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Abstract
Using graph-theoretical techniques, we establish an inequality regarding the number
of walks and closed walks in a graph. This inequality yields several upper bounds for
the number of closed walks in a graph in terms of the number of vertices, number of
edges, maximum degree, degree sequence, and the Zagreb indices of the graph. As
applications, we also present some new upper bounds on the Estrada index for
general graphs, bipartite graphs, trees and planar graphs, some of which improve the
known results obtained by using the algebraic techniques.
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1 Introduction
Throughout this paper we consider simple graphs, i.e., graphs without loops and multi-
ple edges. For a graph G with n (n ≥ ) vertices, the adjacency matrix of G is, as usual,
defined as the n × n matrix A(G) = [aij] in which aij =  if the ith and the jth vertices are
adjacent, and aij =  otherwise. The eigenvalues of A(G) are also called the eigenvalues of
the graph G. For a vertex v in G, we denote by N(v) and d(v) the neighbor (the set of ver-
tices adjacent to v) and the degree of v, respectively. The degree sequence of G, denoted
by (d,d, . . . ,dn), is a list of the vertex degrees of G in non-increasing order. Let V (G) and
E(G) denote the vertex set and edge set of G, respectively. The first and the second Zagreb
indices of G are defined as

Zg(G) =
∑

v∈V (G)

d(v) and Zg(G) =
∑

uv∈E(G)
dudv,

respectively [].
A walkW of length k starting at a vertex v and ending at a vertex vk in G is a sequence

of vertices, i.e., vvv · · · vk , in which vi is adjacent to vi+ for each i = , , . . . ,k – . In par-
ticular, if the vertices v, v, v, . . . , vk (except the possible v and vk) are pairwise distinct,
then W is well known as a path, and if v = vk then W is called a closed walk. It is well
known [] that the number of closed walks of length k in G is exactly the trace of A(G)k

which, in turn, is the sum of the kth power of the eigenvalues ofG (known as the kth spec-
tral moment of G). This fact is of importance in the theory of total π-electron energy, for
details see [, ] and the references cited therein. Also, the sequence of the numbers of
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closed walks of length k, k = , , . . . , starting at a given vertex v, was proposed by Randić
[] for characterization of the environment of vertex v.
Based on the number of closed walks, Estrada [] put forward a graph invariant, which

was originally referred to as the subgraph centrality but has since become known as the
Estrada index of a graph G, defined as

EE(G) =
n∑
i=

eλi ,

where λ,λ, . . . ,λn are the eigenvalues of G. The Estrada index has successfully found
applications in various fields, including biochemistry [, ] and complex networks [].
Also, a number of mathematical properties, especially various lower and upper bounds
on the Estrada index of a graph have been established, for details we refer the reader to
[–]; other properties can be found in [–] and a latest survey paper by Gutman et
al. [].
In general, counting the closed walks in a graph (of large order) is not an easy work.

Only a few results were obtained for some special types of graphs, e.g., vertex-transitive
graphs [] and generalized de Bruijn graphs []. In this paper, using graph-theoretical
techniques, we establish an inequality regarding the number of walks and closed walks
starting at a given vertex. This inequality yields several upper bounds for the number of
closed walks in a graph in terms of the number of vertices, number of edges, maximum
degree, degree sequence, the first and the second Zagreb indices of the graph. As applica-
tions, in Section  we present some new upper bounds on the Estrada index for general
graphs, bipartite graphs, trees, and planar graphs, which improve some known results ob-
tained by using the algebraic techniques.

2 Main results
Given a graph G and a vertex v, letWk(G, v) denote the set of walks of length k starting at
v in G, and let Wk(G, v) = |Wk(G, v)|. Obviously, W(G, v) = , W(G, v) = d(v). Moreover,
it is easy to check that

W(G, v) =
∑

u∈N(v)

d(u),

W(G, v) =
∑

u∈N(v)

∑
w∈N(u)

d(w).

In general, we have the following result.

Lemma  Let G be a graph of order n with maximum degree �, and let v be an arbitrary
vertex in G. Then

Wk(G, v)≤ �k , for any k ≥ , ()

Wk(G, v)≤ d(v)�k–, for any k ≥ , ()

Wk(G, v)≤
∑

u∈N(v)

d(u)�k–, for any k ≥ , ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/199
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Wk(G, v)≤
∑

u∈N(v)

∑
w∈N(u)

d(w)�k–, for any k ≥ . ()

Each of the equalities holds in ()-() for all v if and only if G is regular.

Proof LetW = vvv · · · vk be a walk inWk(G, v). Observe that each of k steps ofW has at
most � choices, then () follows. We also notice that the first one, two, and three step(s)
of W have exactly d(v),

∑
u∈N(v) d(u) and

∑
u∈N(v)

∑
w∈N(u) d(w) choices, respectively, and

each of the remaining steps has at most� choices, so (), (), and () follow as well. More-
over, it is not difficult to see that each of the equalities holds in ()-() for all v in G if and
only if G is a �-regular graph. This completes the proof. �

LetWk(G) be the number of walks of length k in G, i.e.,Wk(G) =
∑

v∈V (G)Wk(G, v). It is
clear thatW(G) = n,W(G) =

∑
v∈V (G) d(v) = m. Moreover, one can deduce easily that

W(G) =
∑

v∈V (G)

∑
u∈N(v)

d(u) =
∑

u∈V (G)

d(u) = Zg(G),

W(G) =
∑

v∈V (G)

∑
u∈N(v)

∑
w∈N(u)

d(w) =
∑

u∈V (G)

d(u)
∑

w∈N(u)

d(w)

= 
∑

uw∈E(G)
d(u)d(w) = Zg(G),

where Zg(G), Zg(G) are the first and the second Zagreb indices of G, respectively. Using
these facts and Lemma , for general k ≥ , we have the following.

Theorem  Let G be a graph with n vertices,m edges, and maximum degree �. Then

Wk(G) ≤ n�k , for any k ≥ , ()

Wk(G) ≤ m�k–, for any k ≥ , ()

Wk(G) ≤ Zg(G)�k–, for any k ≥ , ()

Wk(G) ≤ Zg(G)�k–, for any k ≥ . ()

Each of the equalities holds in ()-() if and only if G is regular.

Proof This proof is trivial. �

Remark Bounds ()-() can be seen as some slight improvements of bound (). Here, we
also list two other improvements of bound () for using later.

(i) [] Let G be a graph of order n with degree sequence (d,d, . . . ,dn). Then for k ≥ ,

Wk(G) ≤
n∑
i=

dk
i , ()

with equality if and only if G is regular or k ≤ .
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(ii) [] Let G be a graph of order n with maximum degree �. If G admits an
orientation with maximum outdegree d ≤ �/, then for k ≥ ,

Wk(G) ≤ nkdk/(� – d)k/. ()

Moreover, from the proof of () (see Theorem  in []), one can deduce that the
equality holds in () if and only if G is a �-regular Euler graph.

Nowwe turn to the number of closedwalks. Let CWk(G, v) denote the set of closedwalks
of length k starting and ending at v in G, and let CWk(G, v) = |CWk(G, v)|. It is obvious
that  = CW(G, v) < W(G, v) = , CW(G, v) = W(G, v) = d(v). In general, for k ≥  we
establish the following simple but useful result.

Lemma  Let G be a graph of order n and let v be an arbitrary vertex in G. Then, for any
k ≥ ,

CWk(G, v)≤Wk–(G, v), ()

with equality if and only if k is even, and the component of G containing v is bipartite and
v is adjacent to each of the vertices in the other partition part.

Proof Let f be the map from CWk(G, v) into Wk–(G, v) such that, for any closed walk
vvv · · · vk–v ∈ CWk(G, v),

f (vvv · · · vk–v) = vvv · · · vk–.

One can see that different closed walks are mapped to different walks by f , which yields

CWk(G, v)≤Wk–(G, v).

Further, the equality holds if and only if the end vertex of each walk in Wk–(G, v) is
adjacent to v. In this case, if k is odd then, for any edge vu, Wk–(G, v) contains a walk
of the form W = vuvu · · · vuv while v is not adjacent to itself, a contradiction. So if the
equality holds in (), then k must be even.
Now we consider the component Cv of G containing v, under the assumption that the

equality holds in () and k is even. LetNl(G, v) denote the set of vertices at distance l from
v in G. We claim that Nl(G, v) is an empty set, for any l ≥ . Otherwise there would be a
path P = vvvv such that v is not adjacent to v, but the walk W = vvvv · · · vvvv de-
fined on the pathP belongs toWk–(G, v), which implies that v is adjacent to v, a contradic-
tion.We next show that there are no edges with both end vertices inNl(G, v), l ∈ {, }. For
contradiction, assume that there is an edge, say vv, with v, v ∈N(G, v). ThenT = vvvv
is a triangle and consequently the walk W = vvvv · · · vvvv defined on T belongs to
Wk–(G, v), which implies that v is adjacent to v, again a contradiction. Similarly, if there
are some edges with both end vertices inN(G, v), then there must exist a path P = vvvv
such that v is not adjacent to v, which also yields a contradiction as the above argument.
Thus, it follows that the component Cv is bipartite with partition (N(G, v),N(G, v)∪{v}).
The converse is obvious, completing the proof. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/199
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Let CWk(G) denote the number of closed walks of length k in G, i.e., CWk(G) =∑
v∈V (G)CWk(G, v). Clearly, CW(G) = n, CW(G) =  and CW(G) = m. For any k ≥ ,

using Lemma , we have

Theorem  Let G be a graph of order n with maximum degree � and degree sequence
(d,d, . . . ,dn). Then, for any k ≥ ,

CWk(G)≤ n�k–, ()

CWk(G)≤ m�k–, ()

CWk(G)≤ Zg(G)�k–, ()

CWk(G)≤ Zg(G)�k– (for k ≥ ), ()

CWk(G)≤
n∑
i=

dk–
i . ()

Each of the equalities holds in ()-() if and only if k is even and each component of G
is the complete bipartite graph K�,�.Moreover, if G admits an orientation with maximum
outdegree d ≤ �/, then, for any k ≥ ,

CWk(G)≤ nk–d(k–)/(� – d)(k–)/, ()

with equality if and only if both k and � are even and each component of G is the complete
bipartite graph K�,�.

Proof For k ≥ , it follows from Lemma  that

CWk(G) =
∑

v∈V (G)

CWk(G, v) ≤
∑

v∈V (G)

Wk–(G, v) =Wk–(G),

with equality if and only if k is even, and each component of G is a complete bipartite
graph. This result together with bounds ()-() yield bounds ()-() directly; also the
equality cases follow by noting thatG is�-regular (� is even in the case of ()). The proof
is completed. �

Recall that an orientation of a graph G is a digraph D obtained from G by choosing an
orientation for each edge. The outdegree of a vertex v in D is the number of edges with
tail v. It is well known [] that a tree (or forest) admits an orientation with maximum
outdegree d =  and a planar graph with d = . In fact, for a forest, fixing a root for each
component and orienting each edge in each component toward its root would yield an
orientation with d = ; furthermore, a planar graph has an orientation with d =  since its
edges can be partitioned into three forests (see, e.g., []). Thus, by () we get an imme-
diate corollary.

Corollary  Let G be a graph of order n with maximum degree �. If G is a tree (or forest)
and � ≥ , then, for any k ≥ ,

CWk(G) < n
(√

(� – )
)k–. ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/199
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If G is a planar graph and � ≥ , then, for any k ≥ ,

CWk(G) < n
(√

(� – )
)k–. ()

Remark that ifG is a bipartite graph (including tree and forest), then there are no closed
walks of odd length in G, and hence CWk(G) =  when k is odd. Formally this is stated in
the following proposition.

Proposition  Let G be a bipartite graph. Then, for any k ≥ , CWk–(G) = .

3 Applications
In this section we apply the results in the previous section to estimate the Estrada index
of graphs.
Let Mk(G) denote the kth spectral moment of G, i.e., Mk(G) =

∑n
i= λ

k
i , where λ,λ,

. . . ,λn are the eigenvalues of G. Then Mk(G) = CWk(G) []. On the other hand, recalling
the power-series expansion of the function ex, we have another expression for the Estrada
index of G as follows:

EE(G) =
∞∑
k=

Mk(G)
k!

=
∞∑
k=

CWk(G)
k!

. ()

In particular, if G is a bipartite graph, then by Proposition , we get

EE(G) =
∞∑
k=

Mk(G)
(k)!

=
∞∑
k=

CWk(G)
(k)!

. ()

We are now ready to give some new upper bounds for EE(G).

Theorem  Let G be a graph with n vertices,m edges, t triangles,maximum degree � and
degree sequence (d,d, . . . ,dn). Then

EE(G) <
n
�

(
e� – 

)
, ()

EE(G) < n +
m
�

(
e� –  –�

)
, ()

EE(G) < n +m +
Zg(G)

�

(
e� –  –� –

�



)
, ()

EE(G) < n +m + t +
Zg(G)

�

(
e� –  –� –

�


–

�



)
, ()

EE(G) <
n∑
i=

edi – 
di

. ()

Moreover, if G admits an orientation with maximum outdegree d ≤ �/, then

EE(G) <
n√

d(� – d)
(
e
√
d(�–d) – 

)
. ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/199
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Proof Wefirst consider (). By (), Theorem and noticing thatCW(G) = n,CW(G) =
, CW(G) = m≤ n�, we have

EE(G) = CW(G) +CW(G) +
CW(G)

!
+

∞∑
k=

CWk(G)
k!

< n +
n�

!
+

∞∑
k=

n�k–

k!

= n +
n
�

( ∞∑
k=

�k

k!
–  –�

)

=
n
�

(
e� – 

)
.

The discussion for ()-() is analogous by observing that CW(G) = m =
∑n

i= di,
CW(G) = t <W(G) = Zg(G) and,CW(G) =W(G) ≤ n

√
d(� – d) with equality if and

only if G is a �-regular Euler graph. �

For bipartite graphs, from () and the power-series expansion of the hyperbolic cosine
cosh(x) = (ex + e–x)/, one can easily obtain the following result by a similar reasoning as
in the proof of Theorem .

Theorem  Let G be a bipartite graph with n vertices, m edges, maximum degree � and
degree sequence (d,d, . . . ,dn). Then

EE(G)≤ n +
n
�

(
cosh(�) – 

)
, ()

EE(G)≤ n +
m
�

(
cosh(�) – 

)
, ()

EE(G)≤ n +m +
Zg(G)

�

(
cosh(�) –  –

�



)
, ()

EE(G)≤ n +m +
Zg(G)

�

(
cosh(�) –  –

�



)
, ()

EE(G)≤ n +
n∑
i=

cosh(di) – 
di

. ()

Each of the equalities holds in ()-() if and only if each component of G is the complete
bipartite graph K�,�.Moreover, if G admits an orientation with maximum outdegree d ≤
�/, then

EE(G)≤ n +
n√

d(� – d)
(
cosh

(√
d(� – d)

)
– 

)
, ()

with equality if and only if � is even and each component of G is the complete bipartite
graph K�,�.

Similar to Corollary , substituting d =  and d =  in () and (), respectively, we have
the following corollary.

http://www.journalofinequalitiesandapplications.com/content/2014/1/199


Chen and Qian Journal of Inequalities and Applications 2014, 2014:199 Page 8 of 9
http://www.journalofinequalitiesandapplications.com/content/2014/1/199

Corollary  Let G be a graph of order n with maximum degree �. If G is a tree (or forest)
and � ≥ , then

EE(G) < n +
n√

(� – )
(
cosh

(√
(� – )

)
– 

)
. ()

If G is a planar graph and � ≥ , then

EE(G) <
n√

(� – )
(
e
√
(�–) – 

)
. ()

Remark In the past few years, a number of upper bounds on the Estrada index of graphs
have been established by using the algebraic techniques (see, for example, [, , , ]).
In comparison to the algebraic techniques, the bounds based on our graph-theoretical
method are related to the degree parameters (mainly the maximum degree), which are
somewhat different from the previous ones. Moreover, our method would be more effec-
tive in some cases. For example, in [] de la Peña et al. showed that, for any graph G,

EE(G)≤ n –  + e
√
m,

which was later improved by Zhou in [] as follows:

EE(G)≤ n –  –
√
m + e

√
m. ()

Here, our bound () would be better than the bound () when  ≤ � <
√
m. To see this,

we first consider the function f (x) = (ex –  – x)/x with x ≥ , which is strictly increasing
with respect to x since f ′(x) = [(x–)ex + x+]/x >  when x ≥ . Then for ≤ � <

√
m,

we get

n +
m
�

(
e� –  –�

)
= n + mf (�) < n + mf (

√
m) = n –  –

√
m + e

√
m.

In addition, for a bipartite graph G, the authors in [] proved that

EE(G)≤ n –  +  cosh(
√
m). ()

Here, our bound () would be better than the bound () when  ≤ � <
√
m. Indeed,

when x ≥  the function f (x) = (coshx – )/x is strictly increasing with respect to x since
f ′(x) = [(x – )(ex – e–x) + ( – e–x)]/x > . Therefore, for  ≤ � <

√
m, we have

n +
m
�

(
cosh(�) – 

)
= n + mf (�) < n + mf (

√
m) = n –  +  cosh(

√
m).
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4. Gutman, I, Marković, S, Vesović, A, Estrada, E: Approximating total π -electron energy in terms of spectral moments.

A quantitative approach. J. Serb. Chem. Soc. 63, 639-646 (1998)
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