25 research outputs found

    Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields

    Full text link
    A maximal minor MM of the Laplacian of an nn-vertex Eulerian digraph Γ\Gamma gives rise to a finite group Zn−1/Zn−1M\mathbb{Z}^{n-1}/\mathbb{Z}^{n-1}M known as the sandpile (or critical) group S(Γ)S(\Gamma) of Γ\Gamma. We determine S(Γ)S(\Gamma) of the generalized de Bruijn graphs Γ=DB(n,d)\Gamma=\mathrm{DB}(n,d) with vertices 0,…,n−10,\dots,n-1 and arcs (i,di+k)(i,di+k) for 0≤i≤n−10\leq i\leq n-1 and 0≤k≤d−10\leq k\leq d-1, and closely related generalized Kautz graphs, extending and completing earlier results for the classical de Bruijn and Kautz graphs. Moreover, for a prime pp and an nn-cycle permutation matrix X∈GLn(p)X\in\mathrm{GL}_n(p) we show that S(DB(n,p))S(\mathrm{DB}(n,p)) is isomorphic to the quotient by ⟨X⟩\langle X\rangle of the centralizer of XX in PGLn(p)\mathrm{PGL}_n(p). This offers an explanation for the coincidence of numerical data in sequences A027362 and A003473 of the OEIS, and allows one to speculate upon a possibility to construct normal bases in the finite field Fpn\mathbb{F}_{p^n} from spanning trees in DB(n,p)\mathrm{DB}(n,p).Comment: I+24 page

    Efficient tilings of de Bruijn and Kautz graphs

    Full text link
    Kautz and de Bruijn graphs have a high degree of connectivity which makes them ideal candidates for massively parallel computer network topologies. In order to realize a practical computer architecture based on these graphs, it is useful to have a means of constructing a large-scale system from smaller, simpler modules. In this paper we consider the mathematical problem of uniformly tiling a de Bruijn or Kautz graph. This can be viewed as a generalization of the graph bisection problem. We focus on the problem of graph tilings by a set of identical subgraphs. Tiles should contain a maximal number of internal edges so as to minimize the number of edges connecting distinct tiles. We find necessary and sufficient conditions for the construction of tilings. We derive a simple lower bound on the number of edges which must leave each tile, and construct a class of tilings whose number of edges leaving each tile agrees asymptotically in form with the lower bound to within a constant factor. These tilings make possible the construction of large-scale computing systems based on de Bruijn and Kautz graph topologies.Comment: 29 pages, 11 figure

    Automorphisms of necklaces and sandpile groups

    Full text link
    We introduce a group naturally acting on aperiodic necklaces of length nn with two colours using the 1--1 correspondences between aperiodic necklaces and irreducible polynomials over the field \F_2 of two elements. We notice that this group is isomorphic to the quotient group of non-degenerate circulant matrices of size nn over that field modulo a natural cyclic subgroup. Our groups turn out to be isomorphic to the sandpile groups for a special sequence of directed graphs.Comment: 12 pages, several tables, no picture

    Forthcoming papers

    Get PDF

    The k-tuple twin domination in generalized de Bruijn and Kautz networks

    Get PDF
    AbstractGiven a digraph (network) G=(V,A), a vertex u in G is said to out-dominate itself and all vertices v such that the arc (u,v)∈A; similarly, u in-dominates both itself and all vertices w such that the arc (w,u)∈A. A set D of vertices of G is a k-tuple twin dominating set if every vertex of G is out-dominated and in-dominated by at least k vertices in D, respectively. The k-tuple twin domination problem is to determine a minimum k-tuple twin dominating set for a digraph. In this paper we investigate the k-tuple twin domination problem in generalized de Bruijn networks GB(n,d) and generalized Kautz GK(n,d) networks when d divides n. We provide construction methods for constructing minimum k-tuple twin dominating sets in these networks. These results generalize previous results given by Araki [T. Araki, The k-tuple twin domination in de Bruijn and Kautz digraphs, Discrete Mathematics 308 (2008) 6406–6413] for de Bruijn and Kautz networks

    Connectivity of consecutive-d digraphs

    Get PDF
    AbstractThe concept of consecutive-d digraph is proposed by Du, Hsu and Hwang. It generalizes the class of de Bruijin digraphs, the class of Imase-Itoh digraphs and the class of generalized de Bruijin graphs. We modify consecutive-d digraphs by connecting nodes with a loop into a circuit and deleting all loops. The result in this paper shows that the link-connectivity or the connectivity of modified consecutive-d digraphs get better
    corecore