noticing that 

e,( T(m),k) = 

we see that the left-hand side of Eq. (3.28) is a set of consequtive integers from 
1 to ei(T(n).k). so Eq. (3.28) tan be rewritten as 

{1,2....,e~(Z’(n),k)} = {e?(T(m).k) 1 k+ 1 <m<n} c Ez(T(n).k). 

(3.39) 
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Also it is obvious that 

Combining this with Eqs. (3.29) and (3.18) we have 

E2(T(n),k) = E2(B(n),k) = 

{ i /w 1,2,. . . > (n - kl 

This proves the theorem. 0 

Now we consider the general non-primitive case, and determine the expo- 
nent set Ez(N(n, k), k) and the number ez(N(n, k), k). First we prove the follow- 
ing upper bound of f(G, k) for G E N(n, k). 

Lemma 3.4. Let n, k be positive integers with 2 < k < n - 1. Let G be a graph of 
Order n such that f (G, k) < CX. Then 

f (G, k) <n - k. (3.30) 

Proof. Suppose GI,. . . , G,., G,+I, . . . , G,+, are all the connected components of 
G where GI, . . . , G, are primitive and Gi+t, . . . , G,.+, are bipartite. Then from 
Theorem 2.3 we know that f (G, k) < CO implies k 2 Y + 2s. Thus we tan take 
positive integers kl,. . , k,, k,+l, . . . , k,+, such that 

kj 3 1 (1 <j<y), (3.31) 

kj32 (r+l<j<r+s) (3.32) 

and 
r+s 

k = Ckj. 
J=l 

(3.33) 

Now for any 1 < j < r + s, we take a vertex subset Xj in Gj with IXjl = kj such 
that 

expc,(Xj) =f(Gj,kj) (1 <j<r+s). (3.34) 

Let 
i-+S 

X’ = ux,, (3.35) 

then 
r+s r+.S 

Ix*I = Clql = Ckj = k. 
j=l j=l 

(3.36) 
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So X’ is a k-vertex subset of G and we have 

f(G, k) < exp,(X*) = , <J!f+,v expc,(Xi) = , <y$f+,r‘<G”k,)~ \ -. , \ 
(3.37) 

Next we estimate those f(G,. kj). We write n, = 1 V(Gj)I and consider the fol- 
lowing two cases. 

Case 1. k, = 1. Then 1 <j < r and Gj is primitive. From Eq. (1.4) we have 
f(Gi, 1) = exp(G,, 1). Using the upper bound exp(D, 1) < IZ - 1 for a primitive 
digraph D of Order n given in [l], Theorem 6.2 we have 

,f(G,,kj) =f(Gj, 1) = exp(Gj, 1) <nj - 1 =n, -kl 

= (n - k) - c(q - k,) <n - k. 
r#j 

(3.38) 

Case 2. k, 3 2. Then by Lemma 3.2 of this Paper we also have 

= (n - k) - c(n; - k,) <n - k. 
l#i 

(3.39) 

Combining Cases 1 and 2 we obtain f(Gj, ki) < n - k for any 1 <j < Y + s. 
Thus from Eq. (3.37) we obtain f(G, k) < n - k, completing the proof of the 
lemma. 0 

Now we give explicit expressions of the exponent set &(N(n, k). k) and the 
number ez(N(n. k), k). 

Theorem 3.2. Let n, k be integers with 2 < k < n - 1. Then we haue 

Ez(N(n,k),k)={1,2,...,(n-k)} 

and thus 

(3.40) 

ez(N(n, k), k) = n - k. (3.41) 

Proof. Take any integer m with 1 $ m 6 n - k. We construct a non-primitive 
graph G(n, k, m) of Order n as follows: G(n, k, m) has k connected components 
G,,... , Gk. For 1 < j < k - 1, each component G/ is a Single 100p vertex Uj, 
while the component Gk consists of a path ui! ~2,. , IJ,,, with a loop at its end 
vertex vi together with a Star of Order n - k - m + 2 centred at v, (See Fig. 2). 

It is not difficult to verify that 

f(G(n, k, m), k) = exp,(,,,,,)({ui, . . . , W-I- VI 1) = m. (3.42) 
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Fig. 2. The graph G(n, k, WZ) 

So m E /&(N(n,k),k). Th is is true for any integer m with 1 <m < n - k, and 
thus 

{1,2;,(n-k)) cELI(N(%k),k). (3.43) 

Combining Eq. (3.43) and Lemma 3.4 we obtain the desired result. 0 

4. The third type generalized exponent F(G, k) 

In this section we study the third type generalized exponents F(G, k) for the 
class of non-primitive graphs, the class of connected bipartite graphs and the 
class of trees of Order n. As in the case for the second type generalized expo- 
nents f(G,k), we only consider those graphs G and integers k for which 
F(G, k) is finite. 

Let 

ENj(n, k) = {F(G, k) 1 G 1s a non-primitive graph of Order n 

with F(G, k) < YO}, (4.1) 

Eh(n,k) = {F(G,k) I G is a connected bipartite graph of Order IZ 

with F(G, k) < co}, (4.2) 

Efi(n,k) = {F(G,k) I G is a tree of Order n with F(G, k) < CO} (4.3) 

be the three exponent sets of the three related classes of non-primitive graphs. 
In this section, we will first give upper bounds of F(G, k) for non-primitive 
graphs G and then completely determine these three exponent Sets. 

Suppose II, k are integers with 1 < k < n. From Theorem 2.3 we tan see that 
if F(G, k) < DU for some non-primitive graph G of Order IZ, then we must have 
n - k< (n/2) - 1, and so k < (n/2) + 1. Also the case k = n is trivial. So in this 
section we consider only the case (n/2) + 1 6 k < n - 1. 

We first give an upper bound of F(G, k) for a connected bipartite graph G of 
Order II with F(G, k) < CG. 

Lemma 4.1. Let n, k bepositive integers with 1 < k < n - 1. Let G be a connected 
bipartite graph oj’order n with F(G, k) < IX. Then we haue 

F(G, k) < 2(n - k). (4.4) 
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Proof. Suppose V(G) = X U Y is the bipartition of the vertices of G. Write 
/X/ = ni. IYI = n2, then 111 + n2 = n. By Theorem 2.3 we tan see that 
F(G, k) < x implies k > n - n2 = ni. and also k > n?. 

Let Z be any k-vertex subset of G. Write 

(z n x( = k,. (Zn YI = k?, (4.5j 

then kl + k, = k and 

kl = k - kz 3 k - nl > 1. (4.61 

kl = k - kl 3 k - nl > 1. (4.71 

Let ~‘0 be any vertex of G. Without loss of generality, we may assume that 
PO E X. Let zo be the vertex in Z nx which is nearest to L‘~ among all the ver- 
tices of Z n X. Let P be a shortest path between zO and cg. Then P will not pass 
through the remaining kl - 1 vertices in Z nx other than zo, so P contains at 
most nl - kl + 1 vertices in X and thus contains at most nl - kl vertices in Y 
(by the property of bipartite graphs), so we have 

d(zo. Co) = ]Pl < 2( nl - kl) = 2(n - k) - 2(nz - kz) 6 2(n - k). (4.81 

But z. and L’~ are both in X, so d(zo. L’(~ ) is even, and thus by Remark 2.1 we 
know that there is a walk from z. to vg with length equal to 2(n - k). Since 
rll is an arbitrary vertex of G and zll E Z n X C Z. this Shows that 

exp,(Z) < 2(n - k). (4.9) 

Now Eq. (4.9) holds for any k-vertex subset Z of G, so we have 
F(G, k) < 2(~ - k) as desired. ??

Notice that the upper bound in Eq. (4.4) also holds if G is a primitive graph 
of Order n ([l], Theorem 6.3), so we have seen that Eq. (4.4) holds for all con- 
nected graphs G of Order n with F( G, k) < 30. In the following lemma we will 
show that this is actually true for all graphs G of Order n with F(G, k) < 1~. 

Lemma 4.2. Let n, k be integevs with 1 < k < n - 1 and G be a graph of’oukr II 
with F(G. k) < x, then 

F(G, k) < 2(n - k). (4.10) 

Proof. Let GI.. , G,. be all the connected components of G and write 

n, = lV(Gj)/ (j= l,...;~). (4.11) 

Let X be any k-vertex subset of G and write 

x,=xnV(G,) (j=l?...%~). 
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IX,1 =kj (j= l,...,~). (4.12) 

Then F(G, k) < 03 implies that 

F(G,,kj) <W (jr l,...,r). (4.13) 

Now each Gj is a connected graph, so by the arguments preceding this lem- 
ma we have 

F(Gj, kj) 6 2(nj - kj) = 2(” - k) - 2x(ni - ki) < 2(n - k) 
i#j 

(j= l,...,Y). 

Thus 

(4.14) 

exp,(X) = Iy~2r expG,(Xi) 6 ,<j<xF(Gj, kj) < 2(n - k). \. . , 

Since Eq. (4.15) is true for any k-vertex subset X of G, we obtain 

F(G, k) = max{ exp,(X) 1 X 2 V(G), (XI = k} < 2(n - k). 

This completes the proof of the lemma. 0 

(4.15) 

Next we will construct trees of Order n to show that all the integers between 2 
and 2(n - k) are in the exponent set ET3(n, k). We consider the cases for even 
numbers and odd numbers separately. 

Lemma 4.3. Let n, k be positive integers with (n/2) + 1 < k < n - 1, and let t be 
an integer with 1 < t < n - k. Then we haue 

2t E ETj(n, k). (4.16) 

Proof. Let T be a tree of Order n as shown in Fig. 3. Let 
X= {X,,. ..,.wf+1), y= {Yl,. . . ,yk_l}. Then V(T) = X U Y is the bipartition 
of the vertices of the connected bipartite graph T. It is easy to see that the 
diameter d(T) of T is 

d(T) = d(xi,y,+,) = 2t + 1. (4.17) 

Take any k-vertex subset 2 of T, and let u. be any vertex of T. Since 
k 3 (n/2) + 1, we have 

IYI=k-l>n-k+l=/XI 

and so 1.Z > 1 Y 1 2 1x1. Thus, Z n X # 9 and Z fl Y # 9 . Therefore there exists 
a vertex zo in 2 which is in the Same part (X or r) as vo, and so the distance 
d(zo, vg) is even. Also we have 

d(zo, v,,) <d(T) = 2t + 1. 
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*r +2 X,-t+1 Y, iz Yk-1 

?? = . ..w 
Xl YI Xl Y2 XI Y, x, +, Y, +1 

Fig. 3. 

But d(zo, ug) is even, so we must have d(zo, uO) < 2t. By Remark 2.1 we further 
know that there is a walk of length exactly 2t from z() to ~1~. Since o0 is an ar- 
bitrary vertex of T and z. E Z, we have 

exp,(Z) < 2t. (4.18) 

Now Eq. (4.18) holds for any k-vertex subset Z of T, so this gives us 

F( T, k) < 2t. (4.19) 

On the other hand, take a special k-vertex subset Z0 = Y U {x, }. then it is not 
difficult to see that there is no walk of length 2t - 1 from any vertex of Z, to the 
vertex y,, , , so we have 

F( T. k) 3 exp,(Z,,) 3 2t. (4.20) 

Combining Eqs. (4.19) and (4.20) we have 

2t = F(T,k) E ET3(n,k). 

This proves the lemma. 0 

Lemma 4.4. Let n, k be positive integers with (n/2) + 1 <k < n - 1, let t he LIII 
integer with 2 < t < n - k, then we haue 

2t - 1 E Ec(n,k). (4.21) 

Proof. Let T* be a tree of Order n as shown in Fig. 4. Let X = (~1,. , 

xn-k+l), y = {Yl, . . . ,yk-1). Then V(T*) =X u Y is the bipartition of the 
vertices of the connected bipartite graph T*. Since t 3 2. we have 
d( T”) = d(x, ~ Xt+,) = 2t. 

XI YI x2 Y2 x, YI x, + I 

Fig. 4. 
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Let Z be any k-vertex subset of T’. By the same arguments as in Lemma 4.3, 
wehaveZnX#pandZnY#g.L t e ug be any vertex of T*. Then there exists 
a vertex zl in Z which is in the part (Xor Y) different from the part where r. is 
in, so d(zt , uo) is odd. By arguments similar to that of Lemma 4.3 we know that 
there is a walk of length exactly 2t - 1 from zl to ~0. So exp,, (Z) < 2t - 1 and 
thus F(T*, k) 6 2t - 1. 

On the other hand, take a special k-vertex subset 2, = Y U {x,}. Then there 
is no walk of length 2t - 2 from any vertex of Z, to the vertex x~+~, so we have 
F(T*,k) > exp,,(Z”) B 2t - 1. 

Combining the above two aspects we have 

2t - 1 = F(T*,k) E Efi(n,k) 

and the lemma is proved. 0 

From Lemmas 4.24.4 we already have that 

{2,3,. ,2(n -k)} C EG(n,k) C E&(n,k) 5 E&(n,k) 

c{l,2,3 ,..., 2(n-k)}. 
(4.22) 

Lemma 4.5. Let n, k be positive integers with (n/2) + 1 < k 6 n - 1. Then: 
(1) 1 E E&(n,k), 
(2) 1 6 ETi(n, k). 

Proof. (1) Take the complete bipartite graph K~n_k+t),(k_l~, then it is easy to see 
that 

1 = W$-k+o.p-l)r kl 6 &h kl 

(2) Let T be any tree of Order n, v. be a vertex of degree one in T, and vI be 
the unique vertex adjacent to VO. Since k < n - 1, we tan take a k-vertex subset 
Z0 of T such that v1 $ ZO. Then there is no walk of length 1 from any vertex of 
Z0 to the vertex vg. This Shows that 

F(T, k) 3 exp,(Zo) 3 2. (4.23) 

Now Eq. (4.23) holds for any tree T of Order 12, so we obtain 1 6 ET3(n, k). 0 

Combining Eq. (4.22) and Lemma 4.5, we finally obtain the following ex- 
plicit expressions of the exponent sets ENj(n, k), EB3(n, k) and ETj(n, k). 

Theorem 4.1. Let n, k be positive integers with (n/2) + 1 < k < n - 1. Then: 

ENj(n,k) = {1,2 ,..., 2(n-k)}, (4.24) 

E&(n,k) = {1,2,. ,2(n -k)}, (4.25) 
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ETj(T2.k) = {2,3,. . ,2(n - k)}, (4.26) 

From expressions (4.24), (4.25) and (4.26) we tan also directly see that the 
largest numbers of the exponent sets ENj(n, k). .!B3(n, k) and ETj(n, k) are all 
2(n - k). Thus the upper bounds given in Lemmas 4.1 and 4.2 are all the best 
possible upper bounds of the third type generalized exponents F(G. k). 
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