The k-tuple twin domination in generalized de Bruijn and Kautz networks ${ }^{\text {sin}}$

Erfang Shan ${ }^{\text {a,* }}$, Yanxia Dong ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Shanghai University, Shanghai 200444, PR China
${ }^{\mathrm{b}}$ College of Mathematics Physics and Information Engineering, Jiaxing University, Zhejiang 314001, PR China

A R T I C L E I N F O

Article history:

Received 8 July 2011
Received in revised form 5 November 2011
Accepted 7 November 2011

Keywords:

k-tuple twin domination
Generalized de Bruijn network
Generalized Kautz network
Interconnection network

Abstract

Given a digraph (network) $G=(V, A)$, a vertex u in G is said to out-dominate itself and all vertices v such that the arc $(u, v) \in A$; similarly, u in-dominates both itself and all vertices w such that the $\operatorname{arc}(w, u) \in A$. A set D of vertices of G is a k-tuple twin dominating set if every vertex of G is out-dominated and in-dominated by at least k vertices in D, respectively. The k-tuple twin domination problem is to determine a minimum k-tuple twin dominating set for a digraph. In this paper we investigate the k-tuple twin domination problem in generalized de Bruijn networks $G_{B}(n, d)$ and generalized Kautz $G_{K}(n, d)$ networks when d divides n. We provide construction methods for constructing minimum k-tuple twin dominating sets in these networks. These results generalize previous results given by Araki [T. Araki, The k-tuple twin domination in de Bruijn and Kautz digraphs, Discrete Mathematics 308 (2008) 6406-6413] for de Bruijn and Kautz networks.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we deal with digraphs (networks) which admit self-loops but no multiple arcs. Specifically, let $G=(V, A)$ be a digraph with vertex set V and arc set A. For a vertex $u \in V$, the out-neighborhood of u is $N^{+}(u)=\{v \mid(u, v) \in A\}$ and the in-neighborhood of u is $N^{-}(u)=\{v \mid(v, u) \in A\}$. The closed out-neighborhood and closed in-neighborhood of u are $N^{+}[u]=N^{+}(u) \cup\{u\}$ and $N^{-}[u]=\{u\} \cup N^{-}(u)$, respectively. Note that if u has a self-loop, the out-neighborhood and inneighborhood of u contain u itself. For a subset $S \subseteq V$, write $N^{+}(S)=\cup_{u \in S} N^{+}(u)$ and $N^{-}(S)=\cup_{u \in S} N^{-}(u)$. The out-degree and in-degree of u are $\operatorname{deg}^{+}(u)=\left|N^{+}(u) \backslash\{u\}\right|$ and $\operatorname{deg}^{-}(u)=\left|N^{-}(u) \backslash\{u\}\right|$, respectively. Denote by $\delta^{+}(G)$ and $\delta^{-}(G)$ the minimum out-degree and in-degree of G, respectively.

Domination in digraphs has received more attention in recent years since it has many applications. A vertex u in G is said to out-dominate the vertices in $N^{+}[u]$ and in-dominate the vertices in $N^{-}[u]$. For a positive integer k, a set D of vertices of G is called a k-tuple out-dominating set if $\left|N^{+}[u] \cap D\right| \geq k$ for each vertex u of G, while D is called a k-tuple in-dominating set if $\left|N^{-}[u] \cap D\right| \geq k$ for each vertex u of G. In particular, the 1 -tuple out-dominating and in-dominating sets are respectively called the dominating set and absorbant of G in [1,2]. A set D of vertices in G is a k-tuple twin dominating set of G if $\left|N^{+}[u] \cap D\right| \geq k$ and $\left|N^{-}[u] \cap D\right| \geq k$ for each vertex u of G. The k-tuple twin domination number, denoted by $\gamma_{x k}^{*}(G)$, of G is the minimum cardinality of a k-tuple twin dominating set of G. When $k=1$, it is a usual twin domination. Note that a digraph G has a k-tuple twin dominating set if and only if $k \leq \delta^{+}(G)+1$ and $k \leq \delta^{-}(G)+1$. The concept of k-tuple twin domination in digraphs was recently introduced by Araki [3].

[^0]

Fig. 1a. $G_{B}(6,3)$.

Fig. 1b. $G_{K}(9,2)$.
This study is motivated by an application of k-tuple twin domination in networks suggested by Araki [3]. Let our graph be the model of a network. Each vertex in a k-tuple twin dominating set in digraphs provides a service (file-server, sensor and so on) for the network. In the network, there is a direct communication between every vertex and file-servers in both directions. It is reasonable to assume that this access is available even when some file-servers go down. A k-tuple twin dominating set provides the desired fault-tolerance for such cases because each vertex can access at least k servers and each server can have at least $k-1$ backup servers. Since each backup copy may cost a lot, the number of duplicated copies has to be minimized.

Let d, n be two positive integers and $n \geq d \geq 2$. The generalized de Bruijn digraph $G_{B}(n, d)$ is defined by congruence equations as follows:

$$
\left\{\begin{array}{l}
V\left(G_{B}(n, d)\right)=\{0,1,2, \ldots, n-1\} \\
A\left(G_{B}(n, d)\right)=\{(x, y) \mid y \equiv d x+i(\bmod n), 0 \leq i \leq d-1\} .
\end{array}\right.
$$

In particular, if $n=d^{m}$, then $G_{B}(n, d)$ is the de Bruijn digraph $B(d, m)$. The generalized Kautz digraph $G_{K}(n, d)$ is defined by the following congruence equation:

$$
\left\{\begin{array}{l}
V\left(G_{K}(n, d)\right)=\{0,1,2, \ldots, n-1\} \\
A\left(G_{K}(n, d)\right)=\{(x, y) \mid y \equiv-d x-i(\bmod n), 1 \leq i \leq d\}
\end{array}\right.
$$

In particular, if $n=d^{m}+d^{m-1}$, then $G_{K}(n, d)$ is the Kautz digraph $K(d, m)$. The generalized de Bruijn and Kautz digraphs have been studied as interconnection network topologies because of various good properties [4,5]. The graphs $G_{B}(6,3)$ and $G_{K}(9,2)$ are exhibited in Figs. 1. For notational convenience, sometimes we simply write G_{B} and G_{K} instead of $G_{B}(n, d)$ and $G_{K}(n, d)$, respectively, if n and d are explicit from the context.

For generalized de Bruijn digraphs, their Hamiltonian property [6], diameter [7], connectivity [8], absorbant [2] and twin domination [9,10] have been studied. Also, several structural objects such as spanning trees, Eulerian tours [11], closed walks [12] and small cycles [13] have been counted. For generalized Kautz digraphs, their diameter [14], their connectivity [15,8] and the number of cycles [16] have been studied. Kikuchi and Shibata [1] considered the domination problem for generalized de Bruijn and Kautz digraphs. In [17] Tian and Xu further investigated the distance domination for these digraphs. Recently, Araki $[18,3]$ studied the k-tuple domination and k-tuple twin domination in de Bruijn and Kautz digraphs. Wu et al. [19] considered the k-tuple domination for generalized de Bruijn and Kautz digraphs.

In [3] Araki presented the k-tuple twin domination number of de Bruijn and Kautz digraphs, separately, by constructing minimum k-tuple twin dominating sets in these digraphs.

Theorem 1 (Araki,[3]). For $d \geq 2, m \geq 1$, and $1 \leq k \leq d-1, \gamma_{\times k}^{*}(B(d, m))=k d^{m-1}$.

Table 1

The vertices of $G_{B}(n, d)$ or $G_{K}(n, d)$ when $d \mid n$.				
0	$\frac{n}{d}$	$2 \frac{n}{d}$	\ldots	$(d-1) \frac{n}{d}$
1	$\frac{n}{d}+1$	$2 \frac{n}{d}+1$	\ldots	$(d-1) \frac{n}{d}+1$
2	$\frac{n}{d}+2$	$2 \frac{n}{d}+2$	\cdots	$(d-1) \frac{n}{d}+2$
\vdots	\vdots	\vdots	\vdots	\vdots
i	$\frac{n}{d}+i$	$2 \frac{n}{d}+i$	\cdots	$(d-1) \frac{n}{d}+i$
\vdots	\vdots	\vdots	\vdots	\vdots
$\frac{n}{d}-1$	$\frac{n}{d}+\left(\frac{n}{d}-1\right)$	$2 \frac{n}{d}+\left(\frac{n}{d}-1\right)$	\cdots	$n-1$

Table 2

The vertices of $G_{B}(n, d)$ when $d \mid n$.				
0	1	2	\ldots	$(d-1)$
d	$d+1$	$d+2$	\cdots	$2 d-1$
$2 d$	$2 d+1$	$2 d+2$	\cdots	$3 d-1$
\vdots	\vdots	\vdots	\vdots	\vdots
$i d$	$i d+1$	\vdots	\cdots	$(i+1) d-1$
\vdots	\vdots	$\left(\frac{n}{d}-1\right) d+2$	\cdots	\vdots
$\left(\frac{n}{d}-1\right) d$	$\left(\frac{n}{d}-1\right) d+1$		$\cdots-1$	

Theorem 2 (Araki, [3]). For $d \geq 2$ and $1 \leq k \leq d-1$,

$$
\gamma_{\times k}^{*}(K(d, m))= \begin{cases}k & m=1 \\ k\left(d^{m-1}+d^{m-2}\right) & m \geq 2\end{cases}
$$

One natural problem arising is that of what the exact values of the k-tuple twin domination numbers in generalized de Bruijn and Kautz digraphs are. It seems to be difficult to determine the k-tuple twin domination numbers for these general digraphs. Our purpose here is to give the k-tuple twin domination numbers for $G_{B}(n, d)$ and $G_{K}(n, d)$ when d divides n. Since the vertex 0 has a self-loop in any $G_{B}(n, d), \delta^{+}\left(G_{B}(n, d)\right)=d-1$. This means that $G_{B}(n, d)$ has a k-tuple twin dominating set if and only if $k \leq d$. For $G_{K}(n, d)$, note the fact that $G_{K}(n, d)$ contains no self-loop iff ($d+1$) divides n (see [20, pp. 112-131]). Then $\delta^{+}\left(G_{K}(n, d)\right)=d-1$ or d. So $G_{K}(n, d)$ has a k-tuple twin dominating set if and only if $k \leq d+1$ when $(d+1)$ divides n or else $k \leq d$.

In this paper, by applying a distinct technique with that of Araki [3], we obtain the following generalized results.
Theorem 3. For $d \geq 2,1 \leq k \leq d-1$, where d divides $n, \gamma_{\times k}^{*}\left(G_{B}(n, d)\right)=\frac{k n}{d}$.
Theorem 4. For $d \geq 2,1 \leq k \leq d-1$, where d divides $n, \gamma_{\times k}^{*}\left(G_{K}(n, d)\right)=\frac{k n}{d}$.
Recalling that $G_{B}\left(d^{m}, d\right)=B(d, m)$ when $n=d^{m}$, while $G_{K}\left(d^{m}, d\right)=B(d, m)$ when $n=d^{m}+d^{m-1}$, we see that Theorems 1 and 2 are special cases of Theorems 3 and 4, respectively.

2. Proof of Theorem 3

For any positive integers m, n, we denote as (m, n) the greatest common divisor of m and $n . m \mid n$ means that m divides n. When d divides n, an easy observation is that the vertex set $V\left(G_{B}\right)$ of $G_{B}(n, d)$ can be represented as shown in Tables 1-2.
Proof of Theorem 3. As shown in Tables 1-2, we have

$$
V\left(G_{B}\right)=\bigcup_{i=0}^{\frac{n}{d}-1} \bigcup_{j=0}^{d-1}\{i d+j\}, \quad \text { or } \quad \bigcup_{i=0}^{\frac{n}{d}-1} \bigcup_{j=0}^{d-1}\left\{j \frac{n}{d}+i\right\} .
$$

Let $I_{i}=\bigcup_{j=0}^{d-1}\{i d+j\}$ and $P_{i}=\bigcup_{j=0}^{d-1}\left\{j \frac{n}{d}+i\right\}$. Note that the set of d elements in every row in Table 2 is exactly the outneighborhood of each vertex in the same row in Table 1, that is, $N^{+}(i)=N^{+}\left(\frac{n}{d}+i\right)=\cdots=N^{+}\left((d-1) \frac{n}{d}+i\right)=I_{i}$. Then $N^{-}(i d)=N^{-}(i d+1)=\cdots=N^{-}((i+1) d-1)=P_{i}$. Let T be a minimum k-tuple twin dominating set of $G_{B}(n, d)$.

We first show that $\gamma_{\times k}^{*}\left(G_{B}(n, d)\right) \geq \frac{k n}{d}$. If $\left|T \cap I_{i}\right| \geq k$ and $\left|T \cap P_{i}\right| \geq k$ for $0 \leq i \leq \frac{n}{d}-1$, then $\gamma_{\times k}^{*}\left(G_{B}(n, d)\right)=|T| \geq \frac{k n}{d}$. Otherwise, there exists one set I_{i} or P_{i} such that $\left|T \cap I_{i}\right| \leq k-1$ or $\left|T \cap P_{i}\right| \leq k-1$. Suppose $\left|T \cap I_{i}\right| \leq k-1$. Since I_{i} is the out-neighborhood of each vertex in P_{i}, we have $P_{i} \subseteq T$ and $\left|T \cap I_{i}\right| \geq k-1$ for otherwise T could not k-tuple in-dominate vertices of P_{i}. So $\left|T \cap I_{i}\right|=k-1$ and $\left|T \cap P_{i}\right|=\left|P_{i}\right|=d \geq k+1$. Similarly, if $\left|T \cap P_{i}\right| \leq k-1$, then we can deduce that

Table 3
An example: $G_{B}(32,4)$ and $k=3$.

0	1	2	3	0	8	16	24
4	5	6	7	1	9	17	25
8	9	10	11	2	10	18	26
12	13	14	15	3	11	19	27
16	17	18	19	4	12	20	28
20	21	22	23	5	13	21	29
24	25	26	27	6	14	22	30
28	29	30	31	7	15	23	31

$\left|T \cap P_{i}\right|=k-1$ while $\left|T \cap I_{i}\right|=\left|I_{i}\right|=d \geq k+1$. Note that $|T|=\left|\bigcup_{i=0}^{\frac{n}{d}-1}\left(T \cap P_{i}\right)\right|=\left|\bigcup_{i=0}^{\frac{n}{d}-1}\left(T \cap I_{i}\right)\right|$. Consequently, $\gamma_{\times k}^{*}\left(G_{B}(n, d)\right)=|T| \geq \frac{k n}{d}$.

Next we prove that $\gamma_{\times k}^{*}\left(G_{B}(n, d)\right) \leq \frac{k n}{d}$. Note that if a set T of vertices of G_{B} satisfies that $\left|T \cap I_{i}\right|=k$ and $\left|T \cap P_{i}\right|=k$ for each $i=0,1, \ldots, \frac{n}{d}-1$, then T is a k-tuple twin dominating set of G_{b}. Therefore, it is sufficient to show that there exists a set T of vertices of G_{B} such that $\left|T \cap I_{i}\right|=k$ and $\left|T \cap P_{i}\right|=k$. Let $\left(\frac{n}{d}, d\right)=t$. We construct the set T with $|T|=\frac{k n}{d}$ as follows:

$$
T=\bigcup_{r=0}^{t-1} T_{r}, \quad \text { where } T_{r}=\bigcup_{s=0}^{\frac{n}{d t}-1} \bigcup_{j=0}^{k-1}\left\{\left(\frac{n}{d t} r+s\right) d+r+j-d\left\lfloor\frac{r+j}{d}\right\rfloor\right\} .
$$

We claim that T is the desired set. Note that $0 \leq \frac{n}{d t} r+s \leq \frac{n}{d}-1$ and $0 \leq r+j-d\left\lfloor\frac{r+j}{d}\right\rfloor \leq d-1$. It is easy to check that $\left|T \cap I_{i}\right|=k$ for $0 \leq i \leq \frac{n}{d}-1$. Let

$$
T_{j}=\bigcup_{r=0}^{t-1} \bigcup_{s=0}^{\frac{n}{d t}-1}\left\{\left(\frac{n}{d t} r+s\right) d+r+j-d\left\lfloor\frac{r+j}{d}\right\rfloor\right\},
$$

where $j=0,1, \ldots, k-1$. It is easy to verify that $T_{i} \cap T_{j}=\emptyset$ for $i \neq j$ with $0 \leq i, j \leq k-1$. Thus, $\bigcup_{j=0}^{k-1} T_{j}=T$. Clearly, $\left|T_{j}\right|=\frac{n}{d}$ and $\left|T_{j} \cap I_{i}\right|=1$ for $0 \leq i \leq \frac{n}{d}-1$. Suppose that $\left|T \cap P_{i}\right|=k$ is not true for some i. Then there exists an i such that $\left|T \cap P_{i}\right|<k$ and so there exists at least a set T_{j} such that $T_{j} \cap P_{i}=\emptyset$. This implies that there must exist another set $P_{i^{\prime}}$ such that $\left|T_{j} \cap P_{i^{\prime}}\right| \geq 2$. That is, T_{j} contains two distinct vertices $x_{1}=\left(\frac{n}{d t} r_{1}+s_{1}\right) d+r_{1}+j-d\left\lfloor\frac{r_{1}+j}{d}\right\rfloor$ and $x_{2}=\left(\frac{n}{d t} r_{2}+s_{2}\right) d+r_{2}+j-d\left\lfloor\frac{r_{2}+j}{d}\right\rfloor$ such that $x_{1}, x_{2} \in P_{i^{\prime}}$ where $0 \leq r_{1} \leq r_{2} \leq t-1,0 \leq s_{1}, s_{2} \leq \frac{n}{d t}-1$. Thus there exist l_{1}, l_{2} such that $x_{1}=l_{1} \frac{n}{d}+i^{\prime}$ and $x_{2}=l_{2} \frac{n}{d}+i^{\prime}$ where $0 \leq l_{1}, l_{2} \leq d-1$. Hence we have

$$
\begin{equation*}
\frac{n}{t}\left(r_{2}-r_{1}\right)+\left(s_{2}-s_{1}\right) d+\left(r_{2}-r_{1}\right)+d\left(\left\lfloor\frac{r_{1}+j}{d}\right\rfloor-\left\lfloor\frac{r_{2}+j}{d}\right\rfloor\right)=\left(l_{2}-l_{1}\right) \frac{n}{d} . \tag{1}
\end{equation*}
$$

If $r_{1} \neq r_{2}$, then $1 \leq r_{2}-r_{1} \leq t-1$. But Eq. (1) implies that t divides $r_{2}-r_{1}$, a contradiction. If $r_{1}=r_{2}$, then, by (1), we obtain

$$
\left(s_{2}-s_{1}\right) d=\left(l_{2}-l_{1}\right) \frac{n}{d},
$$

or equivalently

$$
\left(s_{2}-s_{1}\right) \frac{d}{t}=\left(l_{2}-l_{1}\right) \frac{n}{d t} .
$$

Since $x_{1} \neq x_{2}, s_{1} \neq s_{2}$. Thus $l_{1} \neq l_{2}$. This implies that $\frac{n}{d t}$ divides $s_{2}-s_{1}$. But $0<\left|s_{2}-s_{1}\right| \leq \frac{n}{d t}-1$. This is a contradiction. So $\left|T_{j} \cap P_{i}\right|=1$ for $0 \leq i \leq \frac{n}{d}-1$ and $0 \leq j \leq k-1$. Consequently, $\gamma_{\times k}^{*}\left(G_{B}(n, d)\right) \leq|T|=\frac{k n}{d}$.

Theorem 3 is not true when $k=d$. For example, it is easy to check that $T=\{0,1,3,4,5,6,7\}$ is a minimum 2-tuple twin dominating set of $G_{B}(8,2)$. So $\gamma_{\times 2}^{*}\left(G_{B}(8,2)\right)=7$.

In fact, the proof of Theorem 3 provides a construction method for constructing minimum k-tuple twin dominating sets in $G_{B}(n, d)$ when d divides n.

Example 1. Table 3 gives two representations of the vertex set of $G_{B}(32,4)$. By the construction method stated in Theorem 3, we can choose the minimum 3 -tuple twin dominating set $T=\{0,1,2,4,5,6,9,10,11,13,14,15,16$, $18,19,20,22,23,24,25,27,28,29,31\}$ of $G_{B}(32,4)$, which is illustrated by bold numbers in Table 3.

3. Proof of Theorem 4

When d divides n, the vertex set of $G_{K}(n, d)$ can be represented as follows:

$$
V\left(G_{K}(n, d)\right)=\bigcup_{i=0}^{\frac{n}{d}-1} \bigcup_{j=0}^{d-1}\left\{j \frac{n}{d}+i\right\}, \quad \text { or } \quad \bigcup_{i=0}^{\frac{n}{d}-1} \bigcup_{j=1}^{d}\{-i d-j\}(\bmod n),
$$

Table 4
The vertices of $G_{K}(n, d)$.

$n-1$	$n-2$	$n-3$	\ldots	$n-d$
$n-1-d$	$n-2-d$	$n-3-d$	\cdots	$n-2 d$
$n-1-2 d$	$n-2-2 d$	$n-3-2 d$	\cdots	$n-3 d$
\vdots	\vdots	\vdots	\vdots	\vdots
$n-1-i d$	$n-2-i d$	$n-3-i d$	\cdots	$n-(i+1) d$
\vdots	\vdots	\vdots	\vdots	\vdots
$n-1-\left(\frac{n}{d}-1\right) d$	$n-2-\left(\frac{n}{d}-1\right) d$	$n-3-\left(\frac{n}{d}-1\right) d$	\cdots	0

Table 5

An example: $G_{K}(32,4)$ and $k=3$.							
28	29	30	31	0	8	16	24
24	25	26	27	1	9	17	25
20	21	22	23	2	10	18	26
16	17	18	19	3	11	19	27
12	13	14	15	4	12	20	28
8	9	10	11	5	13	21	29
4	5	6	7	6	14	22	30
0	1	2	3	7	15	23	31

as shown in Tables 1 and 4. Let $I_{i}^{\prime}=\bigcup_{j=1}^{d}\{-i d-j\}$ and $P_{i}=\bigcup_{j=0}^{d-1}\left\{j \frac{n}{d}+i\right\}$. Note that the set of d elements in every row in Table 4 is exactly the out-neighborhood of each vertex in same row in Table 1. That is, $N^{+}(i)=N^{+}\left(\frac{n}{d}+i\right)=\cdots=$ $N^{+}\left((d-1) \frac{n}{d}+i\right)=I_{i}^{\prime}$ and $N^{-}(-i d-1)=N^{-}(-i d-2)=\cdots=N^{-}(-i d-d)=P_{i}$.

By using an argument analogous to that in the proof of Theorem 3, we can prove that Theorem 4 is true. Here we give an outline of the proof of Theorem 4.

Proof of Theorem 4. Let T be a minimum k-tuple twin dominating set of $G_{K}(n, d)$. We can show that $\gamma_{\times k}^{*}\left(G_{K}(n, d)\right)=|T|$ $\geq \frac{k n}{d}$.

To show that the converse inequality, we construct a k-tuple twin dominating set T of $G_{K}(n, d)$ with $|T|=\frac{k n}{d}$ as follows:

$$
T=\bigcup_{r=0}^{t-1} T_{r}, T_{r}=\bigcup_{s=1}^{\frac{n}{d t}} \bigcup_{j=0}^{k-1}\left\{n-\left(\frac{n}{d t} r+s\right) d-(r+j)+d\left\lceil\frac{r+j}{d}\right\rceil\right\},
$$

where $t=\left(\frac{n}{d}, d\right)$. From proving that $\left|T \cap I_{i}^{\prime}\right|=k$ and $\left|T \cap P_{i}\right|=k$, the assertion follows.
Example 2. Table 5 gives two representations of the set of vertices of $G_{K}(32,4)$. By the construction method stated in Theorem 4, we can choose the minimum 3-tuple twin dominating set $T=\{31,31,28,27,26,24,23,22,21,19$, $18,17,14,13,12,10,9,8,7,5,4,3,1,0\}$ of $G_{K}(32,4)$, which is illustrated by the bold numbers in Table 5 .

Observation 5. For $d \geq 2$, and $1 \leq k \leq d+1$ when $(d+1) \mid n$ or else $1 \leq k \leq d, \gamma_{\times k}^{*}\left(G_{K}(n, d)\right) \geq\left\lceil\frac{k n}{d+1}\right\rceil$.
Proof. Let T be a minimum k-tuple twin dominating set of $G_{K}(n, d)$. By definition, we have $2 d|T| \geq 2 k(n-|T|)+2(k-1)|T|$. So $\gamma^{*}\left(G_{K}(n, d)\right)=|T| \geq\left\lceil\frac{k n}{d+1}\right\rceil$.

Theorem 4 is not true if $k=d$ or $d+1$. For example, it is easily checked that $T=\{1,2,3,4,5\}$ is a minimum 2 -tuple twin dominating set in $G_{K}(6,2)$. Hence $\gamma_{\times 2}^{*}\left(G_{B}(6,2)\right)=5$. If $k=d+1$, then, by Observation 5 , we have $\gamma_{\times k}^{*}\left(G_{K}(n, d)\right)=n$.

Finally, the problem of determining the exact values of the d-tuple twin domination numbers for $G_{B}(n, d)$ and $G_{K}(n, d)$ with $d \nmid n$ remains open.

References

[1] Y. Kikuchi, Y. Shibata, On the domination numbers of generalized de Bruijn digraphs and generalized Kautz digraphs, Information Processing Letters 86 (2003) 79-85.
[2] E.F. Shan, T.C.E. Cheng, L.Y. Kang, Absorbant of generalized de Bruijn digraphs, Information Processing Letters 105 (2007) 6-11.
[3] T. Araki, The k-tuple twin domination in de Bruijn and Kautz digraphs, Discrete Mathematics 308 (2008) 6406-6413.
[4] J.-C. Bermond, C. Peyrat, de Bruijn and Kautz networks: a competitor for the hypercube?, in: F. André, J.P. Verjus (Eds.), Hypercube and Distributed Computers, Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 1989, pp. 279-293.
[5] D.Z. Du, F.K. Hwang, Generalized de Bruijn digraphs, Networks 18 (1988) 27-38.
[6] D.Z. Du, D.F. Hsu, F.K. Hwang, X.M. Zhang, The hamiltonian property of generalized de Bruijn digraphs, Journal of Combinatorial Theory Series B 52 (1991) 1-8.
[7] M. Imase, M. Itoh, Design to minimize diameter on building-block networks, IEEE Transactions on Computers 30 (1981) 439-442.
[8] M. Imase, T. Soneoka, K. Okada, Connectivity of regular directed graphs with small diameters, IEEE Transactions on Computers 34 (1985) 267-273.
[9] Jyhmin Kuo, On the twin domination numbers in generalized de Bruijn and generalized Kautz digraphs, Discrete Mathematics, Algorithms and Applications 2 (2010) 199-205.
[10] E.F. Shan, Y.X. Dong, Y.K. Cheng, The twin domination number in generalized de Bruijn digraphs, Information Processing Letters 109 (2009) 856-860.
[11] X. Li, F. Zhang, On the numbers of spanning trees and Eulerian tours in generalized de Bruijn graphs, Discrete Mathematics 94 (1991) 189-197.
[12] Y. Shibata, M. Shirahata, S. Osawa, Counting closed walks in generalized de Bruijn graphs, Information Processing Letters 49 (1994) 135-138.
[13] T. Hasunuma, Y. Shibata, Counting small cycles in generalized de Bruijn digraphs, Networks 29 (1997) 39-47.
[14] M. Imase, M. Itoh, A design for directed graphs with minimum diameter, IEEE Transactions on Computers 32 (1983) 782-784.
[15] N. Homobono, C. Peyrat, Connectivity of Imase-Itoh digraphs, IEEE Transactions on Computers 37 (1988) 1459-1461.
[16] T. Hasunuma, Y. Kikuchi, T. Mori, Y. Shibata, On the number of cycles in generalized Kautz digraphs, Discrete Mathematics 285 (2004) 127-140.
[17] F. Tian, J.-M Xu, Distance domination numbers of generalized de Bruijn and Kautz digraphs, OR Transactions 10 (2006) 88-94.
[18] T. Araki, On the k-tuple domination in de Bruijn and Kautz digraphs, Information Processing Letters 104 (2007) 86-90.
[19] L.Y. Wu, E.F. Shan, Z.R. Liu, On the k-tuple domination of generalized de Brujin and Kautz digraphs, Information Science 180 (2010) 4430-4435.
[20] J.-M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001, 121-148.

[^0]: This research was partially supported by the National Natural Science Foundation of China (No. 11171207), Pujiang Project of Shanghai (No. 09PJ1405000) and Shanghai Leading Academic Discipline Project (No. S30104).

 * Corresponding author. Tel.: +86 2166135652; fax: +86 2166133292.

 E-mail address: efshan@shu.edu.cn (E. Shan).

