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a b s t r a c t

Given a digraph (network) G = (V , A), a vertex u in G is said to out-dominate itself and all
vertices v such that the arc (u, v) ∈ A; similarly, u in-dominates both itself and all vertices
w such that the arc (w, u) ∈ A. A setD of vertices ofG is a k-tuple twin dominating set if every
vertex of G is out-dominated and in-dominated by at least k vertices in D, respectively. The
k-tuple twin domination problem is to determine a minimum k-tuple twin dominating
set for a digraph. In this paper we investigate the k-tuple twin domination problem in
generalized de Bruijn networks GB(n, d) and generalized Kautz GK (n, d) networks when
d divides n. We provide construction methods for constructing minimum k-tuple twin
dominating sets in these networks. These results generalize previous results given by
Araki [T. Araki, The k-tuple twin domination in de Bruijn and Kautz digraphs, Discrete
Mathematics 308 (2008) 6406–6413] for de Bruijn and Kautz networks.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we deal with digraphs (networks) which admit self-loops but no multiple arcs. Specifically, let G = (V , A)
be a digraph with vertex set V and arc set A. For a vertex u ∈ V , the out-neighborhood of u is N+(u) = {v | (u, v) ∈ A}

and the in-neighborhood of u is N−(u) = {v | (v, u) ∈ A}. The closed out-neighborhood and closed in-neighborhood of u are
N+

[u] = N+(u) ∪ {u} and N−
[u] = {u} ∪ N−(u), respectively. Note that if u has a self-loop, the out-neighborhood and in-

neighborhood of u contain u itself. For a subset S ⊆ V , write N+(S) = ∪u∈S N+(u) and N−(S) = ∪u∈S N−(u). The out-degree
and in-degree of u are deg+(u) = |N+(u) \ {u}| and deg−(u) = |N−(u) \ {u}|, respectively. Denote by δ+(G) and δ−(G) the
minimum out-degree and in-degree of G, respectively.

Domination in digraphs has received more attention in recent years since it has many applications. A vertex u in G
is said to out-dominate the vertices in N+

[u] and in-dominate the vertices in N−
[u]. For a positive integer k, a set D of

vertices of G is called a k-tuple out-dominating set if |N+
[u] ∩ D| ≥ k for each vertex u of G, while D is called a k-tuple

in-dominating set if |N−
[u] ∩D| ≥ k for each vertex u of G. In particular, the 1-tuple out-dominating and in-dominating sets

are respectively called the dominating set and absorbant of G in [1,2]. A set D of vertices in G is a k-tuple twin dominating set
of G if |N+

[u] ∩ D| ≥ k and |N−
[u] ∩ D| ≥ k for each vertex u of G. The k-tuple twin domination number, denoted by γ ∗

×k(G),
of G is the minimum cardinality of a k-tuple twin dominating set of G. When k = 1, it is a usual twin domination. Note that
a digraph G has a k-tuple twin dominating set if and only if k ≤ δ+(G) + 1 and k ≤ δ−(G) + 1. The concept of k-tuple twin
domination in digraphs was recently introduced by Araki [3].
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Fig. 1a. GB (6,3).

Fig. 1b. GK (9,2).

This study is motivated by an application of k-tuple twin domination in networks suggested by Araki [3]. Let our graph
be the model of a network. Each vertex in a k-tuple twin dominating set in digraphs provides a service (file-server, sensor
and so on) for the network. In the network, there is a direct communication between every vertex and file-servers in both
directions. It is reasonable to assume that this access is available even when some file-servers go down. A k-tuple twin
dominating set provides the desired fault-tolerance for such cases because each vertex can access at least k servers and each
server can have at least k − 1 backup servers. Since each backup copy may cost a lot, the number of duplicated copies has
to be minimized.

Let d, n be two positive integers and n ≥ d ≥ 2. The generalized de Bruijn digraph GB(n, d) is defined by congruence
equations as follows:

V (GB(n, d)) = {0, 1, 2, . . . , n − 1}
A(GB(n, d)) = {(x, y) | y ≡ dx + i (mod n), 0 ≤ i ≤ d − 1}.

In particular, if n = dm, then GB(n, d) is the de Bruijn digraph B(d,m). The generalized Kautz digraph GK (n, d) is defined by
the following congruence equation:

V (GK (n, d)) = {0, 1, 2, . . . , n − 1}
A(GK (n, d)) = {(x, y) | y ≡ −dx − i ( mod n), 1 ≤ i ≤ d}.

In particular, if n = dm + dm−1, then GK (n, d) is the Kautz digraph K(d,m). The generalized de Bruijn and Kautz digraphs
have been studied as interconnection network topologies because of various good properties [4,5]. The graphs GB(6, 3) and
GK (9, 2) are exhibited in Figs. 1. For notational convenience, sometimes we simply write GB and GK instead of GB(n, d) and
GK (n, d), respectively, if n and d are explicit from the context.

For generalized de Bruijn digraphs, their Hamiltonian property [6], diameter [7], connectivity [8], absorbant [2] and
twin domination [9,10] have been studied. Also, several structural objects such as spanning trees, Eulerian tours [11],
closed walks [12] and small cycles [13] have been counted. For generalized Kautz digraphs, their diameter [14], their
connectivity [15,8] and the number of cycles [16] have been studied. Kikuchi and Shibata [1] considered the domination
problem for generalized de Bruijn and Kautz digraphs. In [17] Tian and Xu further investigated the distance domination for
these digraphs. Recently, Araki [18,3] studied the k-tuple domination and k-tuple twin domination in de Bruijn and Kautz
digraphs. Wu et al. [19] considered the k-tuple domination for generalized de Bruijn and Kautz digraphs.

In [3] Araki presented the k-tuple twin domination number of de Bruijn and Kautz digraphs, separately, by constructing
minimum k-tuple twin dominating sets in these digraphs.

Theorem 1 (Araki,[3]). For d ≥ 2, m ≥ 1, and 1 ≤ k ≤ d − 1, γ ∗

×k(B(d,m)) = kdm−1.
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Table 1
The vertices of GB(n, d) or GK (n, d) when d|n.
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Table 2
The vertices of GB(n, d) when d|n.
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Theorem 2 (Araki, [3]). For d ≥ 2 and 1 ≤ k ≤ d − 1,

γ ∗

×k(K(d,m)) =


k m = 1,
k(dm−1

+ dm−2) m ≥ 2.

One natural problem arising is that of what the exact values of the k-tuple twin domination numbers in generalized de
Bruijn and Kautz digraphs are. It seems to be difficult to determine the k-tuple twin domination numbers for these general
digraphs. Our purpose here is to give the k-tuple twin domination numbers for GB(n, d) and GK (n, d)when d divides n. Since
the vertex 0 has a self-loop in any GB(n, d), δ+(GB(n, d)) = d−1. This means that GB(n, d) has a k-tuple twin dominating set
if and only if k ≤ d. For GK (n, d), note the fact that GK (n, d) contains no self-loop iff (d+1) divides n (see [20, pp. 112–131]).
Then δ+(GK (n, d)) = d− 1 or d. So GK (n, d) has a k-tuple twin dominating set if and only if k ≤ d+ 1 when (d+ 1) divides
n or else k ≤ d.

In this paper, by applying a distinct technique with that of Araki [3], we obtain the following generalized results.

Theorem 3. For d ≥ 2, 1 ≤ k ≤ d − 1, where d divides n, γ ∗

×k(GB(n, d)) =
kn
d .

Theorem 4. For d ≥ 2, 1 ≤ k ≤ d − 1, where d divides n, γ ∗

×k(GK (n, d)) =
kn
d .

Recalling that GB(dm, d) = B(d,m) when n = dm, while GK (dm, d) = B(d,m) when n = dm + dm−1, we see that
Theorems 1 and 2 are special cases of Theorems 3 and 4, respectively.

2. Proof of Theorem 3

For any positive integersm, n, we denote as (m, n) the greatest common divisor ofm and n.m|nmeans thatm divides n.
When d divides n, an easy observation is that the vertex set V (GB) of GB(n, d) can be represented as shown in Tables 1–2.

Proof of Theorem 3. As shown in Tables 1–2, we have

V (GB) =

n
d −1
i=0

d−1
j=0

{id + j} , or

n
d −1
i=0

d−1
j=0


j
n
d

+ i


.

Let Ii =
d−1

j=0 {id + j} and Pi =
d−1

j=0 {j nd + i}. Note that the set of d elements in every row in Table 2 is exactly the out-
neighborhood of each vertex in the same row in Table 1, that is, N+(i) = N+( n

d + i) = · · · = N+((d − 1) n
d + i) = Ii. Then

N−(id) = N−(id + 1) = · · · = N−((i + 1)d − 1) = Pi. Let T be a minimum k-tuple twin dominating set of GB(n, d).
We first show that γ ∗

×k(GB(n, d)) ≥
kn
d . If |T ∩ Ii| ≥ k and |T ∩ Pi| ≥ k for 0 ≤ i ≤

n
d − 1, then γ ∗

×k(GB(n, d)) = |T | ≥
kn
d .

Otherwise, there exists one set Ii or Pi such that |T ∩ Ii| ≤ k − 1 or |T ∩ Pi| ≤ k − 1. Suppose |T ∩ Ii| ≤ k − 1. Since Ii is the
out-neighborhood of each vertex in Pi, we have Pi ⊆ T and |T ∩ Ii| ≥ k − 1 for otherwise T could not k-tuple in-dominate
vertices of Pi. So |T ∩ Ii| = k − 1 and |T ∩ Pi| = |Pi| = d ≥ k + 1. Similarly, if |T ∩ Pi| ≤ k − 1, then we can deduce that
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Table 3
An example: GB(32, 4) and k = 3.

0 1 2 3 0 8 16 24
4 5 6 7 1 9 17 25
8 9 10 11 2 10 18 26

12 13 14 15 3 11 19 27
16 17 18 19 4 12 20 28
20 21 22 23 5 13 21 29
24 25 26 27 6 14 22 30
28 29 30 31 7 15 23 31

|T ∩ Pi| = k − 1 while |T ∩ Ii| = |Ii| = d ≥ k + 1. Note that |T | = |
 n

d −1
i=0 (T ∩ Pi)| = |

 n
d −1
i=0 (T ∩ Ii)|. Consequently,

γ ∗

×k(GB(n, d)) = |T | ≥
kn
d .

Next we prove that γ ∗

×k(GB(n, d)) ≤
kn
d . Note that if a set T of vertices of GB satisfies that |T ∩ Ii| = k and |T ∩ Pi| = k for

each i = 0, 1, . . . , n
d − 1, then T is a k-tuple twin dominating set of GB. Therefore, it is sufficient to show that there exists a

set T of vertices of GB such that |T ∩ Ii| = k and |T ∩ Pi| = k. Let
 n
d , d


= t . We construct the set T with |T | =

kn
d as follows:

T =

t−1
r=0

Tr , where Tr =

n
dt −1
s=0

k−1
j=0

 n
dt

r + s

d + r + j − d

 r + j
d


.

We claim that T is the desired set. Note that 0 ≤
n
dt r + s ≤

n
d − 1 and 0 ≤ r + j − d

 r+j
d


≤ d − 1. It is easy to check that

|T ∩ Ii| = k for 0 ≤ i ≤
n
d − 1. Let

Tj =

t−1
r=0

n
dt −1
s=0

 n
dt

r + s

d + r + j − d

 r + j
d


,

where j = 0, 1, . . . , k − 1. It is easy to verify that Ti ∩ Tj = ∅ for i ≠ j with 0 ≤ i, j ≤ k − 1. Thus,
k−1

j=0 Tj = T . Clearly,
|Tj| =

n
d and |Tj ∩ Ii| = 1 for 0 ≤ i ≤

n
d − 1. Suppose that |T ∩ Pi| = k is not true for some i. Then there exists an i such that

|T ∩Pi| < k and so there exists at least a set Tj such that Tj∩Pi = ∅. This implies that theremust exist another set Pi′ such that
|Tj∩Pi′ | ≥ 2. That is, Tj contains two distinct vertices x1 = ( n

dt r1+s1)d+r1+j−d⌊ r1+j
d ⌋ and x2 = ( n

dt r2+s2)d+r2+j−d⌊ r2+j
d ⌋

such that x1, x2 ∈ Pi′ where 0 ≤ r1 ≤ r2 ≤ t − 1, 0 ≤ s1, s2 ≤
n
dt − 1. Thus there exist l1, l2 such that x1 = l1 n

d + i′ and
x2 = l2 n

d + i′ where 0 ≤ l1, l2 ≤ d − 1. Hence we have

n
t
(r2 − r1) + (s2 − s1)d + (r2 − r1) + d

 r1 + j
d


−

 r2 + j
d


= (l2 − l1)

n
d
. (1)

If r1 ≠ r2, then 1 ≤ r2 − r1 ≤ t − 1. But Eq. (1) implies that t divides r2 − r1, a contradiction. If r1 = r2, then, by (1), we
obtain

(s2 − s1)d = (l2 − l1)
n
d
,

or equivalently

(s2 − s1)
d
t

= (l2 − l1)
n
dt

.

Since x1 ≠ x2, s1 ≠ s2. Thus l1 ≠ l2. This implies that n
dt divides s2 − s1. But 0 < |s2 − s1| ≤

n
dt − 1. This is a contradiction.

So |Tj ∩ Pi| = 1 for 0 ≤ i ≤
n
d − 1 and 0 ≤ j ≤ k − 1. Consequently, γ ∗

×k(GB(n, d)) ≤ |T | =
kn
d . �

Theorem 3 is not true when k = d. For example, it is easy to check that T = {0, 1, 3, 4, 5, 6, 7} is a minimum 2-tuple
twin dominating set of GB(8, 2). So γ ∗

×2(GB(8, 2)) = 7.
In fact, the proof of Theorem 3 provides a construction method for constructing minimum k-tuple twin dominating sets

in GB(n, d) when d divides n.

Example 1. Table 3 gives two representations of the vertex set of GB(32, 4). By the construction method stated in
Theorem 3, we can choose the minimum 3-tuple twin dominating set T = {0, 1, 2, 4, 5, 6, 9, 10, 11, 13, 14, 15, 16,
18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 31} of GB(32, 4), which is illustrated by bold numbers in Table 3.

3. Proof of Theorem 4

When d divides n, the vertex set of GK (n, d) can be represented as follows:

V (GK (n, d)) =

n
d −1
i=0

d−1
j=0


j
n
d

+ i


, or

n
d −1
i=0

d
j=1

{−id − j} (mod n),
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Table 4
The vertices of GK (n, d).

n − 1 n − 2 n − 3 · · · n − d
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Table 5
An example: GK (32, 4) and k = 3.

28 29 30 31 0 8 16 24
24 25 26 27 1 9 17 25
20 21 22 23 2 10 18 26
16 17 18 19 3 11 19 27
12 13 14 15 4 12 20 28
8 9 10 11 5 13 21 29
4 5 6 7 6 14 22 30
0 1 2 3 7 15 23 31

as shown in Tables 1 and 4. Let I ′i =
d

j=1{−id − j} and Pi =
d−1

j=0 {j nd + i}. Note that the set of d elements in every row
in Table 4 is exactly the out-neighborhood of each vertex in same row in Table 1. That is, N+(i) = N+( n

d + i) = · · · =

N+((d − 1) n
d + i) = I ′i and N−(−id − 1) = N−(−id − 2) = · · · = N−(−id − d) = Pi.

By using an argument analogous to that in the proof of Theorem 3, we can prove that Theorem 4 is true. Here we give an
outline of the proof of Theorem 4.

Proof of Theorem 4. Let T be a minimum k-tuple twin dominating set of GK (n, d). We can show that γ ∗

×k(GK (n, d)) = |T |

≥
kn
d .
To show that the converse inequality, we construct a k-tuple twin dominating set T of GK (n, d) with |T | =

kn
d as follows:

T =

t−1
r=0

Tr , Tr =

n
dt

s=1

k−1
j=0


n −

 n
dt

r + s

d − (r + j) + d

 r + j
d


,

where t =
 n
d , d


. From proving that |T ∩ I ′i | = k and |T ∩ Pi| = k, the assertion follows. �

Example 2. Table 5 gives two representations of the set of vertices of GK (32, 4). By the construction method stated
in Theorem 4, we can choose the minimum 3-tuple twin dominating set T = {31, 31, 28, 27, 26, 24, 23, 22, 21, 19,
18, 17, 14, 13, 12, 10, 9, 8, 7, 5, 4, 3, 1, 0} of GK (32, 4), which is illustrated by the bold numbers in Table 5.

Observation 5. For d ≥ 2, and 1 ≤ k ≤ d + 1 when (d + 1)|n or else 1 ≤ k ≤ d, γ ∗

×k(GK (n, d)) ≥ ⌈
kn
d+1⌉.

Proof. Let T be aminimum k-tuple twin dominating set ofGK (n, d). By definition, we have 2d|T | ≥ 2k(n−|T |)+2(k−1)|T |.
So γ ∗(GK (n, d)) = |T | ≥ ⌈

kn
d+1⌉. �

Theorem 4 is not true if k = d or d + 1. For example, it is easily checked that T = {1, 2, 3, 4, 5} is a minimum 2-tuple
twin dominating set in GK (6, 2). Hence γ ∗

×2(GB(6, 2)) = 5. If k = d+ 1, then, by Observation 5, we have γ ∗

×k(GK (n, d)) = n.
Finally, the problem of determining the exact values of the d-tuple twin domination numbers for GB(n, d) and GK (n, d)

with d ̸ |n remains open.
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